MAYBE proof of /export/starexec/sandbox2/benchmark/theBenchmark.pl # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty Left Termination of the query pattern p(a) w.r.t. the given Prolog program could not be shown: (0) Prolog (1) PrologToPiTRSProof [SOUND, 0 ms] (2) PiTRS (3) DependencyPairsProof [EQUIVALENT, 0 ms] (4) PiDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) PiDP (7) UsableRulesProof [EQUIVALENT, 0 ms] (8) PiDP (9) PiDPToQDPProof [SOUND, 0 ms] (10) QDP (11) PrologToPiTRSProof [SOUND, 0 ms] (12) PiTRS (13) DependencyPairsProof [EQUIVALENT, 0 ms] (14) PiDP (15) DependencyGraphProof [EQUIVALENT, 0 ms] (16) PiDP (17) UsableRulesProof [EQUIVALENT, 0 ms] (18) PiDP (19) PiDPToQDPProof [SOUND, 0 ms] (20) QDP (21) PrologToTRSTransformerProof [SOUND, 0 ms] (22) QTRS (23) QTRSRRRProof [EQUIVALENT, 43 ms] (24) QTRS (25) QTRSRRRProof [EQUIVALENT, 0 ms] (26) QTRS (27) QTRSRRRProof [EQUIVALENT, 11 ms] (28) QTRS (29) QTRSRRRProof [EQUIVALENT, 10 ms] (30) QTRS (31) QTRSRRRProof [EQUIVALENT, 0 ms] (32) QTRS (33) PrologToDTProblemTransformerProof [SOUND, 0 ms] (34) TRIPLES (35) TriplesToPiDPProof [SOUND, 0 ms] (36) PiDP (37) DependencyGraphProof [EQUIVALENT, 0 ms] (38) PiDP (39) PiDPToQDPProof [SOUND, 0 ms] (40) QDP (41) PrologToIRSwTTransformerProof [SOUND, 0 ms] (42) IRSwT (43) IRSwTSimpleDependencyGraphProof [EQUIVALENT, 0 ms] (44) IRSwT (45) IntTRSCompressionProof [EQUIVALENT, 17 ms] (46) IRSwT (47) IRSFormatTransformerProof [EQUIVALENT, 0 ms] (48) IRSwT (49) IRSwTTerminationDigraphProof [EQUIVALENT, 6 ms] (50) IRSwT (51) FilterProof [EQUIVALENT, 0 ms] (52) IntTRS (53) IntTRSPeriodicNontermProof [COMPLETE, 0 ms] (54) NO ---------------------------------------- (0) Obligation: Clauses: p(X) :- ','(l(X), q(X)). q(.(A, [])). r(1). l([]). l(.(H, T)) :- ','(r(H), l(T)). Query: p(a) ---------------------------------------- (1) PrologToPiTRSProof (SOUND) We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes: p_in_1: (f) l_in_1: (f) Transforming Prolog into the following Term Rewriting System: Pi-finite rewrite system: The TRS R consists of the following rules: p_in_a(X) -> U1_a(X, l_in_a(X)) l_in_a([]) -> l_out_a([]) l_in_a(.(H, T)) -> U3_a(H, T, r_in_a(H)) r_in_a(1) -> r_out_a(1) U3_a(H, T, r_out_a(H)) -> U4_a(H, T, l_in_a(T)) U4_a(H, T, l_out_a(T)) -> l_out_a(.(H, T)) U1_a(X, l_out_a(X)) -> U2_a(X, q_in_g(X)) q_in_g(.(A, [])) -> q_out_g(.(A, [])) U2_a(X, q_out_g(X)) -> p_out_a(X) The argument filtering Pi contains the following mapping: p_in_a(x1) = p_in_a U1_a(x1, x2) = U1_a(x2) l_in_a(x1) = l_in_a l_out_a(x1) = l_out_a(x1) U3_a(x1, x2, x3) = U3_a(x3) r_in_a(x1) = r_in_a r_out_a(x1) = r_out_a(x1) U4_a(x1, x2, x3) = U4_a(x1, x3) U2_a(x1, x2) = U2_a(x1, x2) q_in_g(x1) = q_in_g(x1) .(x1, x2) = .(x1, x2) [] = [] q_out_g(x1) = q_out_g p_out_a(x1) = p_out_a(x1) Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog ---------------------------------------- (2) Obligation: Pi-finite rewrite system: The TRS R consists of the following rules: p_in_a(X) -> U1_a(X, l_in_a(X)) l_in_a([]) -> l_out_a([]) l_in_a(.(H, T)) -> U3_a(H, T, r_in_a(H)) r_in_a(1) -> r_out_a(1) U3_a(H, T, r_out_a(H)) -> U4_a(H, T, l_in_a(T)) U4_a(H, T, l_out_a(T)) -> l_out_a(.(H, T)) U1_a(X, l_out_a(X)) -> U2_a(X, q_in_g(X)) q_in_g(.(A, [])) -> q_out_g(.(A, [])) U2_a(X, q_out_g(X)) -> p_out_a(X) The argument filtering Pi contains the following mapping: p_in_a(x1) = p_in_a U1_a(x1, x2) = U1_a(x2) l_in_a(x1) = l_in_a l_out_a(x1) = l_out_a(x1) U3_a(x1, x2, x3) = U3_a(x3) r_in_a(x1) = r_in_a r_out_a(x1) = r_out_a(x1) U4_a(x1, x2, x3) = U4_a(x1, x3) U2_a(x1, x2) = U2_a(x1, x2) q_in_g(x1) = q_in_g(x1) .(x1, x2) = .(x1, x2) [] = [] q_out_g(x1) = q_out_g p_out_a(x1) = p_out_a(x1) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem: Pi DP problem: The TRS P consists of the following rules: P_IN_A(X) -> U1_A(X, l_in_a(X)) P_IN_A(X) -> L_IN_A(X) L_IN_A(.(H, T)) -> U3_A(H, T, r_in_a(H)) L_IN_A(.(H, T)) -> R_IN_A(H) U3_A(H, T, r_out_a(H)) -> U4_A(H, T, l_in_a(T)) U3_A(H, T, r_out_a(H)) -> L_IN_A(T) U1_A(X, l_out_a(X)) -> U2_A(X, q_in_g(X)) U1_A(X, l_out_a(X)) -> Q_IN_G(X) The TRS R consists of the following rules: p_in_a(X) -> U1_a(X, l_in_a(X)) l_in_a([]) -> l_out_a([]) l_in_a(.(H, T)) -> U3_a(H, T, r_in_a(H)) r_in_a(1) -> r_out_a(1) U3_a(H, T, r_out_a(H)) -> U4_a(H, T, l_in_a(T)) U4_a(H, T, l_out_a(T)) -> l_out_a(.(H, T)) U1_a(X, l_out_a(X)) -> U2_a(X, q_in_g(X)) q_in_g(.(A, [])) -> q_out_g(.(A, [])) U2_a(X, q_out_g(X)) -> p_out_a(X) The argument filtering Pi contains the following mapping: p_in_a(x1) = p_in_a U1_a(x1, x2) = U1_a(x2) l_in_a(x1) = l_in_a l_out_a(x1) = l_out_a(x1) U3_a(x1, x2, x3) = U3_a(x3) r_in_a(x1) = r_in_a r_out_a(x1) = r_out_a(x1) U4_a(x1, x2, x3) = U4_a(x1, x3) U2_a(x1, x2) = U2_a(x1, x2) q_in_g(x1) = q_in_g(x1) .(x1, x2) = .