MAYBE proof of /export/starexec/sandbox2/benchmark/theBenchmark.pl # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty Left Termination of the query pattern subset(a,g) w.r.t. the given Prolog program could not be shown: (0) Prolog (1) PrologToPiTRSProof [SOUND, 0 ms] (2) PiTRS (3) DependencyPairsProof [EQUIVALENT, 0 ms] (4) PiDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) PiDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) PiDP (10) PiDPToQDPProof [SOUND, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) PiDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) PiDP (17) PiDPToQDPProof [SOUND, 0 ms] (18) QDP (19) TransformationProof [SOUND, 0 ms] (20) QDP (21) TransformationProof [EQUIVALENT, 0 ms] (22) QDP (23) PrologToPiTRSProof [SOUND, 0 ms] (24) PiTRS (25) DependencyPairsProof [EQUIVALENT, 0 ms] (26) PiDP (27) DependencyGraphProof [EQUIVALENT, 0 ms] (28) AND (29) PiDP (30) UsableRulesProof [EQUIVALENT, 0 ms] (31) PiDP (32) PiDPToQDPProof [SOUND, 0 ms] (33) QDP (34) QDPSizeChangeProof [EQUIVALENT, 0 ms] (35) YES (36) PiDP (37) UsableRulesProof [EQUIVALENT, 0 ms] (38) PiDP (39) PiDPToQDPProof [SOUND, 0 ms] (40) QDP (41) TransformationProof [SOUND, 0 ms] (42) QDP (43) TransformationProof [EQUIVALENT, 0 ms] (44) QDP (45) PrologToTRSTransformerProof [SOUND, 0 ms] (46) QTRS (47) DependencyPairsProof [EQUIVALENT, 0 ms] (48) QDP (49) DependencyGraphProof [EQUIVALENT, 0 ms] (50) AND (51) QDP (52) UsableRulesProof [EQUIVALENT, 0 ms] (53) QDP (54) QDPSizeChangeProof [EQUIVALENT, 0 ms] (55) YES (56) QDP (57) NonTerminationLoopProof [COMPLETE, 0 ms] (58) NO (59) PrologToIRSwTTransformerProof [SOUND, 33 ms] (60) AND (61) IRSwT (62) IRSwTSimpleDependencyGraphProof [EQUIVALENT, 0 ms] (63) IRSwT (64) IntTRSCompressionProof [EQUIVALENT, 21 ms] (65) IRSwT (66) IRSFormatTransformerProof [EQUIVALENT, 0 ms] (67) IRSwT (68) IRSwTTerminationDigraphProof [EQUIVALENT, 0 ms] (69) IRSwT (70) IntTRSUnneededArgumentFilterProof [EQUIVALENT, 0 ms] (71) IRSwT (72) TempFilterProof [SOUND, 1 ms] (73) IRSwT (74) IRSwTToQDPProof [SOUND, 0 ms] (75) QDP (76) QDPSizeChangeProof [EQUIVALENT, 0 ms] (77) YES (78) IRSwT (79) IRSwTSimpleDependencyGraphProof [EQUIVALENT, 0 ms] (80) IRSwT (81) IntTRSCompressionProof [EQUIVALENT, 9 ms] (82) IRSwT (83) IRSFormatTransformerProof [EQUIVALENT, 0 ms] (84) IRSwT (85) PrologToDTProblemTransformerProof [SOUND, 0 ms] (86) TRIPLES (87) TriplesToPiDPProof [SOUND, 0 ms] (88) PiDP (89) DependencyGraphProof [EQUIVALENT, 0 ms] (90) AND (91) PiDP (92) UsableRulesProof [EQUIVALENT, 0 ms] (93) PiDP (94) PiDPToQDPProof [SOUND, 0 ms] (95) QDP (96) QDPSizeChangeProof [EQUIVALENT, 0 ms] (97) YES (98) PiDP (99) PiDPToQDPProof [SOUND, 0 ms] (100) QDP ---------------------------------------- (0) Obligation: Clauses: subset([], X1). subset(.