YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 26 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) QReductionProof [EQUIVALENT, 0 ms] (9) QDP (10) QDPSizeChangeProof [EQUIVALENT, 0 ms] (11) YES (12) QDP (13) UsableRulesProof [EQUIVALENT, 0 ms] (14) QDP (15) QReductionProof [EQUIVALENT, 0 ms] (16) QDP (17) QDPSizeChangeProof [EQUIVALENT, 0 ms] (18) YES (19) QDP (20) UsableRulesProof [EQUIVALENT, 0 ms] (21) QDP (22) QReductionProof [EQUIVALENT, 0 ms] (23) QDP (24) QDPSizeChangeProof [EQUIVALENT, 0 ms] (25) YES (26) QDP (27) UsableRulesProof [EQUIVALENT, 0 ms] (28) QDP (29) QReductionProof [EQUIVALENT, 0 ms] (30) QDP (31) QDPSizeChangeProof [EQUIVALENT, 0 ms] (32) YES (33) QDP (34) UsableRulesProof [EQUIVALENT, 0 ms] (35) QDP (36) QReductionProof [EQUIVALENT, 0 ms] (37) QDP (38) QDPSizeChangeProof [EQUIVALENT, 0 ms] (39) YES (40) QDP (41) UsableRulesProof [EQUIVALENT, 0 ms] (42) QDP (43) QReductionProof [EQUIVALENT, 0 ms] (44) QDP (45) QDPSizeChangeProof [EQUIVALENT, 0 ms] (46) YES (47) QDP (48) UsableRulesProof [EQUIVALENT, 0 ms] (49) QDP (50) QReductionProof [EQUIVALENT, 0 ms] (51) QDP (52) UsableRulesReductionPairsProof [EQUIVALENT, 3 ms] (53) QDP (54) PisEmptyProof [EQUIVALENT, 0 ms] (55) YES (56) QDP (57) UsableRulesProof [EQUIVALENT, 0 ms] (58) QDP (59) QReductionProof [EQUIVALENT, 0 ms] (60) QDP (61) QDPSizeChangeProof [EQUIVALENT, 0 ms] (62) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: active(eq(0, 0)) -> mark(true) active(eq(s(X), s(Y))) -> mark(eq(X, Y)) active(eq(X, Y)) -> mark(false) active(inf(X)) -> mark(cons(X, inf(s(X)))) active(take(0, X)) -> mark(nil) active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L))) active(length(nil)) -> mark(0) active(length(cons(X, L))) -> mark(s(length(L))) mark(eq(X1, X2)) -> active(eq(X1, X2)) mark(0) -> active(0) mark(true) -> active(true) mark(s(X)) -> active(s(X)) mark(false) -> active(false) mark(inf(X)) -> active(inf(mark(X))) mark(cons(X1, X2)) -> active(cons(X1, X2)) mark(take(X1, X2)) -> active(take(mark(X1), mark(X2))) mark(nil) -> active(nil) mark(length(X)) -> active(length(mark(X))) eq(mark(X1), X2) -> eq(X1, X2) eq(X1, mark(X2)) -> eq(X1, X2) eq(active(X1), X2) -> eq(X1, X2) eq(X1, active(X2)) -> eq(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) inf(mark(X)) -> inf(X) inf(active(X)) -> inf(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) take(mark(X1), X2) -> take(X1, X2) take(X1, mark(X2)) -> take(X1, X2) take(active(X1), X2) -> take(X1, X2) take(X1, active(X2)) -> take(X1, X2) length(mark(X)) -> length(X) length(active(X)) -> length(X) The set Q consists of the following terms: active(eq(x0, x1)) active(inf(x0)) active(take(0, x0)) active(take(s(x0), cons(x1, x2))) active(length(nil)) active(length(cons(x0, x1))) mark(eq(x0, x1)) mark(0) mark(true) mark(s(x0)) mark(false) mark(inf(x0)) mark(cons(x0, x1)) mark(take(x0, x1)) mark(nil) mark(length(x0)) eq(mark(x0), x1) eq(x0, mark(x1)) eq(active(x0), x1) eq(x0, active(x1)) s(mark(x0)) s(active(x0)) inf(mark(x0)) inf(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) take(mark(x0), x1) take(x0, mark(x1)) take(active(x0), x1) take(x0, active(x1)) length(mark(x0)) length(active(x0)) ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(eq(0, 0)) -> MARK(true) ACTIVE(eq(s(X), s(Y))) -> MARK(eq(X, Y)) ACTIVE(eq(s(X), s(Y))) -> EQ(X, Y) ACTIVE(eq(X, Y)) -> MARK(false) ACTIVE(inf(X)) -> MARK(cons(X, inf(s(X)))) ACTIVE(inf(X)) -> CONS(X, inf(s(X))) ACTIVE(inf(X)) -> INF(s(X)) ACTIVE(inf(X)) -> S(X) ACTIVE(take(0, X)) -> MARK(nil) ACTIVE(take(s(X), cons(Y, L))) -> MARK(cons(Y, take(X, L))) ACTIVE(take(s(X), cons(Y, L))) -> CONS(Y, take(X, L)) ACTIVE(take(s(X), cons(Y, L))) -> TAKE(X, L) ACTIVE(length(nil)) -> MARK(0) ACTIVE(length(cons(X, L))) -> MARK(s(length(L))) ACTIVE(length(cons(X, L))) -> S(length(L)) ACTIVE(length(cons(X, L))) -> LENGTH(L) MARK(eq(X1, X2)) -> ACTIVE(eq(X1, X2)) MARK(0) -> ACTIVE(0) MARK(true) -> ACTIVE(true) MARK(s(X)) -> ACTIVE(s(X)) MARK(false) -> ACTIVE(false) MARK(inf(X)) -> ACTIVE(inf(mark(X))) MARK(inf(X)) -> INF(mark(X)) MARK(inf(X)) -> MARK(X) MARK(cons(X1, X2)) -> ACTIVE(cons(X1, X2)) MARK(take(X1, X2)) -> ACTIVE(take(mark(X1), mark(X2))) MARK(take(X1, X2)) -> TAKE(mark(X1), mark(X2)) MARK(take(X1, X2)) -> MARK(X1) MARK(take(X1, X2)) -> MARK(X2) MARK(nil) -> ACTIVE(nil) MARK(length(X)) -> ACTIVE(length(mark(X))) MARK(length(X)) -> LENGTH(mark(X)) MARK(length(X)) -> MARK(X) EQ(mark(X1), X2) -> EQ(X1, X2) EQ(X1, mark(X2)) -> EQ(X1, X2) EQ(active(X1), X2) -> EQ(X1, X2) EQ(X1, active(X2)) -> EQ(X1, X2) S(mark(X)) -> S(X) S(active(X)) -> S(X) INF(mark(X)) -> INF(X) INF(active(X)) -> INF(X) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) TAKE(mark(X1), X2) -> TAKE(X1, X2) TAKE(X1, mark(X2)) -> TAKE(X1, X2) TAKE(active(X1), X2) -> TAKE(X1, X2) TAKE(X1, active(X2)) -> TAKE(X1, X2) LENGTH(mark(X)) -> LENGTH(X) LENGTH(active(X)) -> LENGTH(X) The