(x1, x2) [] = [] q_out_g(x1) = q_out_g p_out_a(x1) = p_out_a(x1) P_IN_A(x1) = P_IN_A U1_A(x1, x2) = U1_A(x2) L_IN_A(x1) = L_IN_A U3_A(x1, x2, x3) = U3_A(x3) R_IN_A(x1) = R_IN_A U4_A(x1, x2, x3) = U4_A(x1, x3) U2_A(x1, x2) = U2_A(x1, x2) Q_IN_G(x1) = Q_IN_G(x1) We have to consider all (P,R,Pi)-chains ---------------------------------------- (4) Obligation: Pi DP problem: The TRS P consists of the following rules: P_IN_A(X) -> U1_A(X, l_in_a(X)) P_IN_A(X) -> L_IN_A(X) L_IN_A(.(H, T)) -> U3_A(H, T, r_in_a(H)) L_IN_A(.(H, T)) -> R_IN_A(H) U3_A(H, T, r_out_a(H)) -> U4_A(H, T, l_in_a(T)) U3_A(H, T, r_out_a(H)) -> L_IN_A(T) U1_A(X, l_out_a(X)) -> U2_A(X, q_in_g(X)) U1_A(X, l_out_a(X)) -> Q_IN_G(X) The TRS R consists of the following rules: p_in_a(X) -> U1_a(X, l_in_a(X)) l_in_a([]) -> l_out_a([]) l_in_a(.(H, T)) -> U3_a(H, T, r_in_a(H)) r_in_a(1) -> r_out_a(1) U3_a(H, T, r_out_a(H)) -> U4_a(H, T, l_in_a(T)) U4_a(H, T, l_out_a(T)) -> l_out_a(.(H, T)) U1_a(X, l_out_a(X)) -> U2_a(X, q_in_g(X)) q_in_g(.(A, [])) -> q_out_g(.(A, [])) U2_a(X, q_out_g(X)) -> p_out_a(X) The argument filtering Pi contains the following mapping: p_in_a(x1) = p_in_a U1_a(x1, x2) = U1_a(x2) l_in_a(x1) = l_in_a l_out_a(x1) = l_out_a(x1) U3_a(x1, x2, x3) = U3_a(x3) r_in_a(x1) = r_in_a r_out_a(x1) = r_out_a(x1) U4_a(x1, x2, x3) = U4_a(x1, x3) U2_a(x1, x2) = U2_a(x1, x2) q_in_g(x1) = q_in_g(x1) .(x1, x2) = .(x1, x2) [] = [] q_out_g(x1) = q_out_g p_out_a(x1) = p_out_a(x1) P_IN_A(x1) = P_IN_A U1_A(x1, x2) = U1_A(x2) L_IN_A(x1) = L_IN_A U3_A(x1, x2, x3) = U3_A(x3) R_IN_A(x1) = R_IN_A U4_A(x1, x2, x3) = U4_A(x1, x3) U2_A(x1, x2) = U2_A(x1, x2) Q_IN_G(x1) = Q_IN_G(x1) We have to consider all (P,R,Pi)-chains ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 6 less nodes. ---------------------------------------- (6) Obligation: Pi DP problem: The TRS P consists of the following rules: U3_A(H, T, r_out_a(H)) -> L_IN_A(T) L_IN_A(.(H, T)) -> U3_A(H, T, r_in_a(H)) The TRS R consists of the following rules: p_in_a(X) -> U1_a(X, l_in_a(X)) l_in_a([]) -> l_out_a([]) l_in_a(.(H, T)) -> U3_a(H, T, r_in_a(H)) r_in_a(1) -> r_out_a(1) U3_a(H, T, r_out_a(H)) -> U4_a(H, T, l_in_a(T)) U4_a(H, T, l_out_a(T)) -> l_out_a(.(H, T)) U1_a(X, l_out_a(X)) -> U2_a(X, q_in_g(X)) q_in_g(.(A, [])) -> q_out_g(.(A, [])) U2_a(X, q_out_g(X)) -> p_out_a(X) The argument filtering Pi contains the following mapping: p_in_a(x1) = p_in_a U1_a(x1, x2) = U1_a(x2) l_in_a(x1) = l_in_a l_out_a(x1) = l_out_a(x1) U3_a(x1, x2, x3) = U3_a(x3) r_in_a(x1) = r_in_a r_out_a(x1) = r_out_a(x1) U4_a(x1, x2, x3) = U4_a(x1, x3) U2_a(x1, x2) = U2_a(x1, x2) q_in_g(x1) = q_in_g(x1) .(x1, x2) = .(x1, x2) [] = [] q_out_g(x1) = q_out_g p_out_a(x1) = p_out_a(x1) L_IN_A(x1) = L_IN_A U3_A(x1, x2, x3) = U3_A(x3) We have to consider all (P,R,Pi)-chains ---------------------------------------- (7) UsableRulesProof (EQUIVALENT) For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. ---------------------------------------- (8) Obligation: Pi DP problem: The TRS P consists of the following rules: U3_A(H, T, r_out_a(H)) -> L_IN_A(T) L_IN_A(.(H, T)) -> U3_A(H, T, r_in_a(H)) The TRS R consists of the following rules: r_in_a(1) -> r_out_a(1) The argument filtering Pi contains the following mapping: r_in_a(x1) = r_in_a r_out_a(x1) = r_out_a(x1) .(x1, x2) = .(x1, x2) L_IN_A(x1) = L_IN_A U3_A(x1, x2, x3) = U3_A(x3) We have to consider all (P,R,Pi)-chains ---------------------------------------- (9) PiDPToQDPProof (SOUND) Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: U3_A(r_out_a(H)) -> L_IN_A L_IN_A -> U3_A(r_in_a) The TRS R consists of the following rules: r_in_a -> r_out_a(1) The set Q consists of the following terms: r_in_a We have to consider all (P,Q,R)-chains. ---------------------------------------- (11) PrologToPiTRSProof (SOUND) We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes: p_in_1: (f) l_in_1: (f) Transforming Prolog into the following Term Rewriting System: Pi-finite rewrite system: The TRS R consists of the following rules: p_in_a(X) -> U1_a(X, l_in_a(X)) l_in_a([]) -> l_out_a([]) l_in_a(.(H, T)) -> U3_a(H, T, r_in_a(H)) r_in_a(1) -> r_out_a(1) U3_a(H, T, r_out_a(H)) -> U4_a(H, T, l_in_a(T)) U4_a(H, T, l_out_a(T)) -> l_out_a(.(H, T)) U1_a(X, l_out_a(X)) -> U2_a(X, q_in_g(X)) q_in_g(.(A, [])) -> q_out_g(.(A, [])) U2_a(X, q_out_g(X)) -> p_out_a(X) The argument filtering Pi contains the following mapping: p_in_a(x1) = p_in_a U1_a(x1, x2) = U1_a(x2) l_in_a(x1) = l_in_a l_out_a(x1) = l_out_a(x1) U3_a(x1, x2, x3) = U3_a(x3) r_in_a(x1) = r_in_a r_out_a(x1) = r_out_a(x1) U4_a(x1, x2, x3) = U4_a(x1, x3) U2_a(x1, x2) = U2_a(x1, x2) q_in_g(x1) = q_in_g(x1) .(x1, x2) = .