(X, Xs), Ys) :- ','(member(X, Ys), subset(Xs, Ys)). member(X, .(X, X2)). member(X, .(X3, Xs)) :- member(X, Xs). Query: subset(a,g) ---------------------------------------- (1) PrologToPiTRSProof (SOUND) We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes: subset_in_2: (f,b) member_in_2: (f,b) Transforming Prolog into the following Term Rewriting System: Pi-finite rewrite system: The TRS R consists of the following rules: subset_in_ag([], X1) -> subset_out_ag([], X1) subset_in_ag(.(X, Xs), Ys) -> U1_ag(X, Xs, Ys, member_in_ag(X, Ys)) member_in_ag(X, .(X, X2)) -> member_out_ag(X, .(X, X2)) member_in_ag(X, .(X3, Xs)) -> U3_ag(X, X3, Xs, member_in_ag(X, Xs)) U3_ag(X, X3, Xs, member_out_ag(X, Xs)) -> member_out_ag(X, .(X3, Xs)) U1_ag(X, Xs, Ys, member_out_ag(X, Ys)) -> U2_ag(X, Xs, Ys, subset_in_ag(Xs, Ys)) U2_ag(X, Xs, Ys, subset_out_ag(Xs, Ys)) -> subset_out_ag(.(X, Xs), Ys) The argument filtering Pi contains the following mapping: subset_in_ag(x1, x2) = subset_in_ag(x2) subset_out_ag(x1, x2) = subset_out_ag(x1) U1_ag(x1, x2, x3, x4) = U1_ag(x3, x4) member_in_ag(x1, x2) = member_in_ag(x2) .(x1, x2) = .(x1, x2) member_out_ag(x1, x2) = member_out_ag(x1) U3_ag(x1, x2, x3, x4) = U3_ag(x4) U2_ag(x1, x2, x3, x4) = U2_ag(x1, x4) Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog ---------------------------------------- (2) Obligation: Pi-finite rewrite system: The TRS R consists of the following rules: subset_in_ag([], X1) -> subset_out_ag([], X1) subset_in_ag(.(X, Xs), Ys) -> U1_ag(X, Xs, Ys, member_in_ag(X, Ys)) member_in_ag(X, .(X, X2)) -> member_out_ag(X, .(X, X2)) member_in_ag(X, .(X3, Xs)) -> U3_ag(X, X3, Xs, member_in_ag(X, Xs)) U3_ag(X, X3, Xs, member_out_ag(X, Xs)) -> member_out_ag(X, .(X3, Xs)) U1_ag(X, Xs, Ys, member_out_ag(X, Ys)) -> U2_ag(X, Xs, Ys, subset_in_ag(Xs, Ys)) U2_ag(X, Xs, Ys, subset_out_ag(Xs, Ys)) -> subset_out_ag(.(X, Xs), Ys) The argument filtering Pi contains the following mapping: subset_in_ag(x1, x2) = subset_in_ag(x2) subset_out_ag(x1, x2) = subset_out_ag(x1) U1_ag(x1, x2, x3, x4) = U1_ag(x3, x4) member_in_ag(x1, x2) = member_in_ag(x2) .(x1, x2) = .(x1, x2) member_out_ag(x1, x2) = member_out_ag(x1) U3_ag(x1, x2, x3, x4) = U3_ag(x4) U2_ag(x1, x2, x3, x4) = U2_ag(x1, x4) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem: Pi DP problem: The TRS P consists of the following rules: SUBSET_IN_AG(.(X, Xs), Ys) -> U1_AG(X, Xs, Ys, member_in_ag(X, Ys)) SUBSET_IN_AG(.