YES Problem 1: (VAR v_NonEmpty:S X:S Y:S) (RULES f(s(X:S)) -> f(X:S) g(cons(0,Y:S)) -> g(Y:S) g(cons(s(X:S),Y:S)) -> s(X:S) h(cons(X:S,Y:S)) -> h(g(cons(X:S,Y:S))) ) (STRATEGY INNERMOST) Problem 1: Dependency Pairs Processor: -> Pairs: F(s(X:S)) -> F(X:S) G(cons(0,Y:S)) -> G(Y:S) H(cons(X:S,Y:S)) -> G(cons(X:S,Y:S)) H(cons(X:S,Y:S)) -> H(g(cons(X:S,Y:S))) -> Rules: f(s(X:S)) -> f(X:S) g(cons(0,Y:S)) -> g(Y:S) g(cons(s(X:S),Y:S)) -> s(X:S) h(cons(X:S,Y:S)) -> h(g(cons(X:S,Y:S))) Problem 1: SCC Processor: -> Pairs: F(s(X:S)) -> F(X:S) G(cons(0,Y:S)) -> G(Y:S) H(cons(X:S,Y:S)) -> G(cons(X:S,Y:S)) H(cons(X:S,Y:S)) -> H(g(cons(X:S,Y:S))) -> Rules: f(s(X:S)) -> f(X:S) g(cons(0,Y:S)) -> g(Y:S) g(cons(s(X:S),Y:S)) -> s(X:S) h(cons(X:S,Y:S)) -> h(g(cons(X:S,Y:S))) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: G(cons(0,Y:S)) -> G(Y:S) ->->-> Rules: f(s(X:S)) -> f(X:S) g(cons(0,Y:S)) -> g(Y:S) g(cons(s(X:S),Y:S)) -> s(X:S) h(cons(X:S,Y:S)) -> h(g(cons(X:S,Y:S))) ->->Cycle: ->->-> Pairs: H(cons(X:S,Y:S)) -> H(g(cons(X:S,Y:S))) ->->-> Rules: f(s(X:S)) -> f(X:S) g(cons(0,Y:S)) -> g(Y:S) g(cons(s(X:S),Y:S)) -> s(X:S) h(cons(X:S,Y:S)) -> h(g(cons(X:S,Y:S))) ->->Cycle: ->->-> Pairs: F(s(X:S)) -> F(X:S) ->->-> Rules: f(s(X:S)) -> f(X:S) g(cons(0,Y:S)) -> g(Y:S) g(cons(s(X:S),Y:S)) -> s(X:S) h(cons(X:S,Y:S)) -> h(g(cons(X:S,Y:S))) The problem is decomposed in 3 subproblems. Problem 1.1: Subterm Processor: -> Pairs: G(cons(0,Y:S)) -> G(Y:S) -> Rules: f(s(X:S)) -> f(X:S) g(cons(0,Y:S)) -> g(Y:S) g(cons(s(X:S),Y:S)) -> s(X:S) h(cons(X:S,Y:S)) -> h(g(cons(X:S,Y:S))) ->Projection: pi(G) = 1 Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: f(s(X:S)) -> f(X:S) g(cons(0,Y:S)) -> g(Y:S) g(cons(s(X:S),Y:S)) -> s(X:S) h(cons(X:S,Y:S)) -> h(g(cons(X:S,Y:S))) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Reduction Pairs Processor: -> Pairs: H(cons(X:S,Y:S)) -> H(g(cons(X:S,Y:S))) -> Rules: f(s(X:S)) -> f(X:S) g(cons(0,Y:S)) -> g(Y:S) g(cons(s(X:S),Y:S)) -> s(X:S) h(cons(X:S,Y:S)) -> h(g(cons(X:S,Y:S))) -> Usable rules: g(cons(0,Y:S)) -> g(Y:S) g(cons(s(X:S),Y:S)) -> s(X:S) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [f](X) = 0 [g](X) = 0 [h](X) = 0 [0] = 0 [cons](X1,X2) = 2.X1 + 2 [fSNonEmpty] = 0 [s](X) = 0 [F](X) = 0 [G](X) = 0 [H](X) = 2.X Problem 1.2: SCC Processor: -> Pairs: Empty -> Rules: f(s(X:S)) -> f(X:S) g(cons(0,Y:S)) -> g(Y:S) g(cons(s(X:S),Y:S)) -> s(X:S) h(cons(X:S,Y:S)) -> h(g(cons(X:S,Y:S))) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.3: Subterm Processor: -> Pairs: F(s(X:S)) -> F(X:S) -> Rules: f(s(X:S)) -> f(X:S) g(cons(0,Y:S)) -> g(Y:S) g(cons(s(X:S),Y:S)) -> s(X:S) h(cons(X:S,Y:S)) -> h(g(cons(X:S,Y:S))) ->Projection: pi(F) = 1 Problem 1.3: SCC Processor: -> Pairs: Empty -> Rules: f(s(X:S)) -> f(X:S) g(cons(0,Y:S)) -> g(Y:S) g(cons(s(X:S),Y:S)) -> s(X:S) h(cons(X:S,Y:S)) -> h(g(cons(X:S,Y:S))) ->Strongly Connected Components: There is no strongly connected component The problem is finite.