(x1, x2) [] = [] q_out_g(x1) = q_out_g(x1) p_out_a(x1) = p_out_a(x1) Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog ---------------------------------------- (12) Obligation: Pi-finite rewrite system: The TRS R consists of the following rules: p_in_a(X) -> U1_a(X, l_in_a(X)) l_in_a([]) -> l_out_a([]) l_in_a(.(H, T)) -> U3_a(H, T, r_in_a(H)) r_in_a(1) -> r_out_a(1) U3_a(H, T, r_out_a(H)) -> U4_a(H, T, l_in_a(T)) U4_a(H, T, l_out_a(T)) -> l_out_a(.(H, T)) U1_a(X, l_out_a(X)) -> U2_a(X, q_in_g(X)) q_in_g(.(A, [])) -> q_out_g(.(A, [])) U2_a(X, q_out_g(X)) -> p_out_a(X) The argument filtering Pi contains the following mapping: p_in_a(x1) = p_in_a U1_a(x1, x2) = U1_a(x2) l_in_a(x1) = l_in_a l_out_a(x1) = l_out_a(x1) U3_a(x1, x2, x3) = U3_a(x3) r_in_a(x1) = r_in_a r_out_a(x1) = r_out_a(x1) U4_a(x1, x2, x3) = U4_a(x1, x3) U2_a(x1, x2) = U2_a(x1, x2) q_in_g(x1) = q_in_g(x1) .(x1, x2) = .(x1, x2) [] = [] q_out_g(x1) = q_out_g(x1) p_out_a(x1) = p_out_a(x1) ---------------------------------------- (13) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem: Pi DP problem: The TRS P consists of the following rules: P_IN_A(X) -> U1_A(X, l_in_a(X)) P_IN_A(X) -> L_IN_A(X) L_IN_A(.(H, T)) -> U3_A(H, T, r_in_a(H)) L_IN_A(.(H, T)) -> R_IN_A(H) U3_A(H, T, r_out_a(H)) -> U4_A(H, T, l_in_a(T)) U3_A(H, T, r_out_a(H)) -> L_IN_A(T) U1_A(X, l_out_a(X)) -> U2_A(X, q_in_g(X)) U1_A(X, l_out_a(X)) -> Q_IN_G(X) The TRS R consists of the following rules: p_in_a(X) -> U1_a(X, l_in_a(X)) l_in_a([]) -> l_out_a([]) l_in_a(.(H, T)) -> U3_a(H, T, r_in_a(H)) r_in_a(1) -> r_out_a(1) U3_a(H, T, r_out_a(H)) -> U4_a(H, T, l_in_a(T)) U4_a(H, T, l_out_a(T)) -> l_out_a(.(H, T)) U1_a(X, l_out_a(X)) -> U2_a(X, q_in_g(X)) q_in_g(.(A, [])) -> q_out_g(.(A, [])) U2_a(X, q_out_g(X)) -> p_out_a(X) The argument filtering Pi contains the following mapping: p_in_a(x1) = p_in_a U1_a(x1, x2) = U1_a(x2) l_in_a(x1) = l_in_a l_out_a(x1) = l_out_a(x1) U3_a(x1, x2, x3) = U3_a(x3) r_in_a(x1) = r_in_a r_out_a(x1) = r_out_a(x1) U4_a(x1, x2, x3) = U4_a(x1, x3) U2_a(x1, x2) = U2_a(x1, x2) q_in_g(x1) = q_in_g(x1) .(x1, x2) = .(x1, x2) [] = [] q_out_g(x1) = q_out_g(x1) p_out_a(x1) = p_out_a(x1) P_IN_A(x1) = P_IN_A U1_A(x1, x2) = U1_A(x2) L_IN_A(x1) = L_IN_A U3_A(x1, x2, x3) = U3_A(x3) R_IN_A(x1) = R_IN_A U4_A(x1, x2, x3) = U4_A(x1, x3) U2_A(x1, x2) = U2_A(x1, x2) Q_IN_G(x1) = Q_IN_G(x1) We have to consider all (P,R,Pi)-chains ---------------------------------------- (14) Obligation: Pi DP problem: The TRS P consists of the following rules: P_IN_A(X) -> U1_A(X, l_in_a(X)) P_IN_A(X) -> L_IN_A(X) L_IN_A(.(H, T)) -> U3_A(H, T, r_in_a(H)) L_IN_A(.(H, T)) -> R_IN_A(H) U3_A(H, T, r_out_a(H)) -> U4_A(H, T, l_in_a(T)) U3_A(H, T, r_out_a(H)) -> L_IN_A(T) U1_A(X, l_out_a(X)) -> U2_A(X, q_in_g(X)) U1_A(X, l_out_a(X)) -> Q_IN_G(X) The TRS R consists of the following rules: p_in_a(X) -> U1_a(X, l_in_a(X)) l_in_a([]) -> l_out_a([]) l_in_a(.(H, T)) -> U3_a(H, T, r_in_a(H)) r_in_a(1) -> r_out_a(1) U3_a(H, T, r_out_a(H)) -> U4_a(H, T, l_in_a(T)) U4_a(H, T, l_out_a(T)) -> l_out_a(.(H, T)) U1_a(X, l_out_a(X)) -> U2_a(X, q_in_g(X)) q_in_g(.(A, [])) -> q_out_g(.(A, [])) U2_a(X, q_out_g(X)) -> p_out_a(X) The argument filtering Pi contains the following mapping: p_in_a(x1) = p_in_a U1_a(x1, x2) = U1_a(x2) l_in_a(x1) = l_in_a l_out_a(x1) = l_out_a(x1) U3_a(x1, x2, x3) = U3_a(x3) r_in_a(x1) = r_in_a r_out_a(x1) = r_out_a(x1) U4_a(x1, x2, x3) = U4_a(x1, x3) U2_a(x1, x2) = U2_a(x1, x2) q_in_g(x1) = q_in_g(x1) .(x1, x2) = .(x1, x2) [] = [] q_out_g(x1) = q_out_g(x1) p_out_a(x1) = p_out_a(x1) P_IN_A(x1) = P_IN_A U1_A(x1, x2) = U1_A(x2) L_IN_A(x1) = L_IN_A U3_A(x1, x2, x3) = U3_A(x3) R_IN_A(x1) = R_IN_A U4_A(x1, x2, x3) = U4_A(x1, x3) U2_A(x1, x2) = U2_A(x1, x2) Q_IN_G(x1) = Q_IN_G(x1) We have to consider all (P,R,Pi)-chains ---------------------------------------- (15) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 6 less nodes. ---------------------------------------- (16) Obligation: Pi DP problem: The TRS P consists of the following rules: U3_A(H, T, r_out_a(H)) -> L_IN_A(T) L_IN_A(.(H, T)) -> U3_A(H, T, r_in_a(H)) The TRS R consists of the following rules: p_in_a(X) -> U1_a(X, l_in_a(X)) l_in_a([]) -> l_out_a([]) l_in_a(.(H, T)) -> U3_a(H, T, r_in_a(H)) r_in_a(1) -> r_out_a(1) U3_a(H, T, r_out_a(H)) -> U4_a(H, T, l_in_a(T)) U4_a(H, T, l_out_a(T)) -> l_out_a(.(H, T)) U1_a(X, l_out_a(X)) -> U2_a(X, q_in_g(X)) q_in_g(.(A, [])) -> q_out_g(.(A, [])) U2_a(X, q_out_g(X)) -> p_out_a(X) The argument filtering Pi contains the following mapping: p_in_a(x1) = p_in_a U1_a(x1, x2) = U1_a(x2) l_in_a(x1) = l_in_a l_out_a(x1) = l_out_a(x1) U3_a(x1, x2, x3) = U3_a(x3) r_in_a(x1) = r_in_a r_out_a(x1) = r_out_a(x1) U4_a(x1, x2, x3) = U4_a(x1, x3) U2_a(x1, x2) = U2_a(x1, x2) q_in_g(x1) = q_in_g(x1) .(x1, x2) = .