(X, Xs), Ys) -> MEMBER_IN_AG(X, Ys) MEMBER_IN_AG(X, .(X3, Xs)) -> U3_AG(X, X3, Xs, member_in_ag(X, Xs)) MEMBER_IN_AG(X, .(X3, Xs)) -> MEMBER_IN_AG(X, Xs) U1_AG(X, Xs, Ys, member_out_ag(X, Ys)) -> U2_AG(X, Xs, Ys, subset_in_ag(Xs, Ys)) U1_AG(X, Xs, Ys, member_out_ag(X, Ys)) -> SUBSET_IN_AG(Xs, Ys) The TRS R consists of the following rules: subset_in_ag([], X1) -> subset_out_ag([], X1) subset_in_ag(.(X, Xs), Ys) -> U1_ag(X, Xs, Ys, member_in_ag(X, Ys)) member_in_ag(X, .(X, X2)) -> member_out_ag(X, .(X, X2)) member_in_ag(X, .(X3, Xs)) -> U3_ag(X, X3, Xs, member_in_ag(X, Xs)) U3_ag(X, X3, Xs, member_out_ag(X, Xs)) -> member_out_ag(X, .(X3, Xs)) U1_ag(X, Xs, Ys, member_out_ag(X, Ys)) -> U2_ag(X, Xs, Ys, subset_in_ag(Xs, Ys)) U2_ag(X, Xs, Ys, subset_out_ag(Xs, Ys)) -> subset_out_ag(.(X, Xs), Ys) The argument filtering Pi contains the following mapping: subset_in_ag(x1, x2) = subset_in_ag(x2) subset_out_ag(x1, x2) = subset_out_ag(x1) U1_ag(x1, x2, x3, x4) = U1_ag(x3, x4) member_in_ag(x1, x2) = member_in_ag(x2) .(x1, x2) = .(x1, x2) member_out_ag(x1, x2) = member_out_ag(x1) U3_ag(x1, x2, x3, x4) = U3_ag(x4) U2_ag(x1, x2, x3, x4) = U2_ag(x1, x4) SUBSET_IN_AG(x1, x2) = SUBSET_IN_AG(x2) U1_AG(x1, x2, x3, x4) = U1_AG(x3, x4) MEMBER_IN_AG(x1, x2) = MEMBER_IN_AG(x2) U3_AG(x1, x2, x3, x4) = U3_AG(x4) U2_AG(x1, x2, x3, x4) = U2_AG(x1, x4) We have to consider all (P,R,Pi)-chains ---------------------------------------- (4) Obligation: Pi DP problem: The TRS P consists of the following rules: SUBSET_IN_AG(.(X, Xs), Ys) -> U1_AG(X, Xs, Ys, member_in_ag(X, Ys)) SUBSET_IN_AG(.(X, Xs), Ys) -> MEMBER_IN_AG(X, Ys) MEMBER_IN_AG(X, .(X3, Xs)) -> U3_AG(X, X3, Xs, member_in_ag(X, Xs)) MEMBER_IN_AG(X, .(X3, Xs)) -> MEMBER_IN_AG(X, Xs) U1_AG(X, Xs, Ys, member_out_ag(X, Ys)) -> U2_AG(X, Xs, Ys, subset_in_ag(Xs, Ys)) U1_AG(X, Xs, Ys, member_out_ag(X, Ys)) -> SUBSET_IN_AG(Xs, Ys) The TRS R consists of the following rules: subset_in_ag([], X1) -> subset_out_ag([], X1) subset_in_ag(.(X, Xs), Ys) -> U1_ag(X, Xs, Ys, member_in_ag(X, Ys)) member_in_ag(X, .(X, X2)) -> member_out_ag(X, .(X, X2)) member_in_ag(X, .(X3, Xs)) -> U3_ag(X, X3, Xs, member_in_ag(X, Xs)) U3_ag(X, X3, Xs, member_out_ag(X, Xs)) -> member_out_ag(X, .(X3, Xs)) U1_ag(X, Xs, Ys, member_out_ag(X, Ys)) -> U2_ag(X, Xs, Ys, subset_in_ag(Xs, Ys)) U2_ag(X, Xs, Ys, subset_out_ag(Xs, Ys)) -> subset_out_ag(.(X, Xs), Ys) The argument filtering Pi contains the following mapping: subset_in_ag(x1, x2) = subset_in_ag(x2) subset_out_ag(x1, x2) = subset_out_ag(x1) U1_ag(x1, x2, x3, x4) = U1_ag(x3, x4) member_in_ag(x1, x2) = member_in_ag(x2) .