YES Problem 1: (VAR v_NonEmpty:S) (RULES f(0) -> cons(0) f(s(0)) -> f(p(s(0))) p(s(0)) -> 0 ) (STRATEGY INNERMOST) Problem 1: Dependency Pairs Processor: -> Pairs: F(s(0)) -> F(p(s(0))) F(s(0)) -> P(s(0)) -> Rules: f(0) -> cons(0) f(s(0)) -> f(p(s(0))) p(s(0)) -> 0 Problem 1: SCC Processor: -> Pairs: F(s(0)) -> F(p(s(0))) F(s(0)) -> P(s(0)) -> Rules: f(0) -> cons(0) f(s(0)) -> f(p(s(0))) p(s(0)) -> 0 ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: F(s(0)) -> F(p(s(0))) ->->-> Rules: f(0) -> cons(0) f(s(0)) -> f(p(s(0))) p(s(0)) -> 0 Problem 1: Reduction Pairs Processor: -> Pairs: F(s(0)) -> F(p(s(0))) -> Rules: f(0) -> cons(0) f(s(0)) -> f(p(s(0))) p(s(0)) -> 0 -> Usable rules: p(s(0)) -> 0 ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [f](X) = 0 [p](X) = 2 [0] = 2 [cons](X) = 0 [fSNonEmpty] = 0 [s](X) = 2.X + 2 [F](X) = 2.X [P](X) = 0 Problem 1: SCC Processor: -> Pairs: Empty -> Rules: f(0) -> cons(0) f(s(0)) -> f(p(s(0))) p(s(0)) -> 0 ->Strongly Connected Components: There is no strongly connected component The problem is finite.