(x1, x2) [] = [] q_out_g(x1) = q_out_g(x1) p_out_a(x1) = p_out_a(x1) L_IN_A(x1) = L_IN_A U3_A(x1, x2, x3) = U3_A(x3) We have to consider all (P,R,Pi)-chains ---------------------------------------- (17) UsableRulesProof (EQUIVALENT) For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. ---------------------------------------- (18) Obligation: Pi DP problem: The TRS P consists of the following rules: U3_A(H, T, r_out_a(H)) -> L_IN_A(T) L_IN_A(.(H, T)) -> U3_A(H, T, r_in_a(H)) The TRS R consists of the following rules: r_in_a(1) -> r_out_a(1) The argument filtering Pi contains the following mapping: r_in_a(x1) = r_in_a r_out_a(x1) = r_out_a(x1) .(x1, x2) = .(x1, x2) L_IN_A(x1) = L_IN_A U3_A(x1, x2, x3) = U3_A(x3) We have to consider all (P,R,Pi)-chains ---------------------------------------- (19) PiDPToQDPProof (SOUND) Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: U3_A(r_out_a(H)) -> L_IN_A L_IN_A -> U3_A(r_in_a) The TRS R consists of the following rules: r_in_a -> r_out_a(1) The set Q consists of the following terms: r_in_a We have to consider all (P,Q,R)-chains. ---------------------------------------- (21) PrologToTRSTransformerProof (SOUND) Transformed Prolog program to TRS. { "root": 5, "program": { "directives": [], "clauses": [ [ "(p X)", "(',' (l X) (q X))" ], [ "(q (. A ([])))", null ], [ "(r (1))", null ], [ "(l ([]))", null ], [ "(l (. H T))", "(',' (r H) (l T))" ] ] }, "graph": { "nodes": { "58": { "goal": [{ "clause": -1, "scope": -1, "term": "(',' (l T6) (q T6))" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "59": { "goal": [{ "clause": -1, "scope": -1, "term": "(l T6)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "160": { "goal": [{ "clause": 1, "scope": 4, "term": "(q T7)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T7"], "free": [], "exprvars": [] } }, "type": "Nodes", "150": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "161": { "goal": [{ "clause": -1, "scope": -1, "term": "(true)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "151": { "goal": [{ "clause": 2, "scope": 3, "term": "(',' (r T14) (l T15))" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "162": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "152": { "goal": [{ "clause": -1, "scope": -1, "term": "(l T16)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "163": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "153": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "5": { "goal": [{ "clause": -1, "scope": -1, "term": "(p T1)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "126": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "149": { "goal": [{ "clause": -1, "scope": -1, "term": "(',' (r T14) (l T15))" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "7": { "goal": [{ "clause": 0, "scope": 1, "term": "(p T1)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "90": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "60": { "goal": [{ "clause": -1, "scope": -1, "term": "(q T7)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T7"], "free": [], "exprvars": [] } }, "82": { "goal": [{ "clause": -1, "scope": -1, "term": "(true)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "64": { "goal": [ { "clause": 3, "scope": 2, "term": "(l T6)" }, { "clause": 4, "scope": 2, "term": "(l T6)" } ], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "75": { "goal": [{ "clause": 3, "scope": 2, "term": "(l T6)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "76": { "goal": [{ "clause": 4, "scope": 2, "term": "(l T6)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } } }, "edges": [ { "from": 5, "to": 7, "label": "CASE" }, { "from": 7, "to": 58, "label": "ONLY EVAL with clause\np(X3) :- ','(l(X3), q(X3)).\nand substitutionT1 -> T6,\nX3 -> T6,\nT5 -> T6" }, { "from": 58, "to": 59, "label": "SPLIT 1" }, { "from": 58, "to": 60, "label": "SPLIT 2\nnew knowledge:\nT7 is ground\nreplacements:T6 -> T7" }, { "from": 59, "to": 64, "label": "CASE" }, { "from": 60, "to": 160, "label": "CASE" }, { "from": 64, "to": 75, "label": "PARALLEL" }, { "from": 64, "to": 76, "label": "PARALLEL" }, { "from": 75, "to": 82, "label": "EVAL with clause\nl([]).\nand substitutionT6 -> []" }, { "from": 75, "to": 90, "label": "EVAL-BACKTRACK" }, { "from": 76, "to": 149, "label": "EVAL with clause\nl(.(X8, X9)) :- ','(r(X8), l(X9)).\nand substitutionX8 -> T14,\nX9 -> T15,\nT6 -> .(T14, T15),\nT12 -> T14,\nT13 -> T15" }, { "from": 76, "to": 150, "label": "EVAL-BACKTRACK" }, { "from": 82, "to": 126, "label": "SUCCESS" }, { "from": 149, "to": 151, "label": "CASE" }, { "from": 151, "to": 152, "label": "EVAL with clause\nr(1).\nand substitutionT14 -> 1,\nT15 -> T16" }, { "from": 151, "to": 153, "label": "EVAL-BACKTRACK" }, { "from": 152, "to": 59, "label": "INSTANCE with matching:\nT6 -> T16" }, { "from": 160, "to": 161, "label": "EVAL with clause\nq(.(X12, [])).\nand substitutionX12 -> T19,\nT7 -> .