(x1, x2) = .(x1, x2) member_out_ag(x1, x2) = member_out_ag(x1) U3_ag(x1, x2, x3, x4) = U3_ag(x4) U2_ag(x1, x2, x3, x4) = U2_ag(x1, x4) SUBSET_IN_AG(x1, x2) = SUBSET_IN_AG(x2) U1_AG(x1, x2, x3, x4) = U1_AG(x3, x4) MEMBER_IN_AG(x1, x2) = MEMBER_IN_AG(x2) U3_AG(x1, x2, x3, x4) = U3_AG(x4) U2_AG(x1, x2, x3, x4) = U2_AG(x1, x4) We have to consider all (P,R,Pi)-chains ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 3 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Pi DP problem: The TRS P consists of the following rules: MEMBER_IN_AG(X, .(X3, Xs)) -> MEMBER_IN_AG(X, Xs) The TRS R consists of the following rules: subset_in_ag([], X1) -> subset_out_ag([], X1) subset_in_ag(.(X, Xs), Ys) -> U1_ag(X, Xs, Ys, member_in_ag(X, Ys)) member_in_ag(X, .(X, X2)) -> member_out_ag(X, .(X, X2)) member_in_ag(X, .(X3, Xs)) -> U3_ag(X, X3, Xs, member_in_ag(X, Xs)) U3_ag(X, X3, Xs, member_out_ag(X, Xs)) -> member_out_ag(X, .(X3, Xs)) U1_ag(X, Xs, Ys, member_out_ag(X, Ys)) -> U2_ag(X, Xs, Ys, subset_in_ag(Xs, Ys)) U2_ag(X, Xs, Ys, subset_out_ag(Xs, Ys)) -> subset_out_ag(.(X, Xs), Ys) The argument filtering Pi contains the following mapping: subset_in_ag(x1, x2) = subset_in_ag(x2) subset_out_ag(x1, x2) = subset_out_ag(x1) U1_ag(x1, x2, x3, x4) = U1_ag(x3, x4) member_in_ag(x1, x2) = member_in_ag(x2) .(x1, x2) = .(x1, x2) member_out_ag(x1, x2) = member_out_ag(x1) U3_ag(x1, x2, x3, x4) = U3_ag(x4) U2_ag(x1, x2, x3, x4) = U2_ag(x1, x4) MEMBER_IN_AG(x1, x2) = MEMBER_IN_AG(x2) We have to consider all (P,R,Pi)-chains ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. ---------------------------------------- (9) Obligation: Pi DP problem: The TRS P consists of the following rules: MEMBER_IN_AG(X, .(X3, Xs)) -> MEMBER_IN_AG(X, Xs) R is empty. The argument filtering Pi contains the following mapping: .(x1, x2) = .(x1, x2) MEMBER_IN_AG(x1, x2) = MEMBER_IN_AG(x2) We have to consider all (P,R,Pi)-chains ---------------------------------------- (10) PiDPToQDPProof (SOUND) Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: MEMBER_IN_AG(.(X3, Xs)) -> MEMBER_IN_AG(Xs) R is empty. Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MEMBER_IN_AG(.(X3, Xs)) -> MEMBER_IN_AG(Xs) The graph contains the following edges 1 > 1 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Pi DP problem: The TRS P consists of the following rules: U1_AG(X, Xs, Ys, member_out_ag(X, Ys)) -> SUBSET_IN_AG(Xs, Ys) SUBSET_IN_AG(.(X, Xs), Ys) -> U1_AG(X, Xs, Ys, member_in_ag(X, Ys)) The TRS R consists of the following rules: subset_in_ag([], X1) -> subset_out_ag([], X1) subset_in_ag(.