YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) QReductionProof [EQUIVALENT, 0 ms] (9) QDP (10) QDPSizeChangeProof [EQUIVALENT, 0 ms] (11) YES (12) QDP (13) UsableRulesProof [EQUIVALENT, 0 ms] (14) QDP (15) QReductionProof [EQUIVALENT, 0 ms] (16) QDP (17) TransformationProof [EQUIVALENT, 0 ms] (18) QDP (19) TransformationProof [EQUIVALENT, 0 ms] (20) QDP (21) UsableRulesProof [EQUIVALENT, 0 ms] (22) QDP (23) QReductionProof [EQUIVALENT, 0 ms] (24) QDP (25) TransformationProof [EQUIVALENT, 0 ms] (26) QDP (27) TransformationProof [EQUIVALENT, 1 ms] (28) QDP (29) TransformationProof [EQUIVALENT, 0 ms] (30) QDP (31) UsableRulesProof [EQUIVALENT, 0 ms] (32) QDP (33) QReductionProof [EQUIVALENT, 0 ms] (34) QDP (35) QDPOrderProof [EQUIVALENT, 48 ms] (36) QDP (37) PisEmptyProof [EQUIVALENT, 0 ms] (38) YES (39) QDP (40) UsableRulesProof [EQUIVALENT, 0 ms] (41) QDP (42) QReductionProof [EQUIVALENT, 0 ms] (43) QDP (44) QDPOrderProof [EQUIVALENT, 0 ms] (45) QDP (46) QDPOrderProof [EQUIVALENT, 0 ms] (47) QDP (48) PisEmptyProof [EQUIVALENT, 0 ms] (49) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: quot(0, s(y), s(z)) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y)))) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z))) The set Q consists of the following terms: quot(0, s(x0), s(x1)) quot(s(x0), s(x1), x2) plus(s(x0), s(x1)) plus(s(x0), x0) plus(zero, x0) id(x0) if(true, x0, x1) if(false, x0, x1) not(x0) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) quot(x0, 0, s(x1)) ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: QUOT(s(x), s(y), z) -> QUOT(x, y, z) PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))) PLUS(s(x), s(y)) -> IF(gt(x, y), x, y) PLUS(s(x), s(y)) -> GT(x, y) PLUS(s(x), s(y)) -> IF(not(gt(x, y)), id(x), id(y)) PLUS(s(x), s(y)) -> NOT(gt(x, y)) PLUS(s(x), s(y)) -> ID(x) PLUS(s(x), s(y)) -> ID(y) PLUS(s(x), x) -> PLUS(if(gt(x, x), id(x), id(x)), s(x)) PLUS(s(x), x) -> IF(gt(x, x), id(x), id(x)) PLUS(s(x), x) -> GT(x, x) PLUS(s(x), x) -> ID(x) PLUS(id(x), s(y)) -> PLUS(x, if(gt(s(y), y), y, s(y))) PLUS(id(x), s(y)) -> IF(gt(s(y), y), y, s(y)) PLUS(id(x), s(y)) -> GT(s(y), y) NOT(x) -> IF(x, false, true) GT(s(x), s(y)) -> GT(x, y) QUOT(x, 0, s(z)) -> QUOT(x, plus(z, s(0)), s(z)) QUOT(x, 0, s(z)) -> PLUS(z, s(0)) The TRS R consists of the following rules: quot(0, s(y), s(z)) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y)))) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z))) The set Q consists of the following terms: quot(0, s(x0), s(x1)) quot(s(x0), s(x1), x2) plus(s(x0), s(x1)) plus(s(x0), x0) plus(zero, x0) id(x0) if(true, x0, x1) if(false, x0, x1) not(x0) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) quot(x0, 0, s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 14 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: GT(s(x), s(y)) -> GT(x, y) The TRS R consists of the following rules: quot(0, s(y), s(z)) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y)))) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z))) The set Q consists of the following terms: quot(0, s(x0), s(x1)) quot(s(x0), s(x1), x2) plus(s(x0), s(x1)) plus(s(x0), x0) plus(zero, x0) id(x0) if(true, x0, x1) if(false, x0, x1) not(x0) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) quot(x0, 0, s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: GT(s(x), s(y)) -> GT(x, y) R is empty. The set Q consists of the following terms: quot(0, s(x0), s(x1)) quot(s(x0), s(x1), x2) plus(s(x0), s(x1)) plus(s(x0), x0) plus(zero, x0) id(x0) if(true, x0, x1) if(false, x0, x1) not(x0) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) quot(x0, 0, s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. quot(0, s(x0), s(x1)) quot(s(x0), s(x1), x2) plus(s(x0), s(x1)) plus(s(x0), x0) plus(zero, x0) id(x0) if(true, x0, x1) if(false, x0, x1) not(x0) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) quot(x0, 0, s(x1)) ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: GT(s(x), s(y)) -> GT(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *GT(s(x), s(y)) -> GT(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (11) YES ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), x) -> PLUS(if(gt(x, x), id(x), id(x)), s(x)) PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))) The TRS R consists of the following rules: quot(0, s(y), s(z)) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y)))) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z))) The set Q consists of the following terms: quot(0, s(x0), s(x1)) quot(s(x0), s(x1), x2) plus(s(x0), s(x1)) plus(s(x0), x0) plus(zero, x0) id(x0) if(true, x0, x1) if(false, x0, x1) not(x0) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) quot(x0, 0, s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), x) -> PLUS(if(gt(x, x), id(x), id(x)), s(x)) PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))) The TRS R consists of the following rules: gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) id(x) -> x The set Q consists of the following terms: quot(0, s(x0), s(x1)) quot(s(x0), s(x1), x2) plus(s(x0), s(x1)) plus(s(x0), x0) plus(zero, x0) id(x0) if(true, x0, x1) if(false, x0, x1) not(x0) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) quot(x0, 