(T19, [])" }, { "from": 160, "to": 162, "label": "EVAL-BACKTRACK" }, { "from": 161, "to": 163, "label": "SUCCESS" } ], "type": "Graph" } } ---------------------------------------- (22) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f5_in -> U1(f58_in) U1(f58_out1(T6)) -> f5_out1(T6) f59_in -> f59_out1([]) f59_in -> U2(f59_in) U2(f59_out1(T16)) -> f59_out1(.(1, T16)) f60_in(.(T19, [])) -> f60_out1 f58_in -> U3(f59_in) U3(f59_out1(T7)) -> U4(f60_in(T7), T7) U4(f60_out1, T7) -> f58_out1(T7) Q is empty. ---------------------------------------- (23) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(.(x_1, x_2)) = x_1 + 2*x_2 POL(1) = 0 POL(U1(x_1)) = 2*x_1 POL(U2(x_1)) = 2*x_1 POL(U3(x_1)) = 2*x_1 POL(U4(x_1, x_2)) = x_1 + x_2 POL([]) = 0 POL(f58_in) = 0 POL(f58_out1(x_1)) = x_1 POL(f59_in) = 0 POL(f59_out1(x_1)) = x_1 POL(f5_in) = 1 POL(f5_out1(x_1)) = 2*x_1 POL(f60_in(x_1)) = x_1 POL(f60_out1) = 0 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: f5_in -> U1(f58_in) ---------------------------------------- (24) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: U1(f58_out1(T6)) -> f5_out1(T6) f59_in -> f59_out1([]) f59_in -> U2(f59_in) U2(f59_out1(T16)) -> f59_out1(.(1, T16)) f60_in(.(T19, [])) -> f60_out1 f58_in -> U3(f59_in) U3(f59_out1(T7)) -> U4(f60_in(T7), T7) U4(f60_out1, T7) -> f58_out1(T7) Q is empty. ---------------------------------------- (25) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(.(x_1, x_2)) = 2*x_1 + x_2 POL(1) = 0 POL(U1(x_1)) = 2*x_1 POL(U2(x_1)) = x_1 POL(U3(x_1)) = 2*x_1 POL(U4(x_1, x_2)) = x_1 + 2*x_2 POL([]) = 0 POL(f58_in) = 2 POL(f58_out1(x_1)) = x_1 POL(f59_in) = 0 POL(f59_out1(x_1)) = 2*x_1 POL(f5_out1(x_1)) = 2*x_1 POL(f60_in(x_1)) = x_1 POL(f60_out1) = 0 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: f58_in -> U3(f59_in) ---------------------------------------- (26) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: U1(f58_out1(T6)) -> f5_out1(T6) f59_in -> f59_out1([]) f59_in -> U2(f59_in) U2(f59_out1(T16)) -> f59_out1(.(1, T16)) f60_in(.(T19, [])) -> f60_out1 U3(f59_out1(T7)) -> U4(f60_in(T7), T7) U4(f60_out1, T7) -> f58_out1(T7) Q is empty. ---------------------------------------- (27) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(.(x_1, x_2)) = 2*x_1 + x_2 POL(1) = 0 POL(U1(x_1)) = 2*x_1 POL(U2(x_1)) = x_1 POL(U3(x_1)) = 1 + 2*x_1 POL(U4(x_1, x_2)) = 2 + 2*x_1 + x_2 POL([]) = 0 POL(f58_out1(x_1)) = 1 + x_1 POL(f59_in) = 2 POL(f59_out1(x_1)) = 2 + 2*x_1 POL(f5_out1(x_1)) = 2 + 2*x_1 POL(f60_in(x_1)) = x_1 POL(f60_out1) = 0 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: U3(f59_out1(T7)) -> U4(f60_in(T7), T7) U4(f60_out1, T7) -> f58_out1(T7) ---------------------------------------- (28) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: U1(f58_out1(T6)) -> f5_out1(T6) f59_in -> f59_out1([]) f59_in -> U2(f59_in) U2(f59_out1(T16)) -> f59_out1(.(1, T16)) f60_in(.(T19, [])) -> f60_out1 Q is empty. ---------------------------------------- (29) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(.(x_1, x_2)) = 2*x_1 + x_2 POL(1) = 0 POL(U1(x_1)) = 2 + x_1 POL(U2(x_1)) = 2*x_1 POL([]) = 0 POL(f58_out1(x_1)) = 2 + 2*x_1 POL(f59_in) = 0 POL(f59_out1(x_1)) = x_1 POL(f5_out1(x_1)) = 2*x_1 POL(f60_in(x_1)) = 1 + x_1 POL(f60_out1) = 1 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: U1(f58_out1(T6)) -> f5_out1(T6) ---------------------------------------- (30) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f59_in -> f59_out1([]) f59_in -> U2(f59_in) U2(f59_out1(T16)) -> f59_out1(.(1, T16)) f60_in(.(T19, [])) -> f60_out1 Q is empty. ---------------------------------------- (31) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(.(x_1, x_2)) = 2*x_1 + x_2 POL(1) = 0 POL(U2(x_1)) = 2*x_1 POL([]) = 0 POL(f59_in) = 0 POL(f59_out1(x_1)) = 2*x_1 POL(f60_in(x_1)) = 1 + 2*x_1 POL(f60_out1) = 0 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: f60_in(.(T19, [])) -> f60_out1 ---------------------------------------- (32) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f59_in -> f59_out1([]) f59_in -> U2(f59_in) U2(f59_out1(T16)) -> f59_out1(.(1, T16)) Q is empty. ---------------------------------------- (33) PrologToDTProblemTransformerProof (SOUND) Built DT problem from termination graph DT10. { "root": 4, "program": { "directives": [], "clauses": [ [ "(p X)", "(',' (l X) (q X))" ], [ "(q (. A ([])))", null ], [ "(r (1))", null ], [ "(l ([]))", null ], [ "(l (. H T))", "(',' (r H) (l T))" ] ] }, "graph": { "nodes": { "170": { "goal": [{ "clause": 1, "scope": 3, "term": "(q ([]))" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "171": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "type": "Nodes", "172": { "goal": [{ "clause": -1, "scope": -1, "term": "(',' (',' (r T11) (l T12)) (q (. T11 T12)))" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "194": { "goal": [{ "clause": -1, "scope": -1, "term": "(true)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "173": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "195": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "174": { "goal": [{ "clause": 2, "scope": 4, "term": "(',' (',' (r T11) (l T12)) (q (. T11 T12)))" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "196": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "175": { "goal": [{ "clause": -1, "scope": -1, "term": "(',' (l T13) (q (. (1) T13)))" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "197": { "goal": [{ "clause": -1, "scope": -1, "term": "(',' (r T21) (l T22))" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "176": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "198": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "177": { "goal": [{ "clause": -1, "scope": -1, "term": "(l T13)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "199": { "goal": [{ "clause": 2, "scope": 6, "term": "(',' (r T21) (l T22))" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "178": { "goal": [{ "clause": -1, "scope": -1, "term": "(q (. (1) T14))" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T14"], "free": [], "exprvars": [] } }, "179": { "goal": [ { "clause": 3, "scope": 5, "term": "(l T13)" }, { "clause": 4, "scope": 5, "term": "(l T13)" } ], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "74": { "goal": [ { "clause": 3, "scope": 2, "term": "(',' (l T4) (q T4))" }, { "clause": 4, "scope": 2, "term": "(',' (l T4) (q T4))" } ], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "77": { "goal": [{ "clause": 3, "scope": 2, "term": "(',' (l T4) (q T4))" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "78": { "goal": [{ "clause": 4, "scope": 2, "term": "(',' (l T4) (q T4))" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "180": { "goal": [{ "clause": 3, "scope": 5, "term": "(l T13)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "181": { "goal": [{ "clause": 4, "scope": 5, "term": "(l T13)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "200": { "goal": [{ "clause": -1, "scope": -1, "term": "(l T23)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "168": { "goal": [{ "clause": -1, "scope": -1, "term": "(q ([]))" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "201": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "4": { "goal": [{ "clause": -1, "scope": -1, "term": "(p T1)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "169": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "202": { "goal": [{ "clause": 1, "scope": 7, "term": "(q (. (1) T14))" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T14"], "free": [], "exprvars": [] } }, "203": { "goal": [{ "clause": -1, "scope": -1, "term": "(true)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "6": { "goal": [{ "clause": 0, "scope": 1, "term": "(p T1)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "204": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "205": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "61": { "goal": [{ "clause": -1, "scope": -1, "term": "(',' (l T4) (q T4))" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } } }, "edges": [ { "from": 4, "to": 6, "label": "CASE" }, { "from": 6, "to": 61, "label": "ONLY EVAL with clause\np(X2) :- ','(l(X2), q(X2)).\nand substitutionT1 -> T4,\nX2 -> T4,\nT3 -> T4" }, { "from": 61, "to": 74, "label": "CASE" }, { "from": 74, "to": 77, "label": "PARALLEL" }, { "from": 74, "to": 78, "label": "PARALLEL" }, { "from": 77, "to": 168, "label": "EVAL with clause\nl([]).\nand substitutionT4 -> []" }, { "from": 77, "to": 169, "label": "EVAL-BACKTRACK" }, { "from": 78, "to": 172, "label": "EVAL with clause\nl(.(X8, X9)) :- ','(r(X8), l(X9)).\nand substitutionX8 -> T11,\nX9 -> T12,\nT4 -> .(T11, T12),\nT9 -> T11,\nT10 -> T12" }, { "from": 78, "to": 173, "label": "EVAL-BACKTRACK" }, { "from": 168, "to": 170, "label": "CASE" }, { "from": 170, "to": 171, "label": "BACKTRACK\nfor clause: q(.(A, []))because of non-unification" }, { "from": 172, "to": 174, "label": "CASE" }, { "from": 174, "to": 175, "label": "EVAL with clause\nr(1).\nand substitutionT11 -> 1,\nT12 -> T13" }, { "from": 174, "to": 176, "label": "EVAL-BACKTRACK" }, { "from": 175, "to": 177, "label": "SPLIT 1" }, { "from": 175, "to": 178, "label": "SPLIT 2\nnew knowledge:\nT14 is ground\nreplacements:T13 -> T14" }, { "from": 177, "to": 179, "label": "CASE" }, { "from": 178, "to": 202, "label": "CASE" }, { "from": 179, "to": 180, "label": "PARALLEL" }, { "from": 179, "to": 181, "label": "PARALLEL" }, { "from": 180, "to": 194, "label": "EVAL with clause\nl([]).\nand substitutionT13 -> []" }, { "from": 180, "to": 195, "label": "EVAL-BACKTRACK" }, { "from": 181, "to": 197, "label": "EVAL with clause\nl(.(X14, X15)) :- ','(r(X14), l(X15)).\nand substitutionX14 -> T21,\nX15 -> T22,\nT13 -> .