(X, Xs), Ys) -> U1_ag(X, Xs, Ys, member_in_ag(X, Ys)) member_in_ag(X, .(X, X2)) -> member_out_ag(X, .(X, X2)) member_in_ag(X, .(X3, Xs)) -> U3_ag(X, X3, Xs, member_in_ag(X, Xs)) U3_ag(X, X3, Xs, member_out_ag(X, Xs)) -> member_out_ag(X, .(X3, Xs)) U1_ag(X, Xs, Ys, member_out_ag(X, Ys)) -> U2_ag(X, Xs, Ys, subset_in_ag(Xs, Ys)) U2_ag(X, Xs, Ys, subset_out_ag(Xs, Ys)) -> subset_out_ag(.(X, Xs), Ys) The argument filtering Pi contains the following mapping: subset_in_ag(x1, x2) = subset_in_ag(x2) subset_out_ag(x1, x2) = subset_out_ag(x1) U1_ag(x1, x2, x3, x4) = U1_ag(x3, x4) member_in_ag(x1, x2) = member_in_ag(x2) .(x1, x2) = .(x1, x2) member_out_ag(x1, x2) = member_out_ag(x1) U3_ag(x1, x2, x3, x4) = U3_ag(x4) U2_ag(x1, x2, x3, x4) = U2_ag(x1, x4) SUBSET_IN_AG(x1, x2) = SUBSET_IN_AG(x2) U1_AG(x1, x2, x3, x4) = U1_AG(x3, x4) We have to consider all (P,R,Pi)-chains ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. ---------------------------------------- (16) Obligation: Pi DP problem: The TRS P consists of the following rules: U1_AG(X, Xs, Ys, member_out_ag(X, Ys)) -> SUBSET_IN_AG(Xs, Ys) SUBSET_IN_AG(.(X, Xs), Ys) -> U1_AG(X, Xs, Ys, member_in_ag(X, Ys)) The TRS R consists of the following rules: member_in_ag(X, .(X, X2)) -> member_out_ag(X, .(X, X2)) member_in_ag(X, .(X3, Xs)) -> U3_ag(X, X3, Xs, member_in_ag(X, Xs)) U3_ag(X, X3, Xs, member_out_ag(X, Xs)) -> member_out_ag(X, .(X3, Xs)) The argument filtering Pi contains the following mapping: member_in_ag(x1, x2) = member_in_ag(x2) .(x1, x2) = .(x1, x2) member_out_ag(x1, x2) = member_out_ag(x1) U3_ag(x1, x2, x3, x4) = U3_ag(x4) SUBSET_IN_AG(x1, x2) = SUBSET_IN_AG(x2) U1_AG(x1, x2, x3, x4) = U1_AG(x3, x4) We have to consider all (P,R,Pi)-chains ---------------------------------------- (17) PiDPToQDPProof (SOUND) Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: U1_AG(Ys, member_out_ag(X)) -> SUBSET_IN_AG(Ys) SUBSET_IN_AG(Ys) -> U1_AG(Ys, member_in_ag(Ys)) The TRS R consists of the following rules: member_in_ag(.(X, X2)) -> member_out_ag(X) member_in_ag(.(X3, Xs)) -> U3_ag(member_in_ag(Xs)) U3_ag(member_out_ag(X)) -> member_out_ag(X) The set Q consists of the following terms: member_in_ag(x0) U3_ag(x0) We have to consider all (P,Q,R)-chains. ---------------------------------------- (19) TransformationProof (SOUND) By narrowing [LPAR04] the rule SUBSET_IN_AG(Ys) -> U1_AG(Ys, member_in_ag(Ys)) at position [1] we obtained the following new rules [LPAR04]: (SUBSET_IN_AG(.(x0, x1)) -> U1_AG(.(x0, x1), member_out_ag(x0)),SUBSET_IN_AG(.(x0, x1)) -> U1_AG(.(x0, x1), member_out_ag(x0))) (SUBSET_IN_AG(.