YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 76 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) QReductionProof [EQUIVALENT, 0 ms] (9) QDP (10) QDPSizeChangeProof [EQUIVALENT, 0 ms] (11) YES (12) QDP (13) UsableRulesProof [EQUIVALENT, 0 ms] (14) QDP (15) QReductionProof [EQUIVALENT, 0 ms] (16) QDP (17) QDPSizeChangeProof [EQUIVALENT, 0 ms] (18) YES (19) QDP (20) UsableRulesProof [EQUIVALENT, 0 ms] (21) QDP (22) QReductionProof [EQUIVALENT, 0 ms] (23) QDP (24) QDPSizeChangeProof [EQUIVALENT, 0 ms] (25) YES (26) QDP (27) UsableRulesProof [EQUIVALENT, 0 ms] (28) QDP (29) QReductionProof [EQUIVALENT, 0 ms] (30) QDP (31) QDPSizeChangeProof [EQUIVALENT, 0 ms] (32) YES (33) QDP (34) UsableRulesProof [EQUIVALENT, 0 ms] (35) QDP (36) QReductionProof [EQUIVALENT, 0 ms] (37) QDP (38) QDPSizeChangeProof [EQUIVALENT, 0 ms] (39) YES (40) QDP (41) UsableRulesProof [EQUIVALENT, 0 ms] (42) QDP (43) QReductionProof [EQUIVALENT, 0 ms] (44) QDP (45) QDPSizeChangeProof [EQUIVALENT, 0 ms] (46) YES (47) QDP (48) QDPOrderProof [EQUIVALENT, 107 ms] (49) QDP (50) QDPOrderProof [EQUIVALENT, 21 ms] (51) QDP (52) QDPOrderProof [EQUIVALENT, 25 ms] (53) QDP (54) QDPOrderProof [EQUIVALENT, 34 ms] (55) QDP (56) DependencyGraphProof [EQUIVALENT, 0 ms] (57) QDP (58) UsableRulesProof [EQUIVALENT, 0 ms] (59) QDP (60) QReductionProof [EQUIVALENT, 0 ms] (61) QDP (62) QDPSizeChangeProof [EQUIVALENT, 0 ms] (63) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: active(app(nil, YS)) -> mark(YS) active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS))) active(from(X)) -> mark(cons(X, from(s(X)))) active(zWadr(nil, YS)) -> mark(nil) active(zWadr(XS, nil)) -> mark(nil) active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS))) active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L)))) mark(app(X1, X2)) -> active(app(mark(X1), mark(X2))) mark(nil) -> active(nil) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(zWadr(X1, X2)) -> active(zWadr(mark(X1), mark(X2))) mark(prefix(X)) -> active(prefix(mark(X))) app(mark(X1), X2) -> app(X1, X2) app(X1, mark(X2)) -> app(X1, X2) app(active(X1), X2) -> app(X1, X2) app(X1, active(X2)) -> app(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) zWadr(mark(X1), X2) -> zWadr(X1, X2) zWadr(X1, mark(X2)) -> zWadr(X1, X2) zWadr(active(X1), X2) -> zWadr(X1, X2) zWadr(X1, active(X2)) -> zWadr(X1, X2) prefix(mark(X)) -> prefix(X) prefix(active(X)) -> prefix(X) The set Q consists of the following terms: active(app(nil, x0)) active(app(cons(x0, x1), x2)) active(from(x0)) active(zWadr(nil, x0)) active(zWadr(x0, nil)) active(zWadr(cons(x0, x1), cons(x2, x3))) active(prefix(x0)) mark(app(x0, x1)) mark(nil) mark(cons(x0, x1)) mark(from(x0)) mark(s(x0)) mark(zWadr(x0, x1)) mark(prefix(x0)) app(mark(x0), x1) app(x0, mark(x1)) app(active(x0), x1) app(x0, active(x1)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) s(mark(x0)) s(active(x0)) zWadr(mark(x0), x1) zWadr(x0, mark(x1)) zWadr(active(x0), x1) zWadr(x0, active(x1)) prefix(mark(x0)) prefix(active(x0)) ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(app(nil, YS)) -> MARK(YS) ACTIVE(app(cons(X, XS), YS)) -> MARK(cons(X, app(XS, YS))) ACTIVE(app(cons(X, XS), YS)) -> CONS(X, app(XS, YS)) ACTIVE(app(cons(X, XS), YS)) -> APP(XS, YS) ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) ACTIVE(from(X)) -> CONS(X, from(s(X))) ACTIVE(from(X)) -> FROM(s(X)) ACTIVE(from(X)) -> S(X) ACTIVE(zWadr(nil, YS)) -> MARK(nil) ACTIVE(zWadr(XS, nil)) -> MARK(nil) ACTIVE(zWadr(cons(X, XS), cons(Y, YS))) -> MARK(cons(app(Y, cons(X, nil)), zWadr(XS, YS))) ACTIVE(zWadr(cons(X, XS), cons(Y, YS))) -> CONS(app(Y, cons(X, nil)), zWadr(XS, YS)) ACTIVE(zWadr(cons(X, XS), cons(Y, YS))) -> APP(Y, cons(X, nil)) ACTIVE(zWadr(cons(X, XS), cons(Y, YS))) -> CONS(X, nil) ACTIVE(zWadr(cons(X, XS), cons(Y, YS))) -> ZWADR(XS, YS) ACTIVE(prefix(L)) -> MARK(cons(nil, zWadr(L, prefix(L)))) ACTIVE(prefix(L)) -> CONS(nil, zWadr(L, prefix(L))) ACTIVE(prefix(L)) -> ZWADR(L, prefix(L)) MARK(app(X1, X2)) -> ACTIVE(app(mark(X1), mark(X2))) MARK(app(X1, X2)) -> APP(mark(X1), mark(X2)) MARK(app(X1, X2)) -> MARK(X1) MARK(app(X1, X2)) -> MARK(X2) MARK(nil) -> ACTIVE(nil) MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) MARK(cons(X1, X2)) -> CONS(mark(X1), X2) MARK(cons(X1, X2)) -> MARK(X1) MARK(from(X)) -> ACTIVE(from(mark(X))) MARK(from(X)) -> FROM(mark(X)) MARK(from(X)) -> MARK(X) MARK(s(X)) -> ACTIVE(s(mark(X))) MARK(s(X)) -> S(mark(X)) MARK(s(X)) -> MARK(X) MARK(zWadr(X1, X2)) -> ACTIVE(zWadr(mark(X1), mark(X2))) MARK(zWadr(X1, X2)) -> ZWADR(mark(X1), mark(X2)) MARK(zWadr(X1, X2)) -> MARK(X1) MARK(zWadr(X1, X2)) -> MARK(X2) MARK(prefix(X)) -> ACTIVE(prefix(mark(X))) MARK(prefix(X)) -> PREFIX(mark(X)) MARK(prefix(X)) -> MARK(X) APP(mark(X1), X2) -> APP(X1, X2) APP(X1, mark(X2)) -> APP(X1, X2) APP(active(X1), X2) -> APP(X1, X2) APP(X1, active(X2)) -> APP(X1, X2) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) FROM(mark(X)) -> FROM(X) FROM(active(X)) -> FROM(X) S(mark(X)) -> S(X) S(active(X)) -> S(X) ZWADR(mark(X1), X2) -> ZWADR(X1, X2) ZWADR(X1, mark(X2)) -> ZWADR(X1, X2) ZWADR(active(X1), X2) -> ZWADR(X1, X2) ZWADR(X1, active(X2)) -> ZWADR(X1, X2) PREFIX(mark(X)) -> PREFIX(X) PREFIX(active(X)) -> PREFIX(X) The TRS R consists of the following rules: active(app(nil, YS)) -> mark(YS) active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS))) active(from(X)) -> mark(cons(X, from(s(X)))) active(zWadr(nil, YS)) -> mark(nil) active(zWadr(XS, nil)) -> mark(nil) active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS))) active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L)))) mark(app(X1, X2)) -> active(app(mark(X1), mark(X2))) mark(nil) -> active(nil) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(zWadr(X1, X2)) -> active(zWadr(mark(X1), mark(X2))) mark(prefix(X)) -> active(prefix(mark(X))) app(mark(X1), X2) -> app(X1, X2) app(X1, mark(X2)) -> app(X1, X2) app(active(X1), X2) -> app(X1, X2) app(X1, active(X2)) -> app(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) zWadr(mark(X1), X2) -> zWadr(X1, X2) zWadr(X1, mark(X2)) -> zWadr(X1, X2) zWadr(active(X1), X2) -> zWadr(X1, X2) zWadr(X1, active(X2)) -> zWadr(X1, X2) prefix(mark(X)) -> prefix(X) prefix(active(X)) -> prefix(X) The set Q consists of the following terms: active(app(nil, x0)) active(app(cons(x0, x1), x2)) active(from(x0)) active(zWadr(nil, x0)) active(zWadr(x0, nil)) active(zWadr(cons(x0, x1), cons(x2, x3))) active(prefix(x0)) mark(app(x0, x1)) mark(nil) mark(cons(x0, x1)) mark(from(x0)) mark(s(x0)) mark(zWadr(x0, x1)) mark(prefix(x0)) app(mark(x0), x1) app(x0, mark(x1)) app(active(x0), x1) app(x0, active(x1)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) s(mark(x0)) s(active(x0)) zWadr(mark(x0), x1) zWadr(x0, mark(x1)) zWadr(active(x0), x1) zWadr(x0, active(x1)) prefix(mark(x0)) prefix(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 7 SCCs with 20 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: PREFIX(active(X)) -> PREFIX(X) PREFIX(mark(X)) -> PREFIX(X) The TRS R consists of the following rules: active(app(nil, YS)) -> mark(YS) active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS))) active(from(X)) -> mark(cons(X, from(s(X)))) active(zWadr(nil, YS)) -> mark(nil) active(zWadr(XS, nil)) -> mark(nil) active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS))) active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L)))) mark(app(X1, X2)) -> active(app(mark(X1), mark(X2))) mark(nil) -> active(nil) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(zWadr(X1, X2)) -> active(zWadr(mark(X1), mark(X2))) mark(prefix(X)) -> active(prefix(mark(X))) app(mark(X1), X2) -> app(X1, X2) app(X1, mark(X2)) -> app(X1, X2) app(active(X1), X2) -> app(X1, X2) app(X1, active(X2)) -> app(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) zWadr(mark(X1), X2) -> zWadr(X1, X2) zWadr(X1, mark(X2)) -> zWadr(X1, X2) zWadr(active(X1), X2) -> zWadr(X1, X2) zWadr(X1, active(X2)) -> zWadr(X1, X2) prefix(mark(X)) -> prefix(X) prefix(active(X)) -> prefix(X) The set Q consists of the following terms: active(app(nil, x0)) active(app(cons(x0, x1), x2)) active(from(x0)) active(zWadr(nil, x0)) active(zWadr(x0, nil)) active(zWadr(cons(x0, x1), cons(x2, x3))) active(prefix(x0)) mark(app(x0, x1)) mark(nil) mark(cons(x0, x1)) mark(from(x0)) mark(s(x0)) mark(zWadr(x0, x1)) mark(prefix(x0)) app(mark(x0), x1) app(x0, mark(x1)) app(active(x0), x1) app(x0, active(x1)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) s(mark(x0)) s(active(x0)) zWadr(mark(x0), x1) zWadr(x0, mark(x1)) zWadr(active(x0), x1) zWadr(x0, active(x1)) prefix(mark(x0)) prefix(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: PREFIX(active(X)) -> PREFIX(X) PREFIX(mark(X)) -> PREFIX(X) R is empty. The set Q consists of the following terms: active(app(nil, x0)) active(app(cons(x0, x1), x2)) active(from(x0)) active(zWadr(nil, x0)) active(zWadr(x0, nil)) active(zWadr(cons(x0, x1), cons(x2, x3))) active(prefix(x0)) mark(app(x0, x1)) mark(nil) mark(cons(x0, x1)) mark(from(x0)) mark(s(x0)) mark(zWadr(x0, x1)) mark(prefix(x0)) app(mark(x0), x1) app(x0, mark(x1)) app(active(x0), x1) app(x0, active(x1)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) s(mark(x0)) s(active(x0)) zWadr(mark(x0), x1) zWadr(x0, mark(x1)) zWadr(active(x0), x1) zWadr(x0, active(x1)) prefix(mark(x0)) prefix(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. app(mark(x0), x1) app(x0, mark(x1)) app(active(x0), x1) app(x0, active(x1)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) s(mark(x0)) s(active(x0)) zWadr(mark(x0), x1) zWadr(x0, mark(x1)) zWadr(active(x0), x1) zWadr(x0, active(x1)) prefix(mark(x0)) prefix(active(x0)) ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: PREFIX(active(X)) -> PREFIX(X) PREFIX(mark(X)) -> PREFIX(X) R is empty. The set Q consists of the following terms: active(app(nil, x0)) active(app(cons(x0, x1), x2)) active(from(x0)) active(zWadr(nil, x0)) active(zWadr(x0, nil)) active(zWadr(cons(x0, x1), cons(x2, x3))) active(prefix(x0)) mark(app(x0, x1)) mark(nil) mark(cons(x0, x1)) mark(from(x0)) mark(s(x0)) mark(zWadr(x0, x1)) mark(prefix(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *PREFIX(active(X)) -> PREFIX(X) The graph contains the following edges 1 > 1 *PREFIX(mark(X)) -> PREFIX(X) The graph contains the following edges 1 > 1 ---------------------------------------- (11) YES ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: ZWADR(X1, mark(X2)) -> ZWADR(X1, X2) ZWADR(mark(X1), X2) -> ZWADR(X1, X2) ZWADR(active(X1), X2) -> ZWADR(X1, X2) ZWADR(X1, active(X2)) -> ZWADR(X1, X2) The TRS R consists of the following rules: active(app(nil, YS)) -> mark(YS) active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS))) active(from(X)) -> mark(cons(X, from(s(X)))) active(zWadr(nil, YS)) -> mark(nil) active(zWadr(XS, nil)) -> mark(nil) active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS))) active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L)))) mark(app(X1, X2)) -> active(app(mark(X1), mark(X2))) mark(nil) -> active(nil) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(zWadr(X1, X2)) -> active(zWadr(mark(X1), mark(X2))) mark(prefix(X)) -> active(prefix(mark(X))) app(mark(X1), X2) -> app(X1, X2) app(X1, mark(X2)) -> app(X1, X2) app(active(X1), X2) -> app(X1, X2) app(X1, active(X2)) -> app(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) zWadr(mark(X1), X2) -> zWadr(X1, X2) zWadr(X1, mark(X2)) -> zWadr(X1, X2) zWadr(active(X1), X2) -> zWadr(X1, X2) zWadr(X1, active(X2)) -> zWadr(X1, X2) prefix(mark(X)) -> prefix(X) prefix(active(X)) -> prefix(X) The set Q consists of the following terms: active(app(nil, x0)) active(app(cons(x0, x1), x2)) active(from(x0)) active(zWadr(nil, x0)) active(zWadr(x0, nil)) active(zWadr(cons(x0, x1), cons(x2, x3))) active(prefix(x0)) mark(app(x0, x1)) mark(nil) mark(cons(x0, x1)) mark(from(x0)) mark(s(x0)) mark(zWadr(x0, x1)) mark(prefix(x0)) app(mark(x0), x1) app(x0, mark(x1)) app(active(x0), x1) app(x0, active(x1)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) s(mark(x0)) s(active(x0)) zWadr(mark(x0), x1) zWadr(x0, mark(x1)) zWadr(active(x0), x1) zWadr(x0, active(x1)) prefix(mark(x0)) prefix(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: ZWADR(X1, mark(X2)) -> ZWADR(X1, X2) ZWADR(mark(X1), X2) -> ZWADR(X1, X2) ZWADR(active(X1), X2) -> ZWADR(X1, X2) ZWADR(X1, active(X2)) -> ZWADR(X1, X2) R is empty. The set Q consists of the following terms: active(app(nil, x0)) active(app(cons(x0, x1), x2)) active(from(x0)) active(zWadr(nil, x0)) active(zWadr(x0, nil)) active(zWadr(cons(x0, x1), cons(x2, x3))) active(prefix(x0)) mark(app(x0, x1)) mark(nil) mark(cons(x0, x1)) mark(from(x0)) mark(s(x0)) mark(zWadr(x0, x1)) mark(prefix(x0)) app(mark(x0), x1) app(x0, mark(x1)) app(active(x0), x1) app(x0, active(x1)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) s(mark(x0)) s(active(x0)) zWadr(mark(x0), x1) zWadr(x0, mark(x1)) zWadr(active(x0), x1) zWadr(x0, active(x1)) prefix(mark(x0)) prefix(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. app(mark(x0), x1) app(x0, mark(x1)) app(active(x0), x1) app(x0, active(x1)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) s(mark(x0)) s(active(x0)) zWadr(mark(x0), x1) zWadr(x0, mark(x1)) zWadr(active(x0), x1) zWadr(x0, active(x1)) prefix(mark(x0)) prefix(active(x0)) ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: ZWADR(X1, mark(X2)) -> ZWADR(X1, X2) ZWADR(mark(X1), X2) -> ZWADR(X1, X2) ZWADR(active(X1), X2) -> ZWADR(X1, X2) ZWADR(X1, active(X2)) -> ZWADR(X1, X2) R is empty. The set Q consists of the following terms: active(app(nil, x0)) active(app(cons(x0, x1), x2)) active(from(x0)) active(zWadr(nil, x0)) active(zWadr(x0, nil)) active(zWadr(cons(x0, x1), cons(x2, x3))) active(prefix(x0)) mark(app(x0, x1)) mark(nil) mark(cons(x0, x1)) mark(from(x0)) mark(s(x0)) mark(zWadr(x0, x1)) mark(prefix(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *ZWADR(X1, mark(X2)) -> ZWADR(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 *ZWADR(mark(X1), X2) -> ZWADR(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *ZWADR(active(X1), X2) -> ZWADR(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *ZWADR(X1, active(X2)) -> ZWADR(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (18) YES ---------------------------------------- (19) Obligation: Q DP problem: The TRS P consists of the following rules: S(active(X)) -> S(X) S(mark(X)) -> S(X) The TRS R consists of the following rules: active(app(nil, YS)) -> mark(YS) active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS))) active(from(X)) -> mark(cons(X, from(s(X)))) active(zWadr(nil, YS)) -> mark(nil) active(zWadr(XS, nil)) -> mark(nil) active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS))) active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L)))) mark(app(X1, X2)) -> active(app(mark(X1), mark(X2))) mark(nil) -> active(nil) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(zWadr(X1, X2)) -> active(zWadr(mark(X1), mark(X2))) mark(prefix(X)) -> active(prefix(mark(X))) app(mark(X1), X2) -> app(X1, X2) app(X1, mark(X2)) -> app(X1, X2) app(active(X1), X2) -> app(X1, X2) app(X1, active(X2)) -> app(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) zWadr(mark(X1), X2) -> zWadr(X1, X2) zWadr(X1, mark(X2)) -> zWadr(X1, X2) zWadr(active(X1), X2) -> zWadr(X1, X2) zWadr(X1, active(X2)) -> zWadr(X1, X2) prefix(mark(X)) -> prefix(X) prefix(active(X)) -> prefix(X) The set Q consists of the following terms: active(app(nil, x0)) active(app(cons(x0, x1), x2)) active(from(x0)) active(zWadr(nil, x0)) active(zWadr(x0, nil)) active(zWadr(cons(x0, x1), cons(x2, x3))) active(prefix(x0)) mark(app(x0, x1)) mark(nil) mark(cons(x0, x1)) mark(from(x0)) mark(s(x0)) mark(zWadr(x0, x1)) mark(prefix(x0)) app(mark(x0), x1) app(x0, mark(x1)) app(active(x0), x1) app(x0, active(x1)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) s(mark(x0)) s(active(x0)) zWadr(mark(x0), x1) zWadr(x0, mark(x1)) zWadr(active(x0), x1) zWadr(x0, active(x1)) prefix(mark(x0)) prefix(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (20) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: S(active(X)) -> S(X) S(mark(X)) -> S(X) R is empty. The set Q consists of the following terms: active(app(nil, x0)) active(app(cons(x0, x1), x2)) active(from(x0)) active(zWadr(nil, x0)) active(zWadr(x0, nil)) active(zWadr(cons(x0, x1), cons(x2, x3))) active(prefix(x0)) mark(app(x0, x1)) mark(nil) mark(cons(x0, x1)) mark(from(x0)) mark(s(x0)) mark(zWadr(x0, x1)) mark(prefix(x0)) app(mark(x0), x1) app(x0, mark(x1)) app(active(x0), x1) app(x0, active(x1)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) s(mark(x0)) s(active(x0)) zWadr(mark(x0), x1) zWadr(x0, mark(x1)) zWadr(active(x0), x1) zWadr(x0, active(x1)) prefix(mark(x0)) prefix(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. app(mark(x0), x1) app(x0, mark(x1)) app(active(x0), x1) app(x0, active(x1)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) s(mark(x0)) s(active(x0)) zWadr(mark(x0), x1) zWadr(x0, mark(x1)) zWadr(active(x0), x1) zWadr(x0, active(x1)) prefix(mark(x0)) prefix(active(x0)) ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: S(active(X)) -> S(X) S(mark(X)) -> S(X) R is empty. The set Q consists of the following terms: active(app(nil, x0)) active(app(cons(x0, x1), x2)) active(from(x0)) active(zWadr(nil, x0)) active(zWadr(x0, nil)) active(zWadr(cons(x0, x1), cons(x2, x3))) active(prefix(x0)) mark(app(x0, x1)) mark(nil) mark(cons(x0, x1)) mark(from(x0)) mark(s(x0)) mark(zWadr(x0, x1)) mark(prefix(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *S(active(X)) -> S(X) The graph contains the following edges 1 > 1 *S(mark(X)) -> S(X) The graph contains the following edges 1 > 1 ---------------------------------------- (25) YES ---------------------------------------- (26) Obligation: Q DP problem: The TRS P consists of the following rules: FROM(active(X)) -> FROM(X) FROM(mark(X)) -> FROM(X) The TRS R consists of the following rules: active(app(nil, YS)) -> mark(YS) active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS))) active(from(X)) -> mark(cons(X, from(s(X)))) active(zWadr(nil, YS)) -> mark(nil) active(zWadr(XS, nil)) -> mark(nil) active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS))) active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L)))) mark(app(X1, X2)) -> active(app(mark(X1), mark(X2))) mark(nil) -> active(nil) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(zWadr(X1, X2)) -> active(zWadr(mark(X1), mark(X2))) mark(prefix(X)) -> active(prefix(mark(X))) app(mark(X1), X2) -> app(X1, X2) app(X1, mark(X2)) -> app(X1, X2) app(active(X1), X2) -> app(X1, X2) app(X1, active(X2)) -> app(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) zWadr(mark(X1), X2) -> zWadr(X1, X2) zWadr(X1, mark(X2)) -> zWadr(X1, X2) zWadr(active(X1), X2) -> zWadr(X1, X2) zWadr(X1, active(X2)) -> zWadr(X1, X2) prefix(mark(X)) -> prefix(X) prefix(active(X)) -> prefix(X) The set Q consists of the following terms: active(app(nil, x0)) active(app(cons(x0, x1), x2)) active(from(x0)) active(zWadr(nil, x0)) active(zWadr(x0, nil)) active(zWadr(cons(x0, x1), cons(x2, x3))) active(prefix(x0)) mark(app(x0, x1)) mark(nil) mark(cons(x0, x1)) mark(from(x0)) mark(s(x0)) mark(zWadr(x0, x1)) mark(prefix(x0)) app(mark(x0), x1) app(x0, mark(x1)) app(active(x0), x1) app(x0, active(x1)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) s(mark(x0)) s(active(x0)) zWadr(mark(x0), x1) zWadr(x0, mark(x1)) zWadr(active(x0), x1) zWadr(x0, active(x1)) prefix(mark(x0)) prefix(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (27) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: FROM(active(X)) -> FROM(X) FROM(mark(X)) -> FROM(X) R is empty. The set Q consists of the following terms: active(app(nil, x0)) active(app(cons(x0, x1), x2)) active(from(x0)) active(zWadr(nil, x0)) active(zWadr(x0, nil)) active(zWadr(cons(x0, x1), cons(x2, x3))) active(prefix(x0)) mark(app(x0, x1)) mark(nil) mark(cons(x0, x1)) mark(from(x0)) mark(s(x0)) mark(zWadr(x0, x1)) mark(prefix(x0)) app(mark(x0), x1) app(x0, mark(x1)) app(active(x0), x1) app(x0, active(x1)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) s(mark(x0)) s(active(x0)) zWadr(mark(x0), x1) zWadr(x0, mark(x1)) zWadr(active(x0), x1) zWadr(x0, active(x1)) prefix(mark(x0)) prefix(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. app(mark(x0), x1) app(x0, mark(x1)) app(active(x0), x1) app(x0, active(x1)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) s(mark(x0)) s(active(x0)) zWadr(mark(x0), x1) zWadr(x0, mark(x1)) zWadr(active(x0), x1) zWadr(x0, active(x1)) prefix(mark(x0)) prefix(active(x0)) ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: FROM(active(X)) -> FROM(X) FROM(mark(X)) -> FROM(X) R is empty. The set Q consists of the following terms: active(app(nil, x0)) active(app(cons(x0, x1), x2)) active(from(x0)) active(zWadr(nil, x0)) active(zWadr(x0, nil)) active(zWadr(cons(x0, x1), cons(x2, x3))) active(prefix(x0)) mark(app(x0, x1)) mark(nil) mark(cons(x0, x1)) mark(from(x0)) mark(s(x0)) mark(zWadr(x0, x1)) mark(prefix(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *FROM(active(X)) -> FROM(X) The graph contains the following edges 1 > 1 *FROM(mark(X)) -> FROM(X) The graph contains the following edges 1 > 1 ---------------------------------------- (32) YES ---------------------------------------- (33) Obligation: Q DP problem: The TRS P consists of the following rules: CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) The TRS R consists of the following rules: active(app(nil, YS)) -> mark(YS) active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS))) active(from(X)) -> mark(cons(X, from(s(X)))) active(zWadr(nil, YS)) -> mark(nil) active(zWadr(XS, nil)) -> mark(nil) active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS))) active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L)))) mark(app(X1, X2)) -> active(app(mark(X1), mark(X2))) mark(nil) -> active(nil) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(zWadr(X1, X2)) -> active(zWadr(mark(X1), mark(X2))) mark(prefix(X)) -> active(prefix(mark(X))) app(mark(X1), X2) -> app(X1, X2) app(X1, mark(X2)) -> app(X1, X2) app(active(X1), X2) -> app(X1, X2) app(X1, active(X2)) -> app(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) zWadr(mark(X1), X2) -> zWadr(X1, X2) zWadr(X1, mark(X2)) -> zWadr(X1, X2) zWadr(active(X1), X2) -> zWadr(X1, X2) zWadr(X1, active(X2)) -> zWadr(X1, X2) prefix(mark(X)) -> prefix(X) prefix(active(X)) -> prefix(X) The set Q consists of the following terms: active(app(nil, x0)) active(app(cons(x0, x1), x2)) active(from(x0)) active(zWadr(nil, x0)) active(zWadr(x0, nil)) active(zWadr(cons(x0, x1), cons(x2, x3))) active(prefix(x0)) mark(app(x0, x1)) mark(nil) mark(cons(x0, x1)) mark(from(x0)) mark(s(x0)) mark(zWadr(x0, x1)) mark(prefix(x0)) app(mark(x0), x1) app(x0, mark(x1)) app(active(x0), x1) app(x0, active(x1)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) s(mark(x0)) s(active(x0)) zWadr(mark(x0), x1) zWadr(x0, mark(x1)) zWadr(active(x0), x1) zWadr(x0, active(x1)) prefix(mark(x0)) prefix(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (34) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (35) Obligation: Q DP problem: The TRS P consists of the following rules: CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) R is empty. The set Q consists of the following terms: active(app(nil, x0)) active(app(cons(x0, x1), x2)) active(from(x0)) active(zWadr(nil, x0)) active(zWadr(x0, nil)) active(zWadr(cons(x0, x1), cons(x2, x3))) active(prefix(x0)) mark(app(x0, x1)) mark(nil) mark(cons(x0, x1)) mark(from(x0)) mark(s(x0)) mark(zWadr(x0, x1)) mark(prefix(x0)) app(mark(x0), x1) app(x0, mark(x1)) app(active(x0), x1) app(x0, active(x1)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) s(mark(x0)) s(active(x0)) zWadr(mark(x0), x1) zWadr(x0, mark(x1)) zWadr(active(x0), x1) zWadr(x0, active(x1)) prefix(mark(x0)) prefix(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (36) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. app(mark(x0), x1) app(x0, mark(x1)) app(active(x0), x1) app(x0, active(x1)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) s(mark(x0)) s(active(x0)) zWadr(mark(x0), x1) zWadr(x0, mark(x1)) zWadr(active(x0), x1) zWadr(x0, active(x1)) prefix(mark(x0)) prefix(active(x0)) ---------------------------------------- (37) Obligation: Q DP problem: The TRS P consists of the following rules: CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) R is empty. The set Q consists of the following terms: active(app(nil, x0)) active(app(cons(x0, x1), x2)) active(from(x0)) active(zWadr(nil, x0)) active(zWadr(x0, nil)) active(zWadr(cons(x0, x1), cons(x2, x3))) active(prefix(x0)) mark(app(x0, x1)) mark(nil) mark(cons(x0, x1)) mark(from(x0)) mark(s(x0)) mark(zWadr(x0, x1)) mark(prefix(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (38) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *CONS(X1, mark(X2)) -> CONS(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 *CONS(mark(X1), X2) -> CONS(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *CONS(active(X1), X2) -> CONS(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *CONS(X1, active(X2)) -> CONS(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (39) YES ---------------------------------------- (40) Obligation: Q DP problem: The TRS P consists of the following rules: APP(X1, mark(X2)) -> APP(X1, X2) APP(mark(X1), X2) -> APP(X1, X2) APP(active(X1), X2) -> APP(X1, X2) APP(X1, active(X2)) -> APP(X1, X2) The TRS R consists of the following rules: active(app(nil, YS)) -> mark(YS) active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS))) active(from(X)) -> mark(cons(X, from(s(X)))) active(zWadr(nil, YS)) -> mark(nil) active(zWadr(XS, nil)) -> mark(nil) active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS))) active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L)))) mark(app(X1, X2)) -> active(app(mark(X1), mark(X2))) mark(nil) -> active(nil) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(zWadr(X1, X2)) -> active(zWadr(mark(X1), mark(X2))) mark(prefix(X)) -> active(prefix(mark(X))) app(mark(X1), X2) -> app(X1, X2) app(X1, mark(X2)) -> app(X1, X2) app(active(X1), X2) -> app(X1, X2) app(X1, active(X2)) -> app(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) zWadr(mark(X1), X2) -> zWadr(X1, X2) zWadr(X1, mark(X2)) -> zWadr(X1, X2) zWadr(active(X1), X2) -> zWadr(X1, X2) zWadr(X1, active(X2)) -> zWadr(X1, X2) prefix(mark(X)) -> prefix(X) prefix(active(X)) -> prefix(X) The set Q consists of the following terms: active(app(nil, x0)) active(app(cons(x0, x1), x2)) active(from(x0)) active(zWadr(nil, x0)) active(zWadr(x0, nil)) active(zWadr(cons(x0, x1), cons(x2, x3))) active(prefix(x0)) mark(app(x0, x1)) mark(nil) mark(cons(x0, x1)) mark(from(x0)) mark(s(x0)) mark(zWadr(x0, x1)) mark(prefix(x0)) app(mark(x0), x1) app(x0, mark(x1)) app(active(x0), x1) app(x0, active(x1)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) s(mark(x0)) s(active(x0)) zWadr(mark(x0), x1) zWadr(x0, mark(x1)) zWadr(active(x0), x1) zWadr(x0, active(x1)) prefix(mark(x0)) prefix(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (41) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (42) Obligation: Q DP problem: The TRS P consists of the following rules: APP(X1, mark(X2)) -> APP(X1, X2) APP(mark(X1), X2) -> APP(X1, X2) APP(active(X1), X2) -> APP(X1, X2) APP(X1, active(X2)) -> APP(X1, X2) R is empty. The set Q consists of the following terms: active(app(nil, x0)) active(app(cons(x0, x1), x2)) active(from(x0)) active(zWadr(nil, x0)) active(zWadr(x0, nil)) active(zWadr(cons(x0, x1), cons(x2, x3))) active(prefix(x0)) mark(app(x0, x1)) mark(nil) mark(cons(x0, x1)) mark(from(x0)) mark(s(x0)) mark(zWadr(x0, x1)) mark(prefix(x0)) app(mark(x0), x1) app(x0, mark(x1)) app(active(x0), x1) app(x0, active(x1)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) s(mark(x0)) s(active(x0)) zWadr(mark(x0), x1) zWadr(x0, mark(x1)) zWadr(active(x0), x1) zWadr(x0, active(x1)) prefix(mark(x0)) prefix(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (43) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. app(mark(x0), x1) app(x0, mark(x1)) app(active(x0), x1) app(x0, active(x1)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) s(mark(x0)) s(active(x0)) zWadr(mark(x0), x1) zWadr(x0, mark(x1)) zWadr(active(x0), x1) zWadr(x0, active(x1)) prefix(mark(x0)) prefix(active(x0)) ---------------------------------------- (44) Obligation: Q DP problem: The TRS P consists of the following rules: APP(X1, mark(X2)) -> APP(X1, X2) APP(mark(X1), X2) -> APP(X1, X2) APP(active(X1), X2) -> APP(X1, X2) APP(X1, active(X2)) -> APP(X1, X2) R is empty. The set Q consists of the following terms: active(app(nil, x0)) active(app(cons(x0, x1), x2)) active(from(x0)) active(zWadr(nil, x0)) active(zWadr(x0, nil)) active(zWadr(cons(x0, x1), cons(x2, x3))) active(prefix(x0)) mark(app(x0, x1)) mark(nil) mark(cons(x0, x1)) mark(from(x0)) mark(s(x0)) mark(zWadr(x0, x1)) mark(prefix(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (45) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *APP(X1, mark(X2)) -> APP(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 *APP(mark(X1), X2) -> APP(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *APP(active(X1), X2) -> APP(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *APP(X1, active(X2)) -> APP(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (46) YES ---------------------------------------- (47) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(app(X1, X2)) -> ACTIVE(app(mark(X1), mark(X2))) ACTIVE(app(nil, YS)) -> MARK(YS) MARK(app(X1, X2)) -> MARK(X1) MARK(app(X1, X2)) -> MARK(X2) MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) ACTIVE(app(cons(X, XS), YS)) -> MARK(cons(X, app(XS, YS))) MARK(cons(X1, X2)) -> MARK(X1) MARK(from(X)) -> ACTIVE(from(mark(X))) ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) ACTIVE(zWadr(cons(X, XS), cons(Y, YS))) -> MARK(cons(app(Y, cons(X, nil)), zWadr(XS, YS))) ACTIVE(prefix(L)) -> MARK(cons(nil, zWadr(L, prefix(L)))) MARK(from(X)) -> MARK(X) MARK(s(X)) -> ACTIVE(s(mark(X))) MARK(s(X)) -> MARK(X) MARK(zWadr(X1, X2)) -> ACTIVE(zWadr(mark(X1), mark(X2))) MARK(zWadr(X1, X2)) -> MARK(X1) MARK(zWadr(X1, X2)) -> MARK(X2) MARK(prefix(X)) -> ACTIVE(prefix(mark(X))) MARK(prefix(X)) -> MARK(X) The TRS R consists of the following rules: active(app(nil, YS)) -> mark(YS) active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS))) active(from(X)) -> mark(cons(X, from(s(X)))) active(zWadr(nil, YS)) -> mark(nil) active(zWadr(XS, nil)) -> mark(nil) active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS))) active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L)))) mark(app(X1, X2)) -> active(app(mark(X1), mark(X2))) mark(nil) -> active(nil) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(zWadr(X1, X2)) -> active(zWadr(mark(X1), mark(X2))) mark(prefix(X)) -> active(prefix(mark(X))) app(mark(X1), X2) -> app(X1, X2) app(X1, mark(X2)) -> app(X1, X2) app(active(X1), X2) -> app(X1, X2) app(X1, active(X2)) -> app(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) zWadr(mark(X1), X2) -> zWadr(X1, X2) zWadr(X1, mark(X2)) -> zWadr(X1, X2) zWadr(active(X1), X2) -> zWadr(X1, X2) zWadr(X1, active(X2)) -> zWadr(X1, X2) prefix(mark(X)) -> prefix(X) prefix(active(X)) -> prefix(X) The set Q consists of the following terms: active(app(nil, x0)) active(app(cons(x0, x1), x2)) active(from(x0)) active(zWadr(nil, x0)) active(zWadr(x0, nil)) active(zWadr(cons(x0, x1), cons(x2, x3))) active(prefix(x0)) mark(app(x0, x1)) mark(nil) mark(cons(x0, x1)) mark(from(x0)) mark(s(x0)) mark(zWadr(x0, x1)) mark(prefix(x0)) app(mark(x0), x1) app(x0, mark(x1)) app(active(x0), x1) app(x0, active(x1)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) s(mark(x0)) s(active(x0)) zWadr(mark(x0), x1) zWadr(x0, mark(x1)) zWadr(active(x0), x1) zWadr(x0, active(x1)) prefix(mark(x0)) prefix(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (48) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVE(app(nil, YS)) -> MARK(YS) MARK(app(X1, X2)) -> MARK(X1) MARK(app(X1, X2)) -> MARK(X2) ACTIVE(app(cons(X, XS), YS)) -> MARK(cons(X, app(XS, YS))) ACTIVE(zWadr(cons(X, XS), cons(Y, YS))) -> MARK(cons(app(Y, cons(X, nil)), zWadr(XS, YS))) MARK(zWadr(X1, X2)) -> MARK(X1) MARK(zWadr(X1, X2)) -> MARK(X2) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. MARK(x1) = x1 app(x1, x2) = app(x1, x2) ACTIVE(x1) = x1 mark(x1) = x1 nil = nil cons(x1, x2) = x1 from(x1) = x1 zWadr(x1, x2) = zWadr(x1, x2) prefix(x1) = x1 s(x1) = x1 active(x1) = x1 Knuth-Bendix order [KBO] with precedence:trivial and weight map: zWadr_2=2 app_2=1 nil=1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(app(X1, X2)) -> active(app(mark(X1), mark(X2))) active(app(nil, YS)) -> mark(YS) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS))) active(from(X)) -> mark(cons(X, from(s(X)))) active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS))) active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L)))) mark(from(X)) -> active(from(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(zWadr(X1, X2)) -> active(zWadr(mark(X1), mark(X2))) mark(prefix(X)) -> active(prefix(mark(X))) mark(nil) -> active(nil) app(X1, mark(X2)) -> app(X1, X2) app(mark(X1), X2) -> app(X1, X2) app(active(X1), X2) -> app(X1, X2) app(X1, active(X2)) -> app(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(active(X)) -> from(X) from(mark(X)) -> from(X) s(active(X)) -> s(X) s(mark(X)) -> s(X) zWadr(X1, mark(X2)) -> zWadr(X1, X2) zWadr(mark(X1), X2) -> zWadr(X1, X2) zWadr(active(X1), X2) -> zWadr(X1, X2) zWadr(X1, active(X2)) -> zWadr(X1, X2) prefix(active(X)) -> prefix(X) prefix(mark(X)) -> prefix(X) active(zWadr(nil, YS)) -> mark(nil) active(zWadr(XS, nil)) -> mark(nil) ---------------------------------------- (49) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(app(X1, X2)) -> ACTIVE(app(mark(X1), mark(X2))) MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) MARK(cons(X1, X2)) -> MARK(X1) MARK(from(X)) -> ACTIVE(from(mark(X))) ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) ACTIVE(prefix(L)) -> MARK(cons(nil, zWadr(L, prefix(L)))) MARK(from(X)) -> MARK(X) MARK(s(X)) -> ACTIVE(s(mark(X))) MARK(s(X)) -> MARK(X) MARK(zWadr(X1, X2)) -> ACTIVE(zWadr(mark(X1), mark(X2))) MARK(prefix(X)) -> ACTIVE(prefix(mark(X))) MARK(prefix(X)) -> MARK(X) The TRS R consists of the following rules: active(app(nil, YS)) -> mark(YS) active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS))) active(from(X)) -> mark(cons(X, from(s(X)))) active(zWadr(nil, YS)) -> mark(nil) active(zWadr(XS, nil)) -> mark(nil) active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS))) active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L)))) mark(app(X1, X2)) -> active(app(mark(X1), mark(X2))) mark(nil) -> active(nil) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(zWadr(X1, X2)) -> active(zWadr(mark(X1), mark(X2))) mark(prefix(X)) -> active(prefix(mark(X))) app(mark(X1), X2) -> app(X1, X2) app(X1, mark(X2)) -> app(X1, X2) app(active(X1), X2) -> app(X1, X2) app(X1, active(X2)) -> app(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) zWadr(mark(X1), X2) -> zWadr(X1, X2) zWadr(X1, mark(X2)) -> zWadr(X1, X2) zWadr(active(X1), X2) -> zWadr(X1, X2) zWadr(X1, active(X2)) -> zWadr(X1, X2) prefix(mark(X)) -> prefix(X) prefix(active(X)) -> prefix(X) The set Q consists of the following terms: active(app(nil, x0)) active(app(cons(x0, x1), x2)) active(from(x0)) active(zWadr(nil, x0)) active(zWadr(x0, nil)) active(zWadr(cons(x0, x1), cons(x2, x3))) active(prefix(x0)) mark(app(x0, x1)) mark(nil) mark(cons(x0, x1)) mark(from(x0)) mark(s(x0)) mark(zWadr(x0, x1)) mark(prefix(x0)) app(mark(x0), x1) app(x0, mark(x1)) app(active(x0), x1) app(x0, active(x1)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) s(mark(x0)) s(active(x0)) zWadr(mark(x0), x1) zWadr(x0, mark(x1)) zWadr(active(x0), x1) zWadr(x0, active(x1)) prefix(mark(x0)) prefix(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (50) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(s(X)) -> MARK(X) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. MARK(x1) = x1 app(x1, x2) = app(x1, x2) ACTIVE(x1) = x1 mark(x1) = x1 cons(x1, x2) = x1 from(x1) = x1 prefix(x1) = x1 nil = nil s(x1) = s(x1) zWadr(x1, x2) = zWadr(x1, x2) active(x1) = x1 Knuth-Bendix order [KBO] with precedence:trivial and weight map: s_1=1 zWadr_2=2 app_2=1 nil=1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(app(X1, X2)) -> active(app(mark(X1), mark(X2))) active(app(nil, YS)) -> mark(YS) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS))) active(from(X)) -> mark(cons(X, from(s(X)))) active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS))) active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L)))) mark(from(X)) -> active(from(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(zWadr(X1, X2)) -> active(zWadr(mark(X1), mark(X2))) mark(prefix(X)) -> active(prefix(mark(X))) mark(nil) -> active(nil) app(X1, mark(X2)) -> app(X1, X2) app(mark(X1), X2) -> app(X1, X2) app(active(X1), X2) -> app(X1, X2) app(X1, active(X2)) -> app(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(active(X)) -> from(X) from(mark(X)) -> from(X) s(active(X)) -> s(X) s(mark(X)) -> s(X) zWadr(X1, mark(X2)) -> zWadr(X1, X2) zWadr(mark(X1), X2) -> zWadr(X1, X2) zWadr(active(X1), X2) -> zWadr(X1, X2) zWadr(X1, active(X2)) -> zWadr(X1, X2) prefix(active(X)) -> prefix(X) prefix(mark(X)) -> prefix(X) active(zWadr(nil, YS)) -> mark(nil) active(zWadr(XS, nil)) -> mark(nil) ---------------------------------------- (51) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(app(X1, X2)) -> ACTIVE(app(mark(X1), mark(X2))) MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) MARK(cons(X1, X2)) -> MARK(X1) MARK(from(X)) -> ACTIVE(from(mark(X))) ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) ACTIVE(prefix(L)) -> MARK(cons(nil, zWadr(L, prefix(L)))) MARK(from(X)) -> MARK(X) MARK(s(X)) -> ACTIVE(s(mark(X))) MARK(zWadr(X1, X2)) -> ACTIVE(zWadr(mark(X1), mark(X2))) MARK(prefix(X)) -> ACTIVE(prefix(mark(X))) MARK(prefix(X)) -> MARK(X) The