YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 3 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) QReductionProof [EQUIVALENT, 0 ms] (9) QDP (10) QDPSizeChangeProof [EQUIVALENT, 0 ms] (11) YES (12) QDP (13) UsableRulesProof [EQUIVALENT, 0 ms] (14) QDP (15) QReductionProof [EQUIVALENT, 0 ms] (16) QDP (17) QDPSizeChangeProof [EQUIVALENT, 0 ms] (18) YES (19) QDP (20) UsableRulesProof [EQUIVALENT, 0 ms] (21) QDP (22) QReductionProof [EQUIVALENT, 0 ms] (23) QDP (24) QDPSizeChangeProof [EQUIVALENT, 0 ms] (25) YES (26) QDP (27) UsableRulesProof [EQUIVALENT, 0 ms] (28) QDP (29) QReductionProof [EQUIVALENT, 0 ms] (30) QDP (31) QDPSizeChangeProof [EQUIVALENT, 0 ms] (32) YES (33) QDP (34) QDPOrderProof [EQUIVALENT, 62 ms] (35) QDP (36) QDPOrderProof [EQUIVALENT, 17 ms] (37) QDP (38) QDPOrderProof [EQUIVALENT, 0 ms] (39) QDP (40) DependencyGraphProof [EQUIVALENT, 0 ms] (41) QDP (42) UsableRulesProof [EQUIVALENT, 0 ms] (43) QDP (44) QReductionProof [EQUIVALENT, 0 ms] (45) QDP (46) QDPSizeChangeProof [EQUIVALENT, 0 ms] (47) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(0) -> active(0) mark(nil) -> active(nil) mark(s(X)) -> active(s(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) The set Q consists of the following terms: active(first(0, x0)) active(first(s(x0), cons(x1, x2))) active(from(x0)) mark(first(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(first(0, X)) -> MARK(nil) ACTIVE(first(s(X), cons(Y, Z))) -> MARK(cons(Y, first(X, Z))) ACTIVE(first(s(X), cons(Y, Z))) -> CONS(Y, first(X, Z)) ACTIVE(first(s(X), cons(Y, Z))) -> FIRST(X, Z) ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) ACTIVE(from(X)) -> CONS(X, from(s(X))) ACTIVE(from(X)) -> FROM(s(X)) ACTIVE(from(X)) -> S(X) MARK(first(X1, X2)) -> ACTIVE(first(mark(X1), mark(X2))) MARK(first(X1, X2)) -> FIRST(mark(X1), mark(X2)) MARK(first(X1, X2)) -> MARK(X1) MARK(first(X1, X2)) -> MARK(X2) MARK(0) -> ACTIVE(0) MARK(nil) -> ACTIVE(nil) MARK(s(X)) -> ACTIVE(s(mark(X))) MARK(s(X)) -> S(mark(X)) MARK(s(X)) -> MARK(X) MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) MARK(cons(X1, X2)) -> CONS(mark(X1), X2) MARK(cons(X1, X2)) -> MARK(X1) MARK(from(X)) -> ACTIVE(from(mark(X))) MARK(from(X)) -> FROM(mark(X)) MARK(from(X)) -> MARK(X) FIRST(mark(X1), X2) -> FIRST(X1, X2) FIRST(X1, mark(X2)) -> FIRST(X1, X2) FIRST(active(X1), X2) -> FIRST(X1, X2) FIRST(X1, active(X2)) -> FIRST(X1, X2) S(mark(X)) -> S(X) S(active(X)) -> S(X) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) FROM(mark(X)) -> FROM(X) FROM(active(X)) -> FROM(X) The TRS R consists of the following rules: active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(0) -> active(0) mark(nil) -> active(nil) mark(s(X)) -> active(s(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) The set Q consists of the following terms: active(first(0, x0)) active(first(s(x0), cons(x1, x2))) active(from(x0)) mark(first(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 12 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: FROM(active(X)) -> FROM(X) FROM(mark(X)) -> FROM(X) The TRS R consists of the following rules: active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(0) -> active(0) mark(nil) -> active(nil) mark(s(X)) -> active(s(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) The set Q consists of the following terms: active(first(0, x0)) active(first(s(x0), cons(x1, x2))) active(from(x0)) mark(first(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: FROM(active(X)) -> FROM(X) FROM(mark(X)) -> FROM(X) R is empty. The set Q consists of the following terms: active(first(0, x0)) active(first(s(x0), cons(x1, x2))) active(from(x0)) mark(first(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: FROM(active(X)) -> FROM(X) FROM(mark(X)) -> FROM(X) R is empty. The set Q consists of the following terms: active(first(0, x0)) active(first(s(x0), cons(x1, x2))) active(from(x0)) mark(first(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *FROM(active(X)) -> FROM(X) The graph contains the following edges 1 > 1 *FROM(mark(X)) -> FROM(X) The graph contains the following edges 1 > 1 ---------------------------------------- (11) YES ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) The TRS R consists of the following rules: active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(0) -> active(0) mark(nil) -> active(nil) mark(s(X)) -> active(s(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) The set Q consists of the following terms: active(first(0, x0)) active(first(s(x0), cons(x1, x2))) active(from(x0)) mark(first(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) R is empty. The set Q consists of the following terms: active(first(0, x0)) active(first(s(x0), cons(x1, x2))) active(from(x0)) mark(first(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) R is empty. The set Q consists of the following terms: active(first(0, x0)) active(first(s(x0), cons(x1, x2))) active(from(x0)) mark(first(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *CONS(X1, mark(X2)) -> CONS(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 *CONS(mark(X1), X2) -> CONS(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *CONS(active(X1), X2) -> CONS(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *CONS(X1, active(X2)) -> CONS(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (18) YES ---------------------------------------- (19) Obligation: Q DP problem: The TRS P consists of the following rules: S(active(X)) -> S(X) S(mark(X)) -> S(X) The TRS R consists of the following rules: active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(0) -> active(0) mark(nil) -> active(nil) mark(s(X)) -> active(s(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) The set Q consists of the following terms: active(first(0, x0)) active(first(s(x0), cons(x1, x2))) active(from(x0)) mark(first(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (20) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: S(active(X)) -> S(X) S(mark(X)) -> S(X) R is empty. The set Q consists of the following terms: active(first(0, x0)) active(first(s(x0), cons(x1, x2))) active(from(x0)) mark(first(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: S(active(X)) -> S(X) S(mark(X)) -> S(X) R is empty. The set Q consists of the following terms: active(first(0, x0)) active(first(s(x0), cons(x1, x2))) active(from(x0)) mark(first(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *S(active(X)) -> S(X) The graph contains the following edges 1 > 1 *S(mark(X)) -> S(X) The graph contains the following edges 1 > 1 ---------------------------------------- (25) YES ---------------------------------------- (26) Obligation: Q DP problem: The TRS P consists of the following rules: FIRST(X1, mark(X2)) -> FIRST(X1, X2) FIRST(mark(X1), X2) -> FIRST(X1, X2) FIRST(active(X1), X2) -> FIRST(X1, X2) FIRST(X1, active(X2)) -> FIRST(X1, X2) The TRS R consists of the following rules: active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(0) -> active(0) mark(nil) -> active(nil) mark(s(X)) -> active(s(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) The set Q consists of the following terms: active(first(0, x0)) active(first(s(x0), cons(x1, x2))) active(from(x0)) mark(first(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (27) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: FIRST(X1, mark(X2)) -> FIRST(X1, X2) FIRST(mark(X1), X2) -> FIRST(X1, X2) FIRST(active(X1), X2) -> FIRST(X1, X2) FIRST(X1, active(X2)) -> FIRST(X1, X2) R is empty. The set Q consists of the following terms: active(first(0, x0)) active(first(s(x0), cons(x1, x2))) active(from(x0)) mark(first(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: FIRST(X1, mark(X2)) -> FIRST(X1, X2) FIRST(mark(X1), X2) -> FIRST(X1, X2) FIRST(active(X1), X2) -> FIRST(X1, X2) FIRST(X1, active(X2)) -> FIRST(X1, X2) R is empty. The set Q consists of the following terms: active(first(0, x0)) active(first(s(x0), cons(x1, x2))) active(from(x0)) mark(first(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *FIRST(X1, mark(X2)) -> FIRST(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 *FIRST(mark(X1), X2) -> FIRST(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *FIRST(active(X1), X2) -> FIRST(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *FIRST(X1, active(X2)) -> FIRST(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (32) YES ---------------------------------------- (33) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(first(s(X), cons(Y, Z))) -> MARK(cons(Y, first(X, Z))) MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) MARK(cons(X1, X2)) -> MARK(X1) MARK(first(X1, X2)) -> ACTIVE(first(mark(X1), mark(X2))) MARK(first(X1, X2)) -> MARK(X1) MARK(first(X1, X2)) -> MARK(X2) MARK(s(X)) -> ACTIVE(s(mark(X))) MARK(s(X)) -> MARK(X) MARK(from(X)) -> ACTIVE(from(mark(X))) MARK(from(X)) -> MARK(X) The TRS R consists of the following rules: active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(0) -> active(0) mark(nil) -> active(nil) mark(s(X)) -> active(s(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) The set Q consists of the following terms: active(first(0, x0)) active(first(s(x0), cons(x1, x2))) active(from(x0)) mark(first(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (34) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVE(first(s(X), cons(Y, Z))) -> MARK(cons(Y, first(X, Z))) MARK(first(X1, X2)) -> MARK(X1) MARK(first(X1, X2)) -> MARK(X2) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. ACTIVE(x1) = x1 first(x1, x2) = first(x1, x2) s(x1) = x1 cons(x1, x2) = x1 MARK(x1) = x1 mark(x1) = x1 from(x1) = x1 active(x1) = x1 0 = 0 nil = nil Knuth-Bendix order [KBO] with precedence:trivial and weight map: 0=2 first_2=2 nil=4 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(0) -> active(0) mark(nil) -> active(nil) mark(s(X)) -> active(s(mark(X))) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(from(X)) -> mark(cons(X, from(s(X)))) mark(from(X)) -> active(from(mark(X))) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(mark(X1), X2) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) s(active(X)) -> s(X) s(mark(X)) -> s(X) from(active(X)) -> from(X) from(mark(X)) -> from(X) active(first(0, X)) -> mark(nil) ---------------------------------------- (35) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) MARK(cons(X1, X2)) -> MARK(X1) MARK(first(X1, X2)) -> ACTIVE(first(mark(X1), mark(X2))) MARK(s(X)) -> ACTIVE(s(mark(X))) MARK(s(X)) -> MARK(X) MARK(from(X)) -> ACTIVE(from(mark(X))) MARK(from(X)) -> MARK(X) The