TRS R consists of the following rules: active(eq(0, 0)) -> mark(true) active(eq(s(X), s(Y))) -> mark(eq(X, Y)) active(eq(X, Y)) -> mark(false) active(inf(X)) -> mark(cons(X, inf(s(X)))) active(take(0, X)) -> mark(nil) active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L))) active(length(nil)) -> mark(0) active(length(cons(X, L))) -> mark(s(length(L))) mark(eq(X1, X2)) -> active(eq(X1, X2)) mark(0) -> active(0) mark(true) -> active(true) mark(s(X)) -> active(s(X)) mark(false) -> active(false) mark(inf(X)) -> active(inf(mark(X))) mark(cons(X1, X2)) -> active(cons(X1, X2)) mark(take(X1, X2)) -> active(take(mark(X1), mark(X2))) mark(nil) -> active(nil) mark(length(X)) -> active(length(mark(X))) eq(mark(X1), X2) -> eq(X1, X2) eq(X1, mark(X2)) -> eq(X1, X2) eq(active(X1), X2) -> eq(X1, X2) eq(X1, active(X2)) -> eq(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) inf(mark(X)) -> inf(X) inf(active(X)) -> inf(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) take(mark(X1), X2) -> take(X1, X2) take(X1, mark(X2)) -> take(X1, X2) take(active(X1), X2) -> take(X1, X2) take(X1, active(X2)) -> take(X1, X2) length(mark(X)) -> length(X) length(active(X)) -> length(X) The set Q consists of the following terms: active(eq(x0, x1)) active(inf(x0)) active(take(0, x0)) active(take(s(x0), cons(x1, x2))) active(length(nil)) active(length(cons(x0, x1))) mark(eq(x0, x1)) mark(0) mark(true) mark(s(x0)) mark(false) mark(inf(x0)) mark(cons(x0, x1)) mark(take(x0, x1)) mark(nil) mark(length(x0)) eq(mark(x0), x1) eq(x0, mark(x1)) eq(active(x0), x1) eq(x0, active(x1)) s(mark(x0)) s(active(x0)) inf(mark(x0)) inf(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) take(mark(x0), x1) take(x0, mark(x1)) take(active(x0), x1) take(x0, active(x1)) length(mark(x0)) length(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 8 SCCs with 27 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: LENGTH(active(X)) -> LENGTH(X) LENGTH(mark(X)) -> LENGTH(X) The TRS R consists of the following rules: active(eq(0, 0)) -> mark(true) active(eq(s(X), s(Y))) -> mark(eq(X, Y)) active(eq(X, Y)) -> mark(false) active(inf(X)) -> mark(cons(X, inf(s(X)))) active(take(0, X)) -> mark(nil) active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L))) active(length(nil)) -> mark(0) active(length(cons(X, L))) -> mark(s(length(L))) mark(eq(X1, X2)) -> active(eq(X1, X2)) mark(0) -> active(0) mark(true) -> active(true) mark(s(X)) -> active(s(X)) mark(false) -> active(false) mark(inf(X)) -> active(inf(mark(X))) mark(cons(X1, X2)) -> active(cons(X1, X2)) mark(take(X1, X2)) -> active(take(mark(X1), mark(X2))) mark(nil) -> active(nil) mark(length(X)) -> active(length(mark(X))) eq(mark(X1), X2) -> eq(X1, X2) eq(X1, mark(X2)) -> eq(X1, X2) eq(active(X1), X2) -> eq(X1, X2) eq(X1, active(X2)) -> eq(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) inf(mark(X)) -> inf(X) inf(active(X)) -> inf(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) take(mark(X1), X2) -> take(X1, X2) take(X1, mark(X2)) -> take(X1, X2) take(active(X1), X2) -> take(X1, X2) take(X1, active(X2)) -> take(X1, X2) length(mark(X)) -> length(X) length(active(X)) -> length(X) The set Q consists of the following terms: active(eq(x0, x1)) active(inf(x0)) active(take(0, x0)) active(take(s(x0), cons(x1, x2))) active(length(nil)) active(length(cons(x0, x1))) mark(eq(x0, x1)) mark(0) mark(true) mark(s(x0)) mark(false) mark(inf(x0)) mark(cons(x0, x1)) mark(take(x0, x1)) mark(nil) mark(length(x0)) eq(mark(x0), x1) eq(x0, mark(x1)) eq(active(x0), x1) eq(x0, active(x1)) s(mark(x0)) s(active(x0)) inf(mark(x0)) inf(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) take(mark(x0), x1) take(x0, mark(x1)) take(active(x0), x1) take(x0, active(x1)) length(mark(x0)) length(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: LENGTH(active(X)) -> LENGTH(X) LENGTH(mark(X)) -> LENGTH(X) R is empty. The set Q consists of the following terms: active(eq(x0, x1)) active(inf(x0)) active(take(0, x0)) active(take(s(x0), cons(x1, x2))) active(length(nil)) active(length(cons(x0, x1))) mark(eq(x0, x1)) mark(0) mark(true) mark(s(x0)) mark(false) mark(inf(x0)) mark(cons(x0, x1)) mark(take(x0, x1)) mark(nil) mark(length(x0)) eq(mark(x0), x1) eq(x0, mark(x1)) eq(active(x0), x1) eq(x0, active(x1)) s(mark(x0)) s(active(x0)) inf(mark(x0)) inf(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) take(mark(x0), x1) take(x0, mark(x1)) take(active(x0), x1) take(x0, active(x1)) length(mark(x0)) length(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. eq(mark(x0), x1) eq(x0, mark(x1)) eq(active(x0), x1) eq(x0, active(x1)) s(mark(x0)) s(active(x0)) inf(mark(x0)) inf(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) take(mark(x0), x1) take(x0, mark(x1)) take(active(x0), x1) take(x0, active(x1)) length(mark(x0)) length(active(x0)) ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: LENGTH(active(X)) -> LENGTH(X) LENGTH(mark(X)) -> LENGTH(X) R is empty. The set Q consists of the following terms: active(eq(x0, x1)) active(inf(x0)) active(take(0, x0)) active(take(s(x0), cons(x1, x2))) active(length(nil)) active(length(cons(x0, x1))) mark(eq(x0, x1)) mark(0) mark(true) mark(s(x0)) mark(false) mark(inf(x0)) mark(cons(x0, x1)) mark(take(x0, x1)) mark(nil) mark(length(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *LENGTH(active(X)) -> LENGTH(X) The graph contains the following edges 1 > 1 *LENGTH(mark(X)) -> LENGTH(X) The graph contains the following edges 1 > 1 ---------------------------------------- (11) YES ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: TAKE(X1, mark(X2)) -> TAKE(X1, X2) TAKE(mark(X1), X2) -> TAKE(X1, X2) TAKE(active(X1), X2) -> TAKE(X1, X2) TAKE(X1, active(X2)) -> TAKE(X1, X2) The TRS R consists of the following rules: active(eq(0, 0)) -> mark(true) active(eq(s(X), s(Y))) -> mark(eq(X, Y)) active(eq(X, Y)) -> mark(false) active(inf(X)) -> mark(cons(X, inf(s(X)))) active(take(0, X)) -> mark(nil) active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L))) active(length(nil)) -> mark(0) active(length(cons(X, L))) -> mark(s(length(L))) mark(eq(X1, X2)) -> active(eq(X1, X2)) mark(0) -> active(0) mark(true) -> active(true) mark(s(X)) -> active(s(X)) mark(false) -> active(false) mark(inf(X)) -> active(inf(mark(X))) mark(cons(X1, X2)) -> active(cons(X1, X2)) mark(take(X1, X2)) -> active(take(mark(X1), mark(X2))) mark(nil) -> active(nil) mark(length(X)) -> active(length(mark(X))) eq(mark(X1), X2) -> eq(X1, X2) eq(X1, mark(X2)) -> eq(X1, X2) eq(active(X1), X2) -> eq(X1, X2) eq(X1, active(X2)) -> eq(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) inf(mark(X)) -> inf(X) inf(active(X)) -> inf(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) take(mark(X1), X2) -> take(X1, X2) take(X1, mark(X2)) -> take(X1, X2) take(active(X1), X2) -> take(X1, X2) take(X1, active(X2)) -> take(X1, X2) length(mark(X)) -> length(X) length(active(X)) -> length(X) The set Q consists of the following terms: active(eq(x0, x1)) active(inf(x0)) active(take(0, x0)) active(take(s(x0), cons(x1, x2))) active(length(nil)) active(length(cons(x0, x1))) mark(eq(x0, x1)) mark(0) mark(true) mark(s(x0)) mark(false) mark(inf(x0)) mark(cons(x0, x1)) mark(take(x0, x1)) mark(nil) mark(length(x0)) eq(mark(x0), x1) eq(x0, mark(x1)) eq(active(x0), x1) eq(x0, active(x1)) s(mark(x0)) s(active(x0)) inf(mark(x0)) inf(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) take(mark(x0), x1) take(x0, mark(x1)) take(active(x0), x1) take(x0, active(x1)) length(mark(x0)) length(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: TAKE(X1, mark(X2)) -> TAKE(X1, X2) TAKE(mark(X1), X2) -> TAKE(X1, X2) TAKE(active(X1), X2) -> TAKE(X1, X2) TAKE(X1, active(X2)) -> TAKE(X1, X2) R is empty. The set Q consists of the following terms: active(eq(x0, x1)) active(inf(x0)) active(take(0, x0)) active(take(s(x0), cons(x1, x2))) active(length(nil)) active(length(cons(x0, x1))) mark(eq(x0, x1)) mark(0) mark(true) mark(s(x0)) mark(false) mark(inf(x0)) mark(cons(x0, x1)) mark(take(x0, x1)) mark(nil) mark(length(x0)) eq(mark(x0), x1) eq(x0, mark(x1)) eq(active(x0), x1) eq(x0, active(x1)) s(mark(x0)) s(active(x0)) inf(mark(x0)) inf(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) take(mark(x0), x1) take(x0, mark(x1)) take(active(x0), x1) take(x0, active(x1)) length(mark(x0)) length(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. eq(mark(x0), x1) eq(x0, mark(x1)) eq(active(x0), x1) eq(x0, active(x1)) s(mark(x0)) s(active(x0)) inf(mark(x0)) inf(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) take(mark(x0), x1) take(x0, mark(x1)) take(active(x0), x1) take(x0, active(x1)) length(mark(x0)) length(active(x0)) ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: TAKE(X1, mark(X2)) -> TAKE(X1, X2) TAKE(mark(X1), X2) -> TAKE(X1, X2) TAKE(active(X1), X2) -> TAKE(X1, X2) TAKE(X1, active(X2)) -> TAKE(X1, X2) R is empty. The set Q consists of the following terms: active(eq(x0, x1)) active(inf(x0)) active(take(0, x0)) active(take(s(x0), cons(x1, x2))) active(length(nil)) active(length(cons(x0, x1))) mark(eq(x0, x1)) mark(0) mark(true) mark(s(x0)) mark(false) mark(inf(x0)) mark(cons(x0, x1)) mark(take(x0, x1)) mark(nil) mark(length(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *TAKE(X1, mark(X2)) -> TAKE(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 *TAKE(mark(X1), X2) -> TAKE(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *TAKE(active(X1), X2) -> TAKE(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *TAKE(X1, active(X2)) -> TAKE(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (18) YES ---------------------------------------- (19) Obligation: Q DP problem: The TRS P consists of the following rules: CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) The