(T21, T22),\nT19 -> T21,\nT20 -> T22" }, { "from": 181, "to": 198, "label": "EVAL-BACKTRACK" }, { "from": 194, "to": 196, "label": "SUCCESS" }, { "from": 197, "to": 199, "label": "CASE" }, { "from": 199, "to": 200, "label": "EVAL with clause\nr(1).\nand substitutionT21 -> 1,\nT22 -> T23" }, { "from": 199, "to": 201, "label": "EVAL-BACKTRACK" }, { "from": 200, "to": 177, "label": "INSTANCE with matching:\nT13 -> T23" }, { "from": 202, "to": 203, "label": "EVAL with clause\nq(.(X18, [])).\nand substitutionX18 -> 1,\nT14 -> []" }, { "from": 202, "to": 204, "label": "EVAL-BACKTRACK" }, { "from": 203, "to": 205, "label": "SUCCESS" } ], "type": "Graph" } } ---------------------------------------- (34) Obligation: Triples: lA(.(1, X1)) :- lA(X1). pB(.(1, X1)) :- lA(X1). Clauses: lcA([]). lcA(.(1, X1)) :- lcA(X1). Afs: pB(x1) = pB ---------------------------------------- (35) TriplesToPiDPProof (SOUND) We use the technique of [DT09]. With regard to the inferred argument filtering the predicates were used in the following modes: pB_in_1: (f) lA_in_1: (f) Transforming TRIPLES into the following Term Rewriting System: Pi DP problem: The TRS P consists of the following rules: PB_IN_A(.(1, X1)) -> U2_A(X1, lA_in_a(X1)) PB_IN_A(.(1, X1)) -> LA_IN_A(X1) LA_IN_A(.(1, X1)) -> U1_A(X1, lA_in_a(X1)) LA_IN_A(.(1, X1)) -> LA_IN_A(X1) R is empty. The argument filtering Pi contains the following mapping: lA_in_a(x1) = lA_in_a .(x1, x2) = .(x1, x2) 1 = 1 PB_IN_A(x1) = PB_IN_A U2_A(x1, x2) = U2_A(x2) LA_IN_A(x1) = LA_IN_A U1_A(x1, x2) = U1_A(x2) We have to consider all (P,R,Pi)-chains Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES ---------------------------------------- (36) Obligation: Pi DP problem: The TRS P consists of the following rules: PB_IN_A(.(1, X1)) -> U2_A(X1, lA_in_a(X1)) PB_IN_A(.(1, X1)) -> LA_IN_A(X1) LA_IN_A(.(1, X1)) -> U1_A(X1, lA_in_a(X1)) LA_IN_A(.(1, X1)) -> LA_IN_A(X1) R is empty. The argument filtering Pi contains the following mapping: lA_in_a(x1) = lA_in_a .(x1, x2) = .(x1, x2) 1 = 1 PB_IN_A(x1) = PB_IN_A U2_A(x1, x2) = U2_A(x2) LA_IN_A(x1) = LA_IN_A U1_A(x1, x2) = U1_A(x2) We have to consider all (P,R,Pi)-chains ---------------------------------------- (37) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 3 less nodes. ---------------------------------------- (38) Obligation: Pi DP problem: The TRS P consists of the following rules: LA_IN_A(.(1, X1)) -> LA_IN_A(X1) R is empty. The argument filtering Pi contains the following mapping: .(x1, x2) = .(x1, x2) 1 = 1 LA_IN_A(x1) = LA_IN_A We have to consider all (P,R,Pi)-chains ---------------------------------------- (39) PiDPToQDPProof (SOUND) Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. ---------------------------------------- (40) Obligation: Q DP problem: The TRS P consists of the following rules: LA_IN_A -> LA_IN_A R is empty. Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (41) PrologToIRSwTTransformerProof (SOUND) Transformed Prolog program to IRSwT according to method in Master Thesis of A. Weinert { "root": 1, "program": { "directives": [], "clauses": [ [ "(p X)", "(',' (l X) (q X))" ], [ "(q (. A ([])))", null ], [ "(r (1))", null ], [ "(l ([]))", null ], [ "(l (. H T))", "(',' (r H) (l T))" ] ] }, "graph": { "nodes": { "89": { "goal": [{ "clause": 3, "scope": 2, "term": "(l T6)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "57": { "goal": [{ "clause": -1, "scope": -1, "term": "(',' (l T6) (q T6))" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "17": { "goal": [{ "clause": 0, "scope": 1, "term": "(p T1)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "182": { "goal": [{ "clause": 1, "scope": 4, "term": "(q T7)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T7"], "free": [], "exprvars": [] } }, "type": "Nodes", "183": { "goal": [{ "clause": -1, "scope": -1, "term": "(true)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "184": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "185": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "1": { "goal": [{ "clause": -1, "scope": -1, "term": "(p T1)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "113": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "125": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "136": { "goal": [{ "clause": -1, "scope": -1, "term": "(l T16)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "127": { "goal": [{ "clause": -1, "scope": -1, "term": "(',' (r T14) (l T15))" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "128": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "139": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "129": { "goal": [{ "clause": 2, "scope": 3, "term": "(',' (r T14) (l T15))" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "81": { "goal": [ { "clause": 3, "scope": 2, "term": "(l