TRS R consists of the following rules: active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(0) -> active(0) mark(nil) -> active(nil) mark(s(X)) -> active(s(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) The set Q consists of the following terms: active(first(0, x0)) active(first(s(x0), cons(x1, x2))) active(from(x0)) mark(first(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (36) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(s(X)) -> MARK(X) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. MARK(x1) = x1 cons(x1, x2) = x1 ACTIVE(x1) = x1 mark(x1) = x1 from(x1) = x1 first(x1, x2) = x2 s(x1) = s(x1) active(x1) = x1 0 = 0 nil = nil Knuth-Bendix order [KBO] with precedence:trivial and weight map: s_1=1 0=2 nil=1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(0) -> active(0) mark(nil) -> active(nil) mark(s(X)) -> active(s(mark(X))) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(from(X)) -> mark(cons(X, from(s(X)))) mark(from(X)) -> active(from(mark(X))) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(mark(X1), X2) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) s(active(X)) -> s(X) s(mark(X)) -> s(X) from(active(X)) -> from(X) from(mark(X)) -> from(X) active(first(0, X)) -> mark(nil) ---------------------------------------- (37) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) MARK(cons(X1, X2)) -> MARK(X1) MARK(first(X1, X2)) -> ACTIVE(first(mark(X1), mark(X2))) MARK(s(X)) -> ACTIVE(s(mark(X))) MARK(from(X)) -> ACTIVE(from(mark(X))) MARK(from(X)) -> MARK(X) The TRS R consists of the following rules: active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(0) -> active(0) mark(nil) -> active(nil) mark(s(X)) -> active(s(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) The set Q consists of the following terms: active(first(0, x0)) active(first(s(x0), cons(x1, x2))) active(from(x0)) mark(first(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (38) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) MARK(from(X)) -> MARK(X) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. MARK(x1) = x1 cons(x1, x2) = x1 ACTIVE(x1) = x1 mark(x1) = x1 from(x1) = from(x1) first(x1, x2) = x2 s(x1) = s active(x1) = x1 0 = 0 nil = nil Knuth-Bendix order [KBO] with precedence:trivial and weight map: s=2 0=2 from_1=1 nil=1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(0) -> active(0) mark(nil) -> active(nil) mark(s(X)) -> active(s(mark(X))) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(from(X)) -> mark(cons(X, from(s(X)))) mark(from(X)) -> active(from(mark(X))) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(mark(X1), X2) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) s(active(X)) -> s(X) s(mark(X)) -> s(X) from(active(X)) -> from(X) from(mark(X)) -> from(X) active(first(0, X)) -> mark(nil) ---------------------------------------- (39) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) MARK(cons(X1, X2)) -> MARK(X1) MARK(first(X1, X2)) -> ACTIVE(first(mark(X1), mark(X2))) MARK(s(X)) -> ACTIVE(s(mark(X))) MARK(from(X)) -> ACTIVE(from(mark(X))) The TRS R consists of the following rules: active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(0) -> active(0) mark(nil) -> active(nil) mark(s(X)) -> active(s(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) The set Q consists of the following terms: active(first(0, x0)) active(first(s(x0), cons(x1, x2))) active(from(x0)) mark(first(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (40) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 4 less nodes. ---------------------------------------- (41) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> MARK(X1) The TRS R consists of the following rules: active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(0) -> active(0) mark(nil) -> active(nil) mark(s(X)) -> active(s(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) The set Q consists of the following terms: active(first(0, x0)) active(first(s(x0), cons(x1, x2))) active(from(x0)) mark(first(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (42) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (43) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> MARK(X1) R is empty. The set Q consists of the following terms: active(first(0, x0)) active(first(s(x0), cons(x1, x2))) active(from(x0)) mark(first(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (44) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. active(first(0, x0)) active(first(s(x0), cons(x1, x2))) active(from(x0)) mark(first(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) s(mark(x0)) s(active(x0)) from(mark(x0)) from(active(x0)) ---------------------------------------- (45) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> MARK(X1) R is empty. The set Q consists of the following terms: cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (46) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MARK(cons(X1, X2)) -> MARK(X1) The graph contains the following edges 1 > 1 ---------------------------------------- (47) YES