0, s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. quot(0, s(x0), s(x1)) quot(s(x0), s(x1), x2) plus(s(x0), s(x1)) plus(s(x0), x0) plus(zero, x0) quot(x0, 0, s(x1)) ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), x) -> PLUS(if(gt(x, x), id(x), id(x)), s(x)) PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))) The TRS R consists of the following rules: gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) id(x) -> x The set Q consists of the following terms: id(x0) if(true, x0, x1) if(false, x0, x1) not(x0) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule PLUS(s(x), x) -> PLUS(if(gt(x, x), id(x), id(x)), s(x)) at position [0,1] we obtained the following new rules [LPAR04]: (PLUS(s(x), x) -> PLUS(if(gt(x, x), x, id(x)), s(x)),PLUS(s(x), x) -> PLUS(if(gt(x, x), x, id(x)), s(x))) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))) PLUS(s(x), x) -> PLUS(if(gt(x, x), x, id(x)), s(x)) The TRS R consists of the following rules: gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) id(x) -> x The set Q consists of the following terms: id(x0) if(true, x0, x1) if(false, x0, x1) not(x0) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))) at position [1,0] we obtained the following new rules [LPAR04]: (PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(if(gt(x, y), false, true), id(x), id(y))),PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(if(gt(x, y), false, true), id(x), id(y)))) ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), x) -> PLUS(if(gt(x, x), x, id(x)), s(x)) PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(if(gt(x, y), false, true), id(x), id(y))) The TRS R consists of the following rules: gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) id(x) -> x The set Q consists of the following terms: id(x0) if(true, x0, x1) if(false, x0, x1) not(x0) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), x) -> PLUS(if(gt(x, x), x, id(x)), s(x)) PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(if(gt(x, y), false, true), id(x), id(y))) The TRS R consists of the following rules: gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) if(true, x, y) -> x if(false, x, y) -> y id(x) -> x The set Q consists of the following terms: id(x0) if(true, x0, x1) if(false, x0, x1) not(x0) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. not(x0) ---------------------------------------- (24) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), x) -> PLUS(if(gt(x, x), x, id(x)), s(x)) PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(if(gt(x, y), false, true), id(x), id(y))) The TRS R consists of the following rules: gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) if(true, x, y) -> x if(false, x, y) -> y id(x) -> x The set Q consists of the following terms: id(x0) if(true, x0, x1) if(false, x0, x1) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (25) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule PLUS(s(x), x) -> PLUS(if(gt(x, x), x, id(x)), s(x)) at position [0,2] we obtained the following new rules [LPAR04]: (PLUS(s(x), x) -> PLUS(if(gt(x, x), x, x), s(x)),PLUS(s(x), x) -> PLUS(if(gt(x, x), x, x), s(x))) ---------------------------------------- (26) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(if(gt(x, y), false, true), id(x), id(y))) PLUS(s(x), x) -> PLUS(if(gt(x, x), x, x), s(x)) The TRS R consists of the following rules: gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) if(true, x, y) -> x if(false, x, y) -> y id(x) -> x The set Q consists of the following terms: id(x0) if(true, x0, x1) if(false, x0, x1) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (27) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(if(gt(x, y), false, true), id(x), id(y))) at position [1,1] we obtained the following new rules [LPAR04]: (PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(if(gt(x, y), false, true), x, id(y))),PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(if(gt(x, y), false, true), x, id(y)))) ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), x) -> PLUS(if(gt(x, x), x, x), s(x)) PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(if(gt(x, y), false, true), x, id(y))) The TRS R consists of the following rules: gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) if(true, x, y) -> x if(false, x, y) -> y id(x) -> x The set Q consists of the following terms: id(x0) if(true, x0, x1) if(false, x0, x1) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(if(gt(x, y), false, true), x, id(y))) at position [1,2] we obtained the following new rules [LPAR04]: (PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(if(gt(x, y), false, true), x, y)),PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(if(gt(x, y), false, true), x, y))) ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), x) -> PLUS(if(gt(x, x), x, x), s(x)) PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(if(gt(x, y), false, true), x, y)) The TRS R consists of the following rules: gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) if(true, x, y) -> x if(false, x, y) -> y id(x) -> x The set Q consists of the following terms: id(x0) if(true, x0, x1) if(false, x0, x1) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), x) -> PLUS(if(gt(x, x), x, x), s(x)) PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(if(gt(x, y), false, true), x, y)) The