TRS R consists of the following rules: active(app(nil, YS)) -> mark(YS) active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS))) active(from(X)) -> mark(cons(X, from(s(X)))) active(zWadr(nil, YS)) -> mark(nil) active(zWadr(XS, nil)) -> mark(nil) active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS))) active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L)))) mark(app(X1, X2)) -> active(app(mark(X1), mark(X2))) mark(nil) -> active(nil) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(zWadr(X1, X2)) -> active(zWadr(mark(X1), mark(X2))) mark(prefix(X)) -> active(prefix(mark(X))) app(mark(X1), X2) -> app(X1, X2) app(X1, mark(X2)) -> app(X1, X2) app(active(X1), X2) -> app(X1, X2) app(X1, active(X2)) -> app(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) zWadr(mark(X1), X2) -> zWadr(X1, X2) zWadr(X1, mark(X2)) -> zWadr(X1, X2) zWadr(active(X1), X2) -> zWadr(X1, X2) zWadr(X1, active(X2)) -> zWadr(X1, X2) prefix(mark(X)) -> prefix(X) prefix(active(X)) -> prefix(X) The set Q consists of the following terms: active(app(nil, x0)) active(app(cons(x0, x1), x2)) active(from(x0)) active(zWadr(nil, x0)) active(zWadr(x0, nil)) active(zWadr(cons(x0, x1), cons(x2, x3))) active(prefix(x0)) mark(app(x0, x1)) mark(nil) mark(cons(x0, x1)) mark(from(x0)) mark(s(x0)) mark(zWadr(x0, x1)) mark(prefix(x0)) app(mark(x0), x1) app(x0, mark(x1)) app(active(x0), x1) app(x0, active(x1)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) s(mark(x0)) s(active(x0)) zWadr(mark(x0), x1) zWadr(x0, mark(x1)) zWadr(active(x0), x1) zWadr(x0, active(x1)) prefix(mark(x0)) prefix(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (52) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVE(prefix(L)) -> MARK(cons(nil, zWadr(L, prefix(L)))) MARK(prefix(X)) -> MARK(X) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. MARK(x1) = x1 app(x1, x2) = app(x1, x2) ACTIVE(x1) = x1 mark(x1) = x1 cons(x1, x2) = x1 from(x1) = x1 prefix(x1) = prefix(x1) nil = nil s(x1) = s zWadr(x1, x2) = zWadr(x1, x2) active(x1) = x1 Knuth-Bendix order [KBO] with precedence:trivial and weight map: s=1 prefix_1=2 zWadr_2=2 app_2=1 nil=2 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(app(X1, X2)) -> active(app(mark(X1), mark(X2))) active(app(nil, YS)) -> mark(YS) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS))) active(from(X)) -> mark(cons(X, from(s(X)))) active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS))) active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L)))) mark(from(X)) -> active(from(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(zWadr(X1, X2)) -> active(zWadr(mark(X1), mark(X2))) mark(prefix(X)) -> active(prefix(mark(X))) mark(nil) -> active(nil) app(X1, mark(X2)) -> app(X1, X2) app(mark(X1), X2) -> app(X1, X2) app(active(X1), X2) -> app(X1, X2) app(X1, active(X2)) -> app(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(active(X)) -> from(X) from(mark(X)) -> from(X) s(active(X)) -> s(X) s(mark(X)) -> s(X) zWadr(X1, mark(X2)) -> zWadr(X1, X2) zWadr(mark(X1), X2) -> zWadr(X1, X2) zWadr(active(X1), X2) -> zWadr(X1, X2) zWadr(X1, active(X2)) -> zWadr(X1, X2) prefix(active(X)) -> prefix(X) prefix(mark(X)) -> prefix(X) active(zWadr(nil, YS)) -> mark(nil) active(zWadr(XS, nil)) -> mark(nil) ---------------------------------------- (53) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(app(X1, X2)) -> ACTIVE(app(mark(X1), mark(X2))) MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) MARK(cons(X1, X2)) -> MARK(X1) MARK(from(X)) -> ACTIVE(from(mark(X))) ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) MARK(from(X)) -> MARK(X) MARK(s(X)) -> ACTIVE(s(mark(X))) MARK(zWadr(X1, X2)) -> ACTIVE(zWadr(mark(X1), mark(X2))) MARK(prefix(X)) -> ACTIVE(prefix(mark(X))) The TRS R consists of the following rules: active(app(nil, YS)) -> mark(YS) active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS))) active(from(X)) -> mark(cons(X, from(s(X)))) active(zWadr(nil, YS)) -> mark(nil) active(zWadr(XS, nil)) -> mark(nil) active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS))) active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L)))) mark(app(X1, X2)) -> active(app(mark(X1), mark(X2))) mark(nil) -> active(nil) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(zWadr(X1, X2)) -> active(zWadr(mark(X1), mark(X2))) mark(prefix(X)) -> active(prefix(mark(X))) app(mark(X1), X2) -> app(X1, X2) app(X1, mark(X2)) -> app(X1, X2) app(active(X1), X2) -> app(X1, X2) app(X1, active(X2)) -> app(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) zWadr(mark(X1), X2) -> zWadr(X1, X2) zWadr(X1, mark(X2)) -> zWadr(X1, X2) zWadr(active(X1), X2) -> zWadr(X1, X2) zWadr(X1, active(X2)) -> zWadr(X1, X2) prefix(mark(X)) -> prefix(X) prefix(active(X)) -> prefix(X) The set Q consists of the following terms: active(app(nil, x0)) active(app(cons(x0, x1), x2)) active(from(x0)) active(zWadr(nil, x0)) active(zWadr(x0, nil)) active(zWadr(cons(x0, x1), cons(x2, x3))) active(prefix(x0)) mark(app(x0, x1)) mark(nil) mark(cons(x0, x1)) mark(from(x0)) mark(s(x0)) mark(zWadr(x0, x1)) mark(prefix(x0)) app(mark(x0), x1) app(x0, mark(x1)) app(active(x0), x1) app(x0, active(x1)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) s(mark(x0)) s(active(x0)) zWadr(mark(x0), x1) zWadr(x0, mark(x1)) zWadr(active(x0), x1) zWadr(x0, active(x1)) prefix(mark(x0)) prefix(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (54) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) MARK(from(X)) -> MARK(X) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. MARK(x1) = x1 app(x1, x2) = app(x1, x2) ACTIVE(x1) = x1 mark(x1) = x1 cons(x1, x2) = x1 from(x1) = from(x1) s(x1) = s zWadr(x1, x2) = zWadr(x1, x2) prefix(x1) = prefix active(x1) = x1 nil = nil Knuth-Bendix order [KBO] with precedence:trivial and weight map: s=1 prefix=3 zWadr_2=2 from_1=1 app_2=1 nil=2 