YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) QDP (5) TransformationProof [EQUIVALENT, 8 ms] (6) QDP (7) DependencyGraphProof [EQUIVALENT, 0 ms] (8) QDP (9) QDPOrderProof [EQUIVALENT, 37 ms] (10) QDP (11) DependencyGraphProof [EQUIVALENT, 0 ms] (12) QDP (13) UsableRulesProof [EQUIVALENT, 0 ms] (14) QDP (15) QReductionProof [EQUIVALENT, 0 ms] (16) QDP (17) QDPSizeChangeProof [EQUIVALENT, 0 ms] (18) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: a__f(a, b, X) -> a__f(mark(X), X, mark(X)) a__c -> a a__c -> b mark(f(X1, X2, X3)) -> a__f(mark(X1), X2, mark(X3)) mark(c) -> a__c mark(a) -> a mark(b) -> b a__f(X1, X2, X3) -> f(X1, X2, X3) a__c -> c The set Q consists of the following terms: a__c mark(f(x0, x1, x2)) mark(c) mark(a) mark(b) a__f(x0, x1, x2) ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: A__F(a, b, X) -> A__F(mark(X), X, mark(X)) A__F(a, b, X) -> MARK(X) MARK(f(X1, X2, X3)) -> A__F(mark(X1), X2, mark(X3)) MARK(f(X1, X2, X3)) -> MARK(X1) MARK(f(X1, X2, X3)) -> MARK(X3) MARK(c) -> A__C The TRS R consists of the following rules: a__f(a, b, X) -> a__f(mark(X), X, mark(X)) a__c -> a a__c -> b mark(f(X1, X2, X3)) -> a__f(mark(X1), X2, mark(X3)) mark(c) -> a__c mark(a) -> a mark(b) -> b a__f(X1, X2, X3) -> f(X1, X2, X3) a__c -> c The set Q consists of the following terms: a__c mark(f(x0, x1, x2)) mark(c) mark(a) mark(b) a__f(x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: A__F(a, b, X) -> MARK(X) MARK(f(X1, X2, X3)) -> A__F(mark(X1), X2, mark(X3)) A__F(a, b, X) -> A__F(mark(X), X, mark(X)) MARK(f(X1, X2, X3)) -> MARK(X1) MARK(f(X1, X2, X3)) -> MARK(X3) The TRS R consists of the following rules: a__f(a, b, X) -> a__f(mark(X), X, mark(X)) a__c -> a a__c -> b mark(f(X1, X2, X3)) -> a__f(mark(X1), X2, mark(X3)) mark(c) -> a__c mark(a) -> a mark(b) -> b a__f(X1, X2, X3) -> f(X1, X2, X3) a__c -> c The set Q consists of the following terms: a__c mark(f(x0, x1, x2)) mark(c) mark(a) mark(b) a__f(x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule A__F(a, b, X) -> A__F(mark(X), X, mark(X)) at position [0] we obtained the following new rules [LPAR04]: (A__F(a, b, f(x0, x1, x2)) -> A__F(a__f(mark(x0), x1, mark(x2)), f(x0, x1, x2), mark(f(x0, x1, x2))),A__F(a, b, f(x0, x1, x2)) -> A__F(a__f(mark(x0), x1, mark(x2)), f(x0, x1, x2), mark(f(x0, x1, x2)))) (A__F(a, b, c) -> A__F(a__c, c, mark(c)),A__F(a, b, c) -> A__F(a__c, c, mark(c))) (A__F(a, b, a) -> A__F(a, a, mark(a)),A__F(a, b, a) -> A__F(a, a, mark(a))) (A__F(a, b, b) -> A__F(b, b, mark(b)),A__F(a, b, b) -> A__F(b, b, mark(b))) ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: A__F(a, b, X) -> MARK(X) MARK(f(X1, X2, X3)) -> A__F(mark(X1), X2, mark(X3)) MARK(f(X1, X2, X3)) -> MARK(X1) MARK(f(X1, X2, X3)) -> MARK(X3) A__F(a, b, f(x0, x1, x2)) -> A__F(a__f(mark(x0), x1, mark(x2)), f(x0, x1, x2), mark(f(x0, x1, x2))) A__F(a, b, c) -> A__F(a__c, c, mark(c)) A__F(a, b, a) -> A__F(a, a, mark(a)) A__F(a, b, b) -> A__F(b, b, mark(b)) The TRS R consists of the following rules: a__f(a, b, X) -> a__f(mark(X), X, mark(X)) a__c -> a a__c -> b mark(f(X1, X2, X3)) -> a__f(mark(X1), X2, mark(X3)) mark(c) -> a__c mark(a) -> a mark(b) -> b a__f(X1, X2, X3) -> f(X1, X2, X3) a__c -> c The set Q consists of the following terms: a__c mark(f(x0, x1, x2)) mark(c) mark(a) mark(b) a__f(x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 4 less nodes. ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(f(X1, X2, X3)) -> A__F(mark(X1), X2, mark(X3)) A__F(a, b, X) -> MARK(X) MARK(f(X1, X2, X3)) -> MARK(X1) MARK(f(X1, X2, X3)) -> MARK(X3) The TRS R consists of the following rules: a__f(a, b, X) -> a__f(mark(X), X, mark(X)) a__c -> a a__c -> b mark(f(X1, X2, X3)) -> a__f(mark(X1), X2, mark(X3)) mark(c) -> a__c mark(a) -> a mark(b) -> b a__f(X1, X2, X3) -> f(X1, X2, X3) a__c -> c The set Q consists of the following terms: a__c mark(f(x0, x1, x2)) mark(c) mark(a) mark(b) a__f(x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. A__F(a, b, X) -> MARK(X) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(MARK(x_1)) = [[0A]] + [[4A]] * x_1 >>> <<< POL(f(x_1, x_2, x_3)) = [[-I]] + [[0A]] * x_1 + [[0A]] * x_2 + [[1A]] * x_3 >>> <<< POL(A__F(x_1, x_2, x_3)) = [[0A]] + [[4A]] * x_1 + [[-I]] * x_2 + [[5A]] * x_3 >>> <<< POL(mark(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(a) = [[5A]] >>> <<< POL(b) = [[0A]] >>> <<< POL(a__f(x_1, x_2, x_3)) = [[-I]] + [[0A]] * x_1 + [[0A]] * x_2 + [[1A]] * x_3 >>> <<< POL(c) = [[5A]] >>> <<< POL(a__c) = [[5A]] >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(f(X1, X2, X3)) -> a__f(mark(X1), X2, mark(X3)) mark(c) -> a__c mark(a) -> a mark(b) -> b a__f(X1, X2, X3) -> f(X1, X2, X3) a__f(a, b, X) -> a__f(mark(X), X, mark(X)) a__c -> a a__c -> b a__c -> c ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(f(X1, X2, X3)) -> A__F(mark(X1), X2, mark(X3)) MARK(f(X1, X2, X3)) -> MARK(X1) MARK(f(X1, X2, X3)) -> MARK(X3) The TRS R consists of the following rules: a__f(a, b, X) -> a__f(mark(X), X, mark(X)) a__c -> a a__c -> b mark(f(X1, X2, X3)) -> a__f(mark(X1), X2, mark(X3)) mark(c) -> a__c mark(a) -> a mark(b) -> b a__f(X1, X2, X3) -> f(X1, X2, X3) a__c -> c The set Q consists of the following terms: a__c mark(f(x0, x1, x2)) mark(c) mark(a) mark(b) a__f(x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(f(X1, X2, X3)) -> MARK(X3) MARK(f(X1, X2, X3)) -> MARK(X1) The TRS R consists of the following rules: a__f(a, b, X) -> a__f(mark(X), X, mark(X)) a__c -> a a__c -> b mark(f(X1, X2, X3)) -> a__f(mark(X1), X2, mark(X3)) mark(c) -> a__c mark(a) -> a mark(b) -> b a__f(X1, X2, X3) -> f(X1, X2, X3) a__c -> c The set Q consists of the following terms: a__c mark(f(x0, x1, x2)) mark(c) mark(a) mark(b) a__f(x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(f(X1, X2, X3)) -> MARK(X3) MARK(f(X1, X2, X3)) -> MARK(X1) R is empty. The set Q consists of the following terms: a__c mark(f(x0, x1, x2)) mark(c) mark(a) mark(b) a__f(x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. a__c mark(f(x0, x1, x2)) mark(c) mark(a) mark(b) a__f(x0, x1, x2) ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(f(X1, X2, X3)) -> MARK(X3) MARK(f(X1, X2, X3)) -> MARK(X1) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MARK(f(X1, X2, X3)) -> MARK(X3) The graph contains the following edges 1 > 1 *MARK(f(X1, X2, X3)) -> MARK(X1) The graph contains the following edges 1 > 1 ---------------------------------------- (18) YES