YES Problem 1: (VAR v_NonEmpty:S X:S X1:S X2:S) (RULES a__f(0) -> cons(0,f(s(0))) a__f(s(0)) -> a__f(a__p(s(0))) a__f(X:S) -> f(X:S) a__p(s(X:S)) -> mark(X:S) a__p(X:S) -> p(X:S) mark(0) -> 0 mark(cons(X1:S,X2:S)) -> cons(mark(X1:S),X2:S) mark(f(X:S)) -> a__f(mark(X:S)) mark(p(X:S)) -> a__p(mark(X:S)) mark(s(X:S)) -> s(mark(X:S)) ) (STRATEGY INNERMOST) Problem 1: Dependency Pairs Processor: -> Pairs: A__F(s(0)) -> A__F(a__p(s(0))) A__F(s(0)) -> A__P(s(0)) A__P(s(X:S)) -> MARK(X:S) MARK(cons(X1:S,X2:S)) -> MARK(X1:S) MARK(f(X:S)) -> A__F(mark(X:S)) MARK(f(X:S)) -> MARK(X:S) MARK(p(X:S)) -> A__P(mark(X:S)) MARK(p(X:S)) -> MARK(X:S) MARK(s(X:S)) -> MARK(X:S) -> Rules: a__f(0) -> cons(0,f(s(0))) a__f(s(0)) -> a__f(a__p(s(0))) a__f(X:S) -> f(X:S) a__p(s(X:S)) -> mark(X:S) a__p(X:S) -> p(X:S) mark(0) -> 0 mark(cons(X1:S,X2:S)) -> cons(mark(X1:S),X2:S) mark(f(X:S)) -> a__f(mark(X:S)) mark(p(X:S)) -> a__p(mark(X:S)) mark(s(X:S)) -> s(mark(X:S)) Problem 1: SCC Processor: -> Pairs: A__F(s(0)) -> A__F(a__p(s(0))) A__F(s(0)) -> A__P(s(0)) A__P(s(X:S)) -> MARK(X:S) MARK(cons(X1:S,X2:S)) -> MARK(X1:S) MARK(f(X:S)) -> A__F(mark(X:S)) MARK(f(X:S)) -> MARK(X:S) MARK(p(X:S)) -> A__P(mark(X:S)) MARK(p(X:S)) -> MARK(X:S) MARK(s(X:S)) -> MARK(X:S) -> Rules: a__f(0) -> cons(0,f(s(0))) a__f(s(0)) -> a__f(a__p(s(0))) a__f(X:S) -> f(X:S) a__p(s(X:S)) -> mark(X:S) a__p(X:S) -> p(X:S) mark(0) -> 0 mark(cons(X1:S,X2:S)) -> cons(mark(X1:S),X2:S) mark(f(X:S)) -> a__f(mark(X:S)) mark(p(X:S)) -> a__p(mark(X:S)) mark(s(X:S)) -> s(mark(X:S)) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: A__F(s(0)) -> A__F(a__p(s(0))) A__F(s(0)) -> A__P(s(0)) A__P(s(X:S)) -> MARK(X:S) MARK(cons(X1:S,X2:S)) -> MARK(X1:S) MARK(f(X:S)) -> A__F(mark(X:S)) MARK(f(X:S)) -> MARK(X:S) MARK(p(X:S)) -> A__P(mark(X:S)) MARK(p(X:S)) -> MARK(X:S) MARK(s(X:S)) -> MARK(X:S) ->->-> Rules: a__f(0) -> cons(0,f(s(0))) a__f(s(0)) -> a__f(a__p(s(0))) a__f(X:S) -> f(X:S) a__p(s(X:S)) -> mark(X:S) a__p(X:S) -> p(X:S) mark(0) -> 0 mark(cons(X1:S,X2:S)) -> cons(mark(X1:S),X2:S) mark(f(X:S)) -> a__f(mark(X:S)) mark(p(X:S)) -> a__p(mark(X:S)) mark(s(X:S)) -> s(mark(X:S)) Problem 1: Reduction Pairs Processor: -> Pairs: A__F(s(0)) -> A__F(a__p(s(0))) A__F(s(0)) -> A__P(s(0)) A__P(s(X:S)) -> MARK(X:S) MARK(cons(X1:S,X2:S)) -> MARK(X1:S) MARK(f(X:S)) -> A__F(mark(X:S)) MARK(f(X:S)) -> MARK(X:S) MARK(p(X:S)) -> A__P(mark(X:S)) MARK(p(X:S)) -> MARK(X:S) MARK(s(X:S)) -> MARK(X:S) -> Rules: a__f(0) -> cons(0,f(s(0))) a__f(s(0)) -> a__f(a__p(s(0))) a__f(X:S) -> f(X:S) a__p(s(X:S)) -> mark(X:S) a__p(X:S) -> p(X:S) mark(0) -> 0 mark(cons(X1:S,X2:S)) -> cons(mark(X1:S),X2:S) mark(f(X:S)) -> a__f(mark(X:S)) mark(p(X:S)) -> a__p(mark(X:S)) mark(s(X:S)) -> s(mark(X:S)) -> Usable rules: a__f(0) -> cons(0,f(s(0))) a__f(s(0)) -> a__f(a__p(s(0))) a__f(X:S) -> f(X:S) a__p(s(X:S)) -> mark(X:S) a__p(X:S) -> p(X:S) mark(0) -> 0 mark(cons(X1:S,X2:S)) -> cons(mark(X1:S),X2:S) mark(f(X:S)) -> a__f(mark(X:S)) mark(p(X:S)) -> a__p(mark(X:S)) mark(s(X:S)) -> s(mark(X:S)) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [a__f](X) = 2.X + 2 [a__p](X) = X [mark](X) = 2.X [0] = 2 [cons](X1,X2) = 2.X1 + 2 [f](X) = 2.X + 2 [fSNonEmpty] = 0 [p](X) = X [s](X) = 2.X [A__F](X) = 2.X + 2 [A__P](X) = X + 2 [MARK](X) = 2.X + 2 Problem 1: SCC Processor: -> Pairs: A__F(s(0)) -> A__F(a__p(s(0))) A__P(s(X:S)) -> MARK(X:S) MARK(cons(X1:S,X2:S)) -> MARK(X1:S) MARK(f(X:S)) -> A__F(mark(X:S)) MARK(f(X:S)) -> MARK(X:S) MARK(p(X:S)) -> A__P(mark(X:S)) MARK(p(X:S)) -> MARK(X:S) MARK(s(X:S)) -> MARK(X:S) -> Rules: a__f(0) -> cons(0,f(s(0))) a__f(s(0)) -> a__f(a__p(s(0))) a__f(X:S) -> f(X:S) a__p(s(X:S)) -> mark(X:S) a__p(X:S) -> p(X:S) mark(0) -> 0 mark(cons(X1:S,X2:S)) -> cons(mark(X1:S),X2:S) mark(f(X:S)) -> a__f(mark(X:S)) mark(p(X:S)) -> a__p(mark(X:S)) mark(s(X:S)) -> s(mark(X:S)) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: A__F(s(0)) -> A__F(a__p(s(0))) ->->-> Rules: a__f(0) -> cons(0,f(s(0))) a__f(s(0)) -> a__f(a__p(s(0))) a__f(X:S) -> f(X:S) a__p(s(X:S)) -> mark(X:S) a__p(X:S) -> p(X:S) mark(0) -> 0 mark(cons(X1:S,X2:S)) -> cons(mark(X1:S),X2:S) mark(f(X:S)) -> a__f(mark(X:S)) mark(p(X:S)) -> a__p(mark(X:S)) mark(s(X:S)) -> s(mark(X:S)) ->->Cycle: ->->-> Pairs: A__P(s(X:S)) -> MARK(X:S) MARK(cons(X1:S,X2:S)) -> MARK(X1:S) MARK(f(X:S)) -> MARK(X:S) MARK(p(X:S)) -> A__P(mark(X:S)) MARK(p(X:S)) -> MARK(X:S) MARK(s(X:S)) -> MARK(X:S) ->->-> Rules: a__f(0) -> cons(0,f(s(0))) a__f(s(0)) -> a__f(a__p(s(0))) a__f(X:S) -> f(X:S) a__p(s(X:S)) -> mark(X:S) a__p(X:S) -> p(X:S) mark(0) -> 0 mark(cons(X1:S,X2:S)) -> cons(mark(X1:S),X2:S) mark(f(X:S)) -> a__f(mark(X:S)) mark(p(X:S)) -> a__p(mark(X:S)) mark(s(X:S)) -> s(mark(X:S)) The problem is decomposed in 2 subproblems. Problem 1.1: Reduction Pairs Processor: -> Pairs: A__F(s(0)) -> A__F(a__p(s(0))) -> Rules: a__f(0) -> cons(0,f(s(0))) a__f(s(0)) -> a__f(a__p(s(0))) a__f(X:S) -> f(X:S) a__p(s(X:S)) -> mark(X:S) a__p(X:S) -> p(X:S) mark(0) -> 0 mark(cons(X1:S,X2:S)) -> cons(mark(X1:S),X2:S) mark(f(X:S)) -> a__f(mark(X:S)) mark(p(X:S)) -> a__p(mark(X:S)) mark(s(X:S)) -> s(mark(X:S)) -> Usable rules: a__f(0) -> cons(0,f(s(0))) a__f(s(0)) -> a__f(a__p(s(0))) a__f(X:S) -> f(X:S) a__p(s(X:S)) -> mark(X:S) a__p(X:S) -> p(X:S) mark(0) -> 0 mark(cons(X1:S,X2:S)) -> cons(mark(X1:S),X2:S) mark(f(X:S)) -> a__f(mark(X:S)) mark(p(X:S)) -> a__p(mark(X:S)) mark(s(X:S)) -> s(mark(X:S)) ->Interpretation type: Linear ->Coefficients: All rationals ->Dimension: 1 ->Bound: 2 ->Interpretation: [a__f](X) = 0 [a__p](X) = 1/2.X + 1/2 [mark](X) = X [0] = 2 [cons](X1,X2) = 2.X2 [f](X) = 0 [fSNonEmpty] = 0 [p](X) = 1/2.X + 1/2 [s](X) = 2.X + 1/2 [A__F](X) = 2.X [A__P](X) = 0 [MARK](X) = 0 Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: a__f(0) -> cons(0,f(s(0))) a__f(s(0)) -> a__f(a__p(s(0))) a__f(X:S) -> f(X:S) a__p(s(X:S)) -> mark(X:S) a__p(X:S) -> p(X:S) mark(0) -> 0 mark(cons(X1:S,X2:S)) -> cons(mark(X1:S),X2:S) mark(f(X:S)) -> a__f(mark(X:S)) mark(p(X:S)) -> a__p(mark(X:S)) mark(s(X:S)) -> s(mark(X:S)) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Reduction Pairs Processor: -> Pairs: A__P(s(X:S)) -> MARK(X:S) MARK(cons(X1:S,X2:S)) -> MARK(X1:S) MARK(f(X:S)) -> MARK(X:S) MARK(p(X:S)) -> A__P(mark(X:S)) MARK(p(X:S)) -> MARK(X:S) MARK(s(X:S)) -> MARK(X:S) -> Rules: a__f(0) -> cons(0,f(s(0))) a__f(s(0)) -> a__f(a__p(s(0))) a__f(X:S) -> f(X:S) a__p(s(X:S)) -> mark(X:S) a__p(X:S) -> p(X:S) mark(0) -> 0 mark(cons(X1:S,X2:S)) -> cons(mark(X1:S),X2:S) mark(f(X:S)) -> a__f(mark(X:S)) mark(p(X:S)) -> a__p(mark(X:S)) mark(s(X:S)) -> s(mark(X:S)) -> Usable rules: a__f(0) -> cons(0,f(s(0))) a__f(s(0)) -> a__f(a__p(s(0))) a__f(X:S) -> f(X:S) a__p(s(X:S)) -> mark(X:S) a__p(X:S) -> p(X:S) mark(0) -> 