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(app(X1, X2)) -> active(app(mark(X1), mark(X2))) active(app(nil, YS)) -> mark(YS) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS))) active(from(X)) -> mark(cons(X, from(s(X)))) active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS))) active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L)))) mark(from(X)) -> active(from(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(zWadr(X1, X2)) -> active(zWadr(mark(X1), mark(X2))) mark(prefix(X)) -> active(prefix(mark(X))) mark(nil) -> active(nil) app(X1, mark(X2)) -> app(X1, X2) app(mark(X1), X2) -> app(X1, X2) app(active(X1), X2) -> app(X1, X2) app(X1, active(X2)) -> app(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(active(X)) -> from(X) from(mark(X)) -> from(X) s(active(X)) -> s(X) s(mark(X)) -> s(X) zWadr(X1, mark(X2)) -> zWadr(X1, X2) zWadr(mark(X1), X2) -> zWadr(X1, X2) zWadr(active(X1), X2) -> zWadr(X1, X2) zWadr(X1, active(X2)) -> zWadr(X1, X2) prefix(active(X)) -> prefix(X) prefix(mark(X)) -> prefix(X) active(zWadr(nil, YS)) -> mark(nil) active(zWadr(XS, nil)) -> mark(nil) ---------------------------------------- (55) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(app(X1, X2)) -> ACTIVE(app(mark(X1), mark(X2))) MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) MARK(cons(X1, X2)) -> MARK(X1) MARK(from(X)) -> ACTIVE(from(mark(X))) MARK(s(X)) -> ACTIVE(s(mark(X))) MARK(zWadr(X1, X2)) -> ACTIVE(zWadr(mark(X1), mark(X2))) MARK(prefix(X)) -> ACTIVE(prefix(mark(X))) The TRS R consists of the following rules: active(app(nil, YS)) -> mark(YS) active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS))) active(from(X)) -> mark(cons(X, from(s(X)))) active(zWadr(nil, YS)) -> mark(nil) active(zWadr(XS, nil)) -> mark(nil) active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS))) active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L)))) mark(app(X1, X2)) -> active(app(mark(X1), mark(X2))) mark(nil) -> active(nil) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(zWadr(X1, X2)) -> active(zWadr(mark(X1), mark(X2))) mark(prefix(X)) -> active(prefix(mark(X))) app(mark(X1), X2) -> app(X1, X2) app(X1, mark(X2)) -> app(X1, X2) app(active(X1), X2) -> app(X1, X2) app(X1, active(X2)) -> app(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) zWadr(mark(X1), X2) -> zWadr(X1, X2) zWadr(X1, mark(X2)) -> zWadr(X1, X2) zWadr(active(X1), X2) -> zWadr(X1, X2) zWadr(X1, active(X2)) -> zWadr(X1, X2) prefix(mark(X)) -> prefix(X) prefix(active(X)) -> prefix(X) The set Q consists of the following terms: active(app(nil, x0)) active(app(cons(x0, x1), x2)) active(from(x0)) active(zWadr(nil, x0)) active(zWadr(x0, nil)) active(zWadr(cons(x0, x1), cons(x2, x3))) active(prefix(x0)) mark(app(x0, x1)) mark(nil) mark(cons(x0, x1)) mark(from(x0)) mark(s(x0)) mark(zWadr(x0, x1)) mark(prefix(x0)) app(mark(x0), x1) app(x0, mark(x1)) app(active(x0), x1) app(x0, active(x1)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) s(mark(x0)) s(active(x0)) zWadr(mark(x0), x1) zWadr(x0, mark(x1)) zWadr(active(x0), x1) zWadr(x0, active(x1)) prefix(mark(x0)) prefix(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (56) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 6 less nodes. ---------------------------------------- (57) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> MARK(X1) The TRS R consists of the following rules: active(app(nil, YS)) -> mark(YS) active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS))) active(from(X)) -> mark(cons(X, from(s(X)))) active(zWadr(nil, YS)) -> mark(nil) active(zWadr(XS, nil)) -> mark(nil) active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS))) active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L)))) mark(app(X1, X2)) -> active(app(mark(X1), mark(X2))) mark(nil) -> active(nil) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(zWadr(X1, X2)) -> active(zWadr(mark(X1), mark(X2))) mark(prefix(X)) -> active(prefix(mark(X))) app(mark(X1), X2) -> app(X1, X2) app(X1, mark(X2)) -> app(X1, X2) app(active(X1), X2) -> app(X1, X2) app(X1, active(X2)) -> app(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) zWadr(mark(X1), X2) -> zWadr(X1, X2) zWadr(X1, mark(X2)) -> zWadr(X1, X2) zWadr(active(X1), X2) -> zWadr(X1, X2) zWadr(X1, active(X2)) -> zWadr(X1, X2) prefix(mark(X)) -> prefix(X) prefix(active(X)) -> prefix(X) The set Q consists of the following terms: active(app(nil, x0)) active(app(cons(x0, x1), x2)) active(from(x0)) active(zWadr(nil, x0)) active(zWadr(x0, nil)) active(zWadr(cons(x0, x1), cons(x2, x3))) active(prefix(x0)) mark(app(x0, x1)) mark(nil) mark(cons(x0, x1)) mark(from(x0)) mark(s(x0)) mark(zWadr(x0, x1)) mark(prefix(x0)) app(mark(x0), x1) app(x0, mark(x1)) app(active(x0), x1) app(x0, active(x1)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) s(mark(x0)) s(active(x0)) zWadr(mark(x0), x1) zWadr(x0, mark(x1)) zWadr(active(x0), x1) zWadr(x0, active(x1)) prefix(mark(x0)) prefix(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (58) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (59) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> MARK(X1) R is empty. The set Q consists of the following terms: active(app(nil, x0)) active(app(cons(x0, x1), x2)) active(from(x0)) active(zWadr(nil, x0)) active(zWadr(x0, nil)) active(zWadr(cons(x0, x1), cons(x2, x3))) active(prefix(x0)) mark(app(x0, x1)) mark(nil) mark(cons(x0, x1)) mark(from(x0)) mark(s(x0)) mark(zWadr(x0, x1)) mark(prefix(x0)) app(mark(x0), x1) app(x0, mark(x1)) app(active(x0), x1) app(x0, active(x1)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) s(mark(x0)) s(active(x0)) zWadr(mark(x0), x1) zWadr(x0, mark(x1)) zWadr(active(x0), x1) zWadr(x0, active(x1)) prefix(mark(x0)) prefix(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (60) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. active(app(nil, x0)) active(app(cons(x0, x1), x2)) active(from(x0)) active(zWadr(nil, x0)) active(zWadr(x0, nil)) active(zWadr(cons(x0, x1), cons(x2, x3))) active(prefix(x0)) mark(app(x0, x1)) mark(nil) mark(cons(x0, x1)) mark(from(x0)) mark(s(x0)) mark(zWadr(x0, x1)) mark(prefix(x0)) app(mark(x0), x1) app(x0, mark(x1)) app(active(x0), x1) app(x0, active(x1)) from(mark(x0)) from(active(x0)) s(mark(x0)) s(active(x0)) zWadr(mark(x0), x1) zWadr(x0, mark(x1)) zWadr(active(x0), x1) zWadr(x0, active(x1)) prefix(mark(x0)) prefix(active(x0)) ---------------------------------------- (61) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> MARK(X1) R is empty. The set Q consists of the following terms: cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (62) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MARK(cons(X1, X2)) -> MARK(X1) The graph contains the following edges 1 > 1 ---------------------------------------- (63) YES