TRS R consists of the following rules: active(eq(0, 0)) -> mark(true) active(eq(s(X), s(Y))) -> mark(eq(X, Y)) active(eq(X, Y)) -> mark(false) active(inf(X)) -> mark(cons(X, inf(s(X)))) active(take(0, X)) -> mark(nil) active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L))) active(length(nil)) -> mark(0) active(length(cons(X, L))) -> mark(s(length(L))) mark(eq(X1, X2)) -> active(eq(X1, X2)) mark(0) -> active(0) mark(true) -> active(true) mark(s(X)) -> active(s(X)) mark(false) -> active(false) mark(inf(X)) -> active(inf(mark(X))) mark(cons(X1, X2)) -> active(cons(X1, X2)) mark(take(X1, X2)) -> active(take(mark(X1), mark(X2))) mark(nil) -> active(nil) mark(length(X)) -> active(length(mark(X))) eq(mark(X1), X2) -> eq(X1, X2) eq(X1, mark(X2)) -> eq(X1, X2) eq(active(X1), X2) -> eq(X1, X2) eq(X1, active(X2)) -> eq(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) inf(mark(X)) -> inf(X) inf(active(X)) -> inf(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) take(mark(X1), X2) -> take(X1, X2) take(X1, mark(X2)) -> take(X1, X2) take(active(X1), X2) -> take(X1, X2) take(X1, active(X2)) -> take(X1, X2) length(mark(X)) -> length(X) length(active(X)) -> length(X) The set Q consists of the following terms: active(eq(x0, x1)) active(inf(x0)) active(take(0, x0)) active(take(s(x0), cons(x1, x2))) active(length(nil)) active(length(cons(x0, x1))) mark(eq(x0, x1)) mark(0) mark(true) mark(s(x0)) mark(false) mark(inf(x0)) mark(cons(x0, x1)) mark(take(x0, x1)) mark(nil) mark(length(x0)) eq(mark(x0), x1) eq(x0, mark(x1)) eq(active(x0), x1) eq(x0, active(x1)) s(mark(x0)) s(active(x0)) inf(mark(x0)) inf(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) take(mark(x0), x1) take(x0, mark(x1)) take(active(x0), x1) take(x0, active(x1)) length(mark(x0)) length(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (20) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) R is empty. The set Q consists of the following terms: active(eq(x0, x1)) active(inf(x0)) active(take(0, x0)) active(take(s(x0), cons(x1, x2))) active(length(nil)) active(length(cons(x0, x1))) mark(eq(x0, x1)) mark(0) mark(true) mark(s(x0)) mark(false) mark(inf(x0)) mark(cons(x0, x1)) mark(take(x0, x1)) mark(nil) mark(length(x0)) eq(mark(x0), x1) eq(x0, mark(x1)) eq(active(x0), x1) eq(x0, active(x1)) s(mark(x0)) s(active(x0)) inf(mark(x0)) inf(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) take(mark(x0), x1) take(x0, mark(x1)) take(active(x0), x1) take(x0, active(x1)) length(mark(x0)) length(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. eq(mark(x0), x1) eq(x0, mark(x1)) eq(active(x0), x1) eq(x0, active(x1)) s(mark(x0)) s(active(x0)) inf(mark(x0)) inf(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) take(mark(x0), x1) take(x0, mark(x1)) take(active(x0), x1) take(x0, active(x1)) length(mark(x0)) length(active(x0)) ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) R is empty. The set Q consists of the following terms: active(eq(x0, x1)) active(inf(x0)) active(take(0, x0)) active(take(s(x0), cons(x1, x2))) active(length(nil)) active(length(cons(x0, x1))) mark(eq(x0, x1)) mark(0) mark(true) mark(s(x0)) mark(false) mark(inf(x0)) mark(cons(x0, x1)) mark(take(x0, x1)) mark(nil) mark(length(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *CONS(X1, mark(X2)) -> CONS(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 *CONS(mark(X1), X2) -> CONS(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *CONS(active(X1), X2) -> CONS(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *CONS(X1, active(X2)) -> CONS(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (25) YES ---------------------------------------- (26) Obligation: Q DP problem: The TRS P consists of the following rules: INF(active(X)) -> INF(X) INF(mark(X)) -> INF(X) The TRS R consists of the following rules: active(eq(0, 0)) -> mark(true) active(eq(s(X), s(Y))) -> mark(eq(X, Y)) active(eq(X, Y)) -> mark(false) active(inf(X)) -> mark(cons(X, inf(s(X)))) active(take(0, X)) -> mark(nil) active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L))) active(length(nil)) -> mark(0) active(length(cons(X, L))) -> mark(s(length(L))) mark(eq(X1, X2)) -> active(eq(X1, X2)) mark(0) -> active(0) mark(true) -> active(true) mark(s(X)) -> active(s(X)) mark(false) -> active(false) mark(inf(X)) -> active(inf(mark(X))) mark(cons(X1, X2)) -> active(cons(X1, X2)) mark(take(X1, X2)) -> active(take(mark(X1), mark(X2))) mark(nil) -> active(nil) mark(length(X)) -> active(length(mark(X))) eq(mark(X1), X2) -> eq(X1, X2) eq(X1, mark(X2)) -> eq(X1, X2) eq(active(X1), X2) -> eq(X1, X2) eq(X1, active(X2)) -> eq(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) inf(mark(X)) -> inf(X) inf(active(X)) -> inf(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) take(mark(X1), X2) -> take(X1, X2) take(X1, mark(X2)) -> take(X1, X2) take(active(X1), X2) -> take(X1, X2) take(X1, active(X2)) -> take(X1, X2) length(mark(X)) -> length(X) length(active(X)) -> length(X) The