0 mark(cons(X1:S,X2:S)) -> cons(mark(X1:S),X2:S) mark(f(X:S)) -> a__f(mark(X:S)) mark(p(X:S)) -> a__p(mark(X:S)) mark(s(X:S)) -> s(mark(X:S)) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [a__f](X) = 2.X + 2 [a__p](X) = X [mark](X) = 2.X + 1 [0] = 0 [cons](X1,X2) = X1 + 1 [f](X) = 2.X + 2 [fSNonEmpty] = 0 [p](X) = X [s](X) = 2.X + 2 [A__F](X) = 0 [A__P](X) = X + 1 [MARK](X) = 2.X + 2 Problem 1.2: SCC Processor: -> Pairs: MARK(cons(X1:S,X2:S)) -> MARK(X1:S) MARK(f(X:S)) -> MARK(X:S) MARK(p(X:S)) -> A__P(mark(X:S)) MARK(p(X:S)) -> MARK(X:S) MARK(s(X:S)) -> MARK(X:S) -> Rules: a__f(0) -> cons(0,f(s(0))) a__f(s(0)) -> a__f(a__p(s(0))) a__f(X:S) -> f(X:S) a__p(s(X:S)) -> mark(X:S) a__p(X:S) -> p(X:S) mark(0) -> 0 mark(cons(X1:S,X2:S)) -> cons(mark(X1:S),X2:S) mark(f(X:S)) -> a__f(mark(X:S)) mark(p(X:S)) -> a__p(mark(X:S)) mark(s(X:S)) -> s(mark(X:S)) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: MARK(cons(X1:S,X2:S)) -> MARK(X1:S) MARK(f(X:S)) -> MARK(X:S) MARK(p(X:S)) -> MARK(X:S) MARK(s(X:S)) -> MARK(X:S) ->->-> Rules: a__f(0) -> cons(0,f(s(0))) a__f(s(0)) -> a__f(a__p(s(0))) a__f(X:S) -> f(X:S) a__p(s(X:S)) -> mark(X:S) a__p(X:S) -> p(X:S) mark(0) -> 0 mark(cons(X1:S,X2:S)) -> cons(mark(X1:S),X2:S) mark(f(X:S)) -> a__f(mark(X:S)) mark(p(X:S)) -> a__p(mark(X:S)) mark(s(X:S)) -> s(mark(X:S)) Problem 1.2: Subterm Processor: -> Pairs: MARK(cons(X1:S,X2:S)) -> MARK(X1:S) MARK(f(X:S)) -> MARK(X:S) MARK(p(X:S)) -> MARK(X:S) MARK(s(X:S)) -> MARK(X:S) -> Rules: a__f(0) -> cons(0,f(s(0))) a__f(s(0)) -> a__f(a__p(s(0))) a__f(X:S) -> f(X:S) a__p(s(X:S)) -> mark(X:S) a__p(X:S) -> p(X:S) mark(0) -> 0 mark(cons(X1:S,X2:S)) -> cons(mark(X1:S),X2:S) mark(f(X:S)) -> a__f(mark(X:S)) mark(p(X:S)) -> a__p(mark(X:S)) mark(s(X:S)) -> s(mark(X:S)) ->Projection: pi(MARK) = 1 Problem 1.2: SCC Processor: -> Pairs: Empty -> Rules: a__f(0) -> cons(0,f(s(0))) a__f(s(0)) -> a__f(a__p(s(0))) a__f(X:S) -> f(X:S) a__p(s(X:S)) -> mark(X:S) a__p(X:S) -> p(X:S) mark(0) -> 0 mark(cons(X1:S,X2:S)) -> cons(mark(X1:S),X2:S) mark(f(X:S)) -> a__f(mark(X:S)) mark(p(X:S)) -> a__p(mark(X:S)) mark(s(X:S)) -> s(mark(X:S)) ->Strongly Connected Components: There is no strongly connected component The problem is finite.