TRS R consists of the following rules: gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) if(true, x, y) -> x if(false, x, y) -> y The set Q consists of the following terms: id(x0) if(true, x0, x1) if(false, x0, x1) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. id(x0) ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), x) -> PLUS(if(gt(x, x), x, x), s(x)) PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(if(gt(x, y), false, true), x, y)) The TRS R consists of the following rules: gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) if(true, x, y) -> x if(false, x, y) -> y The set Q consists of the following terms: if(true, x0, x1) if(false, x0, x1) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. PLUS(s(x), x) -> PLUS(if(gt(x, x), x, x), s(x)) PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(if(gt(x, y), false, true), x, y)) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO,RATPOLO]: POL(PLUS(x_1, x_2)) = [1/2]x_1 + [1/4]x_2 POL(false) = 0 POL(gt(x_1, x_2)) = 0 POL(if(x_1, x_2, x_3)) = x_2 + x_3 POL(s(x_1)) = [1/4] + [4]x_1 POL(true) = 0 POL(zero) = 0 The value of delta used in the strict ordering is 1/16. The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: if(true, x, y) -> x if(false, x, y) -> y ---------------------------------------- (36) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) if(true, x, y) -> x if(false, x, y) -> y The set Q consists of the following terms: if(true, x0, x1) if(false, x0, x1) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (37) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (38) YES ---------------------------------------- (39) Obligation: Q DP problem: The TRS P consists of the following rules: QUOT(x, 0, s(z)) -> QUOT(x, plus(z, s(0)), s(z)) QUOT(s(x), s(y), z) -> QUOT(x, y, z) The TRS R consists of the following rules: quot(0, s(y), s(z)) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y)))) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z))) The set Q consists of the following terms: quot(0, s(x0), s(x1)) quot(s(x0), s(x1), x2) plus(s(x0), s(x1)) plus(s(x0), x0) plus(zero, x0) id(x0) if(true, x0, x1) if(false, x0, x1) not(x0) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) quot(x0, 0, s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (40) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (41) Obligation: Q DP problem: The TRS P consists of the following rules: QUOT(x, 0, s(z)) -> QUOT(x, plus(z, s(0)), s(z)) QUOT(s(x), s(y), z) -> QUOT(x, y, z) The TRS R consists of the following rules: plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y gt(s(x), zero) -> true not(x) -> if(x, false, true) The set Q consists of the following terms: quot(0, s(x0), s(x1)) quot(s(x0), s(x1), x2) plus(s(x0), s(x1)) plus(s(x0), x0) plus(zero, x0) id(x0) if(true, x0, x1) if(false, x0, x1) not(x0) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) quot(x0, 0, s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (42) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. quot(0, s(x0), s(x1)) quot(s(x0), s(x1), x2) quot(x0, 0, s(x1)) ---------------------------------------- (43) Obligation: Q DP problem: The TRS P consists of the following rules: QUOT(x, 0, s(z)) -> QUOT(x, plus(z, s(0)), s(z)) QUOT(s(x), s(y), z) -> QUOT(x, y, z) The TRS R consists of the following rules: plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y gt(s(x), zero) -> true not(x) -> if(x, false, true) The set Q consists of the following terms: plus(s(x0), s(x1)) plus(s(x0), x0) plus(zero, x0) id(x0) if(true, x0, x1) if(false, x0, x1) not(x0) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (44) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. QUOT(s(x), s(y), z) -> QUOT(x, y, z) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. QUOT(x1, x2, x3) = x1 s(x1) = s(x1) Knuth-Bendix order [KBO] with precedence:trivial and weight map: s_1=1 dummyConstant=1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: none ---------------------------------------- (45) Obligation: Q DP problem: The TRS P consists of the following rules: QUOT(x, 0, s(z)) -> QUOT(x, plus(z, s(0)), s(z)) The TRS R consists of the following rules: plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y gt(s(x), zero) -> true not(x) -> if(x, false, true) The set Q consists of the following terms: plus(s(x0), s(x1)) plus(s(x0), x0) plus(zero, x0) id(x0) if(true, x0, x1) if(false, x0, x1) not(x0) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (46) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. QUOT(x, 0, s(z)) -> QUOT(x, plus(z, s(0)), s(z)) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. QUOT(x1, x2, x3) = x2 0 = 0 plus(x1, x2) = x2 s(x1) = s Knuth-Bendix order [KBO] with precedence:trivial and weight map: s=1 0=2 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y ---------------------------------------- (47) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y gt(s(x), zero) -> true not(x) -> if(x, false, true) The set Q consists of the following terms: plus(s(x0), s(x1)) plus(s(x0), x0) plus(zero, x0) id(x0) if(true, x0, x1) if(false, x0, x1) not(x0) gt(s(x0), zero) gt(zero, x0) gt(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (48) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (49) YES