T6)" }, { "clause": 4, "scope": 2, "term": "(l T6)" } ], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "93": { "goal": [{ "clause": 4, "scope": 2, "term": "(l T6)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "109": { "goal": [{ "clause": -1, "scope": -1, "term": "(true)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "62": { "goal": [{ "clause": -1, "scope": -1, "term": "(l T6)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "63": { "goal": [{ "clause": -1, "scope": -1, "term": "(q T7)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T7"], "free": [], "exprvars": [] } } }, "edges": [ { "from": 1, "to": 17, "label": "CASE" }, { "from": 17, "to": 57, "label": "ONLY EVAL with clause\np(X3) :- ','(l(X3), q(X3)).\nand substitutionT1 -> T6,\nX3 -> T6,\nT5 -> T6" }, { "from": 57, "to": 62, "label": "SPLIT 1" }, { "from": 57, "to": 63, "label": "SPLIT 2\nnew knowledge:\nT7 is ground\nreplacements:T6 -> T7" }, { "from": 62, "to": 81, "label": "CASE" }, { "from": 63, "to": 182, "label": "CASE" }, { "from": 81, "to": 89, "label": "PARALLEL" }, { "from": 81, "to": 93, "label": "PARALLEL" }, { "from": 89, "to": 109, "label": "EVAL with clause\nl([]).\nand substitutionT6 -> []" }, { "from": 89, "to": 113, "label": "EVAL-BACKTRACK" }, { "from": 93, "to": 127, "label": "EVAL with clause\nl(.(X8, X9)) :- ','(r(X8), l(X9)).\nand substitutionX8 -> T14,\nX9 -> T15,\nT6 -> .(T14, T15),\nT12 -> T14,\nT13 -> T15" }, { "from": 93, "to": 128, "label": "EVAL-BACKTRACK" }, { "from": 109, "to": 125, "label": "SUCCESS" }, { "from": 127, "to": 129, "label": "CASE" }, { "from": 129, "to": 136, "label": "EVAL with clause\nr(1).\nand substitutionT14 -> 1,\nT15 -> T16" }, { "from": 129, "to": 139, "label": "EVAL-BACKTRACK" }, { "from": 136, "to": 62, "label": "INSTANCE with matching:\nT6 -> T16" }, { "from": 182, "to": 183, "label": "EVAL with clause\nq(.(X12, [])).\nand substitutionX12 -> T19,\nT7 -> .(T19, [])" }, { "from": 182, "to": 184, "label": "EVAL-BACKTRACK" }, { "from": 183, "to": 185, "label": "SUCCESS" } ], "type": "Graph" } } ---------------------------------------- (42) Obligation: Rules: f89_out -> f81_out :|: TRUE f93_out -> f81_out :|: TRUE f81_in -> f93_in :|: TRUE f81_in -> f89_in :|: TRUE f129_in -> f139_in :|: TRUE f129_in -> f136_in :|: TRUE f136_out -> f129_out :|: TRUE f139_out -> f129_out :|: TRUE f93_in -> f128_in :|: TRUE f93_in -> f127_in :|: TRUE f127_out -> f93_out :|: TRUE f128_out -> f93_out :|: TRUE f62_in -> f81_in :|: TRUE f81_out -> f62_out :|: TRUE f62_out -> f136_out :|: TRUE f136_in -> f62_in :|: TRUE f129_out -> f127_out :|: TRUE f127_in -> f129_in :|: TRUE f17_out -> f1_out :|: TRUE f1_in -> f17_in :|: TRUE f17_in -> f57_in :|: TRUE f57_out -> f17_out :|: TRUE f63_out(T7) -> f57_out :|: TRUE f62_out -> f63_in(x) :|: TRUE f57_in -> f62_in :|: TRUE Start term: f1_in ---------------------------------------- (43) IRSwTSimpleDependencyGraphProof (EQUIVALENT) Constructed simple dependency graph. Simplified to the following IRSwTs: intTRSProblem: f81_in -> f93_in :|: TRUE f129_in -> f136_in :|: TRUE f93_in -> f127_in :|: TRUE f62_in -> f81_in :|: TRUE f136_in -> f62_in :|: TRUE f127_in -> f129_in :|: TRUE ---------------------------------------- (44) Obligation: Rules: f81_in -> f93_in :|: TRUE f129_in -> f136_in :|: TRUE f93_in -> f127_in :|: TRUE f62_in -> f81_in :|: TRUE f136_in -> f62_in :|: TRUE f127_in -> f129_in :|: TRUE ---------------------------------------- (45) IntTRSCompressionProof (EQUIVALENT) Compressed rules. ---------------------------------------- (46) Obligation: Rules: f129_in -> f129_in :|: TRUE ---------------------------------------- (47) IRSFormatTransformerProof (EQUIVALENT) Reformatted IRS to match normalized format (transformed away non-linear left-hand sides, !=, / and %). ---------------------------------------- (48) Obligation: Rules: f129_in -> f129_in :|: TRUE ---------------------------------------- (49) IRSwTTerminationDigraphProof (EQUIVALENT) Constructed termination digraph! Nodes: (1) f129_in -> f129_in :|: TRUE Arcs: (1) -> (1) This digraph is fully evaluated! ---------------------------------------- (50) Obligation: Termination digraph: Nodes: (1) f129_in -> f129_in :|: TRUE Arcs: (1) -> (1) This digraph is fully evaluated! ---------------------------------------- (51) FilterProof (EQUIVALENT) Used the following sort dictionary for filtering: f129_in() Replaced non-predefined constructor symbols by 0. ---------------------------------------- (52) Obligation: Rules: f129_in -> f129_in :|: TRUE ---------------------------------------- (53) IntTRSPeriodicNontermProof (COMPLETE) Normalized system to the following form: f(pc) -> f(1) :|: pc = 1 && TRUE Witness term starting non-terminating reduction: f(1) ---------------------------------------- (54) NO