set Q consists of the following terms: active(eq(x0, x1)) active(inf(x0)) active(take(0, x0)) active(take(s(x0), cons(x1, x2))) active(length(nil)) active(length(cons(x0, x1))) mark(eq(x0, x1)) mark(0) mark(true) mark(s(x0)) mark(false) mark(inf(x0)) mark(cons(x0, x1)) mark(take(x0, x1)) mark(nil) mark(length(x0)) eq(mark(x0), x1) eq(x0, mark(x1)) eq(active(x0), x1) eq(x0, active(x1)) s(mark(x0)) s(active(x0)) inf(mark(x0)) inf(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) take(mark(x0), x1) take(x0, mark(x1)) take(active(x0), x1) take(x0, active(x1)) length(mark(x0)) length(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (27) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: INF(active(X)) -> INF(X) INF(mark(X)) -> INF(X) R is empty. The set Q consists of the following terms: active(eq(x0, x1)) active(inf(x0)) active(take(0, x0)) active(take(s(x0), cons(x1, x2))) active(length(nil)) active(length(cons(x0, x1))) mark(eq(x0, x1)) mark(0) mark(true) mark(s(x0)) mark(false) mark(inf(x0)) mark(cons(x0, x1)) mark(take(x0, x1)) mark(nil) mark(length(x0)) eq(mark(x0), x1) eq(x0, mark(x1)) eq(active(x0), x1) eq(x0, active(x1)) s(mark(x0)) s(active(x0)) inf(mark(x0)) inf(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) take(mark(x0), x1) take(x0, mark(x1)) take(active(x0), x1) take(x0, active(x1)) length(mark(x0)) length(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. eq(mark(x0), x1) eq(x0, mark(x1)) eq(active(x0), x1) eq(x0, active(x1)) s(mark(x0)) s(active(x0)) inf(mark(x0)) inf(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) take(mark(x0), x1) take(x0, mark(x1)) take(active(x0), x1) take(x0, active(x1)) length(mark(x0)) length(active(x0)) ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: INF(active(X)) -> INF(X) INF(mark(X)) -> INF(X) R is empty. The set Q consists of the following terms: active(eq(x0, x1)) active(inf(x0)) active(take(0, x0)) active(take(s(x0), cons(x1, x2))) active(length(nil)) active(length(cons(x0, x1))) mark(eq(x0, x1)) mark(0) mark(true) mark(s(x0)) mark(false) mark(inf(x0)) mark(cons(x0, x1)) mark(take(x0, x1)) mark(nil) mark(length(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *INF(active(X)) -> INF(X) The graph contains the following edges 1 > 1 *INF(mark(X)) -> INF(X) The graph contains the following edges 1 > 1 ---------------------------------------- (32) YES ---------------------------------------- (33) Obligation: Q DP problem: The TRS P consists of the following rules: S(active(X)) -> S(X) S(mark(X)) -> S(X) The TRS R consists of the following rules: active(eq(0, 0)) -> mark(true) active(eq(s(X), s(Y))) -> mark(eq(X, Y)) active(eq(X, Y)) -> mark(false) active(inf(X)) -> mark(cons(X, inf(s(X)))) active(take(0, X)) -> mark(nil) active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L))) active(length(nil)) -> mark(0) active(length(cons(X, L))) -> mark(s(length(L))) mark(eq(X1, X2)) -> active(eq(X1, X2)) mark(0) -> active(0) mark(true) -> active(true) mark(s(X)) -> active(s(X)) mark(false) -> active(false) mark(inf(X)) -> active(inf(mark(X))) mark(cons(X1, X2)) -> active(cons(X1, X2)) mark(take(X1, X2)) -> active(take(mark(X1), mark(X2))) mark(nil) -> active(nil) mark(length(X)) -> active(length(mark(X))) eq(mark(X1), X2) -> eq(X1, X2) eq(X1, mark(X2)) -> eq(X1, X2) eq(active(X1), X2) -> eq(X1, X2) eq(X1, active(X2)) -> eq(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) inf(mark(X)) -> inf(X) inf(active(X)) -> inf(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) take(mark(X1), X2) -> take(X1, X2) take(X1, mark(X2)) -> take(X1, X2) take(active(X1), X2) -> take(X1, X2) take(X1, active(X2)) -> take(X1, X2) length(mark(X)) -> length(X) length(active(X)) -> length(X) The set Q consists of the following terms: active(eq(x0, x1)) active(inf(x0)) active(take(0, x0)) active(take(s(x0), cons(x1, x2))) active(length(nil)) active(length(cons(x0, x1))) mark(eq(x0, x1)) mark(0) mark(true) mark(s(x0)) mark(false) mark(inf(x0)) mark(cons(x0, x1)) mark(take(x0, x1)) mark(nil) mark(length(x0)) eq(mark(x0), x1) eq(x0, mark(x1)) eq(active(x0), x1) eq(x0, active(x1)) s(mark(x0)) s(active(x0)) inf(mark(x0)) inf(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) take(mark(x0), x1) take(x0, mark(x1)) take(active(x0), x1) take(x0, active(x1)) length(mark(x0)) length(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (34) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (35) Obligation: Q DP problem: The TRS P consists of the following rules: S(active(X)) -> S(X) S(mark(X)) -> S(X) R is empty. The set Q consists of the following terms: active(eq(x0, x1)) active(inf(x0)) active(take(0, x0)) active(take(s(x0), cons(x1, x2))) active(length(nil)) active(length(cons(x0, x1))) mark(eq(x0, x1)) mark(0) mark(true) mark(s(x0)) mark(false) mark(inf(x0)) mark(cons(x0, x1)) mark(take(x0, x1)) mark(nil) mark(length(x0)) eq(mark(x0), x1) eq(x0, mark(x1)) eq(active(x0), x1) eq(x0, active(x1)) s(mark(x0)) s(active(x0)) inf(mark(x0)) inf(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) take(mark(x0), x1) take(x0, mark(x1)) take(active(x0), x1) take(x0, active(x1)) length(mark(x0)) length(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (36) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. eq(mark(x0), x1) eq(x0, mark(x1)) eq(active(x0), x1) eq(x0, active(x1)) s(mark(x0)) s(active(x0)) inf(mark(x0)) inf(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) take(mark(x0), x1) take(x0, mark(x1)) take(active(x0), x1) take(x0, active(x1)) length(mark(x0)) length(active(x0)) ---------------------------------------- (37) Obligation: Q DP problem: The TRS P consists of the following rules: S(active(X)) -> S(X) S(mark(X)) -> S(X) R is empty. The set Q consists of the following terms: active(eq(x0, x1)) active(inf(x0)) active(take(0, x0)) active(take(s(x0), cons(x1, x2))) active(length(nil)) active(length(cons(x0, x1))) mark(eq(x0, x1)) mark(0) mark(true) mark(s(x0)) mark(false) mark(inf(x0)) mark(cons(x0, x1)) mark(take(x0, x1)) mark(nil) mark(length(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (38) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *S(active(X)) -> S(X) The graph contains the following edges 1 > 1 *S(mark(X)) -> S(X) The graph contains the following edges 1 > 1 ---------------------------------------- (39) YES ---------------------------------------- (40) Obligation: Q DP problem: The TRS P consists of the following rules: EQ(X1, mark(X2)) -> EQ(X1, X2) EQ(mark(X1), X2) -> EQ(X1, X2) EQ(active(X1), X2) -> EQ(X1, X2) EQ(X1, active(X2)) -> EQ(X1, X2) The TRS R consists of the following rules: active(eq(0, 0)) -> mark(true) active(eq(s(X), s(Y))) -> mark(eq(X, Y)) active(eq(X, Y)) -> mark(false) active(inf(X)) -> mark(cons(X, inf(s(X)))) active(take(0, X)) -> mark(nil) active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L))) active(length(nil)) -> mark(0) active(length(cons(X, L))) -> mark(s(length(L))) mark(eq(X1, X2)) -> active(eq(X1, X2)) mark(0) -> active(0) mark(true) -> active(true) mark(s(X)) -> active(s(X)) mark(false) -> active(false) mark(inf(X)) -> active(inf(mark(X))) mark(cons(X1, X2)) -> active(cons(X1, X2)) mark(take(X1, X2)) -> active(take(mark(X1), mark(X2))) mark(nil) -> active(nil) mark(length(X)) -> active(length(mark(X))) eq(mark(X1), X2) -> eq(X1, X2) eq(X1, mark(X2)) -> eq(X1, X2) eq(active(X1), X2) -> eq(X1, X2) eq(X1, active(X2)) -> eq(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) inf(mark(X)) -> inf(X) inf(active(X)) -> inf(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) take(mark(X1), X2) -> take(X1, X2) take(X1, mark(X2)) -> take(X1, X2) take(active(X1), X2) -> take(X1, X2) take(X1, active(X2)) -> take(X1, X2) length(mark(X)) -> length(X) length(active(X)) -> length(X) The set Q consists of the following terms: active(eq(x0, x1)) active(inf(x0)) active(take(0, x0)) active(take(s(x0), cons(x1, x2))) active(length(nil)) active(length(cons(x0, x1))) mark(eq(x0, x1)) mark(0) mark(true) mark(s(x0)) mark(false) mark(inf(x0)) mark(cons(x0, x1)) mark(take(x0, x1)) mark(nil) mark(length(x0)) eq(mark(x0), x1) eq(x0, mark(x1)) eq(active(x0), x1) eq(x0, active(x1)) s(mark(x0)) s(active(x0)) inf(mark(x0)) inf(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) take(mark(x0), x1) take(x0, mark(x1)) take(active(x0), x1) take(x0, active(x1)) length(mark(x0)) length(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (41) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (42) Obligation: Q DP problem: The TRS P consists of the following rules: EQ(X1, mark(X2)) -> EQ(X1, X2) EQ(mark(X1), X2) -> EQ(X1, X2) EQ(active(X1), X2) -> EQ(X1, X2) EQ(X1, active(X2)) -> EQ(X1, X2) R is empty. The set Q consists of the following terms: active(eq(x0, x1)) active(inf(x0)) active(take(0, x0)) active(take(s(x0), cons(x1, x2))) active(length(nil)) active(length(cons(x0, x1))) mark(eq(x0, x1)) mark(0) mark(true) mark(s(x0)) mark(false) mark(inf(x0)) mark(cons(x0, x1)) mark(take(x0, x1)) mark(nil) mark(length(x0)) eq(mark(x0), x1) eq(x0, mark(x1)) eq(active(x0), x1) eq(x0, active(x1)) s(mark(x0)) s(active(x0)) inf(mark(x0)) inf(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) take(mark(x0), x1) take(x0, mark(x1)) take(active(x0), x1) take(x0, active(x1)) length(mark(x0)) length(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (43) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. eq(mark(x0), x1) eq(x0, mark(x1)) eq(active(x0), x1) eq(x0, active(x1)) s(mark(x0)) s(active(x0)) inf(mark(x0)) inf(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) take(mark(x0), x1) take(x0, mark(x1)) take(active(x0), x1) take(x0, active(x1)) length(mark(x0)) length(active(x0)) ---------------------------------------- (44) Obligation: Q DP problem: The TRS P consists of the following rules: EQ(X1, mark(X2)) -> EQ(X1, X2) EQ(mark(X1), X2) -> EQ(X1, X2) EQ(active(X1), X2) -> EQ(X1, X2) EQ(X1, active(X2)) -> EQ(X1, X2) R is empty. The set Q consists of the following terms: active(eq(x0, x1)) active(inf(x0)) active(take(0, x0)) active(take(s(x0), cons(x1, x2))) active(length(nil)) active(length(cons(x0, x1))) mark(eq(x0, x1)) mark(0) mark(true) mark(s(x0)) mark(false) mark(inf(x0)) mark(cons(x0, x1)) mark(take(x0, x1)) mark(nil) mark(length(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (45) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *EQ(X1, mark(X2)) -> EQ(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 *EQ(mark(X1), X2) -> EQ(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *EQ(active(X1), X2) -> EQ(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *EQ(X1, active(X2)) -> EQ(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (46) YES ---------------------------------------- (47) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(eq(s(X), s(Y))) -> MARK(eq(X, Y)) MARK(eq(X1, X2)) -> ACTIVE(eq(X1, X2)) The TRS R consists of the following rules: active(eq(0, 0)) -> mark(true) active(eq(s(X), s(Y))) -> mark(eq(X, Y)) active(eq(X, Y)) -> mark(false) active(inf(X)) -> mark(cons(X, inf(s(X)))) active(take(0, X)) -> mark(nil) active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L))) active(length(nil)) -> mark(0) active(length(cons(X, L))) -> mark(s(length(L))) mark(eq(X1, X2)) -> active(eq(X1, X2)) mark(0) -> active(0) mark(true) -> active(true) mark(s(X)) -> active(s(X)) mark(false) -> active(false) mark(inf(X)) -> active(inf(mark(X))) mark(cons(X1, X2)) -> active(cons(X1, X2)) mark(take(X1, X2)) -> active(take(mark(X1), mark(X2))) mark(nil) -> active(nil) mark(length(X)) -> active(length(mark(X))) eq(mark(X1), X2) -> eq(X1, X2) eq(X1, mark(X2)) -> eq(X1, X2) eq(active(X1), X2) -> eq(X1, X2) eq(X1, active(X2)) -> eq(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) inf(mark(X)) -> inf(X) inf(active(X)) -> inf(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) take(mark(X1), X2) -> take(X1, X2) take(X1, mark(X2)) -> take(X1, X2) take(active(X1), X2) -> take(X1, X2) take(X1, active(X2)) -> take(X1, X2) length(mark(X)) -> length(X) length(active(X)) -> length(X) The set Q consists of the following terms: active(eq(x0, x1)) active(inf(x0)) active(take(0, x0)) active(take(s(x0), cons(x1, x2))) active(length(nil)) active(length(cons(x0, x1))) mark(eq(x0, x1)) mark(0) mark(true) mark(s(x0)) mark(false) mark(inf(x0)) mark(cons(x0, x1)) mark(take(x0, x1)) mark(nil) mark(length(x0)) eq(mark(x0), x1) eq(x0, mark(x1)) eq(active(x0), x1) eq(x0, active(x1)) s(mark(x0)) s(active(x0)) inf(mark(x0)) inf(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) take(mark(x0), x1) take(x0, mark(x1)) take(active(x0), x1) take(x0, active(x1)) length(mark(x0)) length(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (48) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (49) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(eq(s(X), s(Y))) -> MARK(eq(X, Y)) MARK(eq(X1, X2)) -> ACTIVE(eq(X1, X2)) R is empty. The set Q consists of the following terms: active(eq(x0, x1)) active(inf(x0)) active(take(0, x0)) active(take(s(x0), cons(x1, x2))) active(length(nil)) active(length(cons(x0, x1))) mark(eq(x0, x1)) mark(0) mark(true) mark(s(x0)) mark(false) mark(inf(x0)) mark(cons(x0, x1)) mark(take(x0, x1)) mark(nil) mark(length(x0)) eq(mark(x0), x1) eq(x0, mark(x1)) eq(active(x0), x1) eq(x0, active(x1)) s(mark(x0)) s(active(x0)) inf(mark(x0)) inf(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) take(mark(x0), x1) take(x0, mark(x1)) take(active(x0), x1) take(x0, active(x1)) length(mark(x0)) length(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (50) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. active(eq(x0, x1)) active(inf(x0)) active(take(0, x0)) active(take(s(x0), cons(x1, x2))) active(length(nil)) active(length(cons(x0, x1))) mark(eq(x0, x1)) mark(0) mark(true) mark(s(x0)) mark(false) mark(inf(x0)) mark(cons(x0, x1)) mark(take(x0, x1)) mark(nil) mark(length(x0)) inf(mark(x0)) inf(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) take(mark(x0), x1) take(x0, mark(x1)) take(active(x0), x1) take(x0, active(x1)) length(mark(x0)) length(active(x0)) ---------------------------------------- (51) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(eq(s(X), s(Y))) -> MARK(eq(X, Y)) MARK(eq(X1, X2)) -> ACTIVE(eq(X1, X2)) R is empty. The set Q consists of the following terms: eq(mark(x0), x1) eq(x0, mark(x1)) eq(active(x0), x1) eq(x0, active(x1)) s(mark(x0)) s(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (52) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. The following dependency pairs can be deleted: ACTIVE(eq(s(X), s(Y))) -> MARK(eq(X, Y)) MARK(eq(X1, X2)) -> ACTIVE(eq(X1, X2)) No rules are removed from R. Used ordering: POLO with Polynomial interpretation [POLO]: POL(ACTIVE(x_1)) = x_1 POL(MARK(x_1)) = 2*x_1 POL(eq(x_1, x_2)) = 2 + 2*x_1 + 2*x_2 POL(s(x_1)) = 2 + 2*x_1 ---------------------------------------- (53) Obligation: Q DP problem: P is empty. R is empty. The set Q consists of the following terms: eq(mark(x0), x1) eq(x0, mark(x1)) eq(active(x0), x1) eq(x0, active(x1)) s(mark(x0)) s(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (54) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (55) YES ---------------------------------------- (56) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(take(X1, X2)) -> MARK(X1) MARK(inf(X)) -> MARK(X) MARK(take(X1, X2)) -> MARK(X2) MARK(length(X)) -> MARK(X) The TRS R consists of the following rules: active(eq(0, 0)) -> mark(true) active(eq(s(X), s(Y))) -> mark(eq(X, Y)) active(eq(X, Y)) -> mark(false) active(inf(X)) -> mark(cons(X, inf(s(X)))) active(take(0, X)) -> mark(nil) active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L))) active(length(nil)) -> mark(0) active(length(cons(X, L))) -> mark(s(length(L))) mark(eq(X1, X2)) -> active(eq(X1, X2)) mark(0) -> active(0) mark(true) -> active(true) mark(s(X)) -> active(s(X)) mark(false) -> active(false) mark(inf(X)) -> active(inf(mark(X))) mark(cons(X1, X2)) -> active(cons(X1, X2)) mark(take(X1, X2)) -> active(take(mark(X1), mark(X2))) mark(nil) -> active(nil) mark(length(X)) -> active(length(mark(X))) eq(mark(X1), X2) -> eq(X1, X2) eq(X1, mark(X2)) -> eq(X1, X2) eq(active(X1), X2) -> eq(X1, X2) eq(X1, active(X2)) -> eq(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) inf(mark(X)) -> inf(X) inf(active(X)) -> inf(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) take(mark(X1), X2) -> take(X1, X2) take(X1, mark(X2)) -> take(X1, X2) take(active(X1), X2) -> take(X1, X2) take(X1, active(X2)) -> take(X1, X2) length(mark(X)) -> length(X) length(active(X)) -> length(X) The set Q consists of the following terms: active(eq(x0, x1)) active(inf(x0)) active(take(0, x0)) active(take(s(x0), cons(x1, x2))) active(length(nil)) active(length(cons(x0, x1))) mark(eq(x0, x1)) mark(0) mark(true) mark(s(x0)) mark(false) mark(inf(x0)) mark(cons(x0, x1)) mark(take(x0, x1)) mark(nil) mark(length(x0)) eq(mark(x0), x1) eq(x0, mark(x1)) eq(active(x0), x1) eq(x0, active(x1)) s(mark(x0)) s(active(x0)) inf(mark(x0)) inf(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) take(mark(x0), x1) take(x0, mark(x1)) take(active(x0), x1) take(x0, active(x1)) length(mark(x0)) length(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (57) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (58) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(take(X1, X2)) -> MARK(X1) MARK(inf(X)) -> MARK(X) MARK(take(X1, X2)) -> MARK(X2) MARK(length(X)) -> MARK(X) R is empty. The set Q consists of the following terms: active(eq(x0, x1)) active(inf(x0)) active(take(0, x0)) active(take(s(x0), cons(x1, x2))) active(length(nil)) active(length(cons(x0, x1))) mark(eq(x0, x1)) mark(0) mark(true) mark(s(x0)) mark(false) mark(inf(x0)) mark(cons(x0, x1)) mark(take(x0, x1)) mark(nil) mark(length(x0)) eq(mark(x0), x1) eq(x0, mark(x1)) eq(active(x0), x1) eq(x0, active(x1)) s(mark(x0)) s(active(x0)) inf(mark(x0)) inf(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) take(mark(x0), x1) take(x0, mark(x1)) take(active(x0), x1) take(x0, active(x1)) length(mark(x0)) length(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (59) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. active(eq(x0, x1)) active(inf(x0)) active(take(0, x0)) active(take(s(x0), cons(x1, x2))) active(length(nil)) active(length(cons(x0, x1))) mark(eq(x0, x1)) mark(0) mark(true) mark(s(x0)) mark(false) mark(inf(x0)) mark(cons(x0, x1)) mark(take(x0, x1)) mark(nil) mark(length(x0)) eq(mark(x0), x1) eq(x0, mark(x1)) eq(active(x0), x1) eq(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) ---------------------------------------- (60) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(take(X1, X2)) -> MARK(X1) MARK(inf(X)) -> MARK(X) MARK(take(X1, X2)) -> MARK(X2) MARK(length(X)) -> MARK(X) R is empty. The set Q consists of the following terms: inf(mark(x0)) inf(active(x0)) take(mark(x0), x1) take(x0, mark(x1)) take(active(x0), x1) take(x0, active(x1)) length(mark(x0)) length(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (61) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MARK(take(X1, X2)) -> MARK(X1) The graph contains the following edges 1 > 1 *MARK(inf(X)) -> MARK(X) The graph contains the following edges 1 > 1 *MARK(take(X1, X2)) -> MARK(X2) The graph contains the following edges 1 > 1 *MARK(length(X)) -> MARK(X) The graph contains the following edges 1 > 1 ---------------------------------------- (62) YES