(x0, x1)) -> U1_AG(.(x0, x1), U3_ag(member_in_ag(x1))),SUBSET_IN_AG(.(x0, x1)) -> U1_AG(.(x0, x1), U3_ag(member_in_ag(x1)))) ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: U1_AG(Ys, member_out_ag(X)) -> SUBSET_IN_AG(Ys) SUBSET_IN_AG(.(x0, x1)) -> U1_AG(.(x0, x1), member_out_ag(x0)) SUBSET_IN_AG(.(x0, x1)) -> U1_AG(.(x0, x1), U3_ag(member_in_ag(x1))) The TRS R consists of the following rules: member_in_ag(.(X, X2)) -> member_out_ag(X) member_in_ag(.(X3, Xs)) -> U3_ag(member_in_ag(Xs)) U3_ag(member_out_ag(X)) -> member_out_ag(X) The set Q consists of the following terms: member_in_ag(x0) U3_ag(x0) We have to consider all (P,Q,R)-chains. ---------------------------------------- (21) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule U1_AG(Ys, member_out_ag(X)) -> SUBSET_IN_AG(Ys) we obtained the following new rules [LPAR04]: (U1_AG(.(z0, z1), member_out_ag(z0)) -> SUBSET_IN_AG(.(z0, z1)),U1_AG(.(z0, z1), member_out_ag(z0)) -> SUBSET_IN_AG(.(z0, z1))) (U1_AG(.(z0, z1), member_out_ag(x1)) -> SUBSET_IN_AG(.(z0, z1)),U1_AG(.(z0, z1), member_out_ag(x1)) -> SUBSET_IN_AG(.(z0, z1))) ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: SUBSET_IN_AG(.(x0, x1)) -> U1_AG(.(x0, x1), member_out_ag(x0)) SUBSET_IN_AG(.(x0, x1)) -> U1_AG(.(x0, x1), U3_ag(member_in_ag(x1))) U1_AG(.(z0, z1), member_out_ag(z0)) -> SUBSET_IN_AG(.(z0, z1)) U1_AG(.(z0, z1), member_out_ag(x1)) -> SUBSET_IN_AG(.(z0, z1)) The TRS R consists of the following rules: member_in_ag(.(X, X2)) -> member_out_ag(X) member_in_ag(.(X3, Xs)) -> U3_ag(member_in_ag(Xs)) U3_ag(member_out_ag(X)) -> member_out_ag(X) The set Q consists of the following terms: member_in_ag(x0) U3_ag(x0) We have to consider all (P,Q,R)-chains. ---------------------------------------- (23) PrologToPiTRSProof (SOUND) We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes: subset_in_2: (f,b) member_in_2: (f,b) Transforming Prolog into the following Term Rewriting System: Pi-finite rewrite system: The TRS R consists of the following rules: subset_in_ag([], X1) -> subset_out_ag([], X1) subset_in_ag(.(X, Xs), Ys) -> U1_ag(X, Xs, Ys, member_in_ag(X, Ys)) member_in_ag(X, .(X, X2)) -> member_out_ag(X, .(X, X2)) member_in_ag(X, .(X3, Xs)) -> U3_ag(X, X3, Xs, member_in_ag(X, Xs)) U3_ag(X, X3, Xs, member_out_ag(X, Xs)) -> member_out_ag(X, .(X3, Xs)) U1_ag(X, Xs, Ys, member_out_ag(X, Ys)) -> U2_ag(X, Xs, Ys, subset_in_ag(Xs, Ys)) U2_ag(X, Xs, Ys, subset_out_ag(Xs, Ys)) -> subset_out_ag(.(X, Xs), Ys) The argument filtering Pi contains the following mapping: subset_in_ag(x1, x2) = subset_in_ag(x2) subset_out_ag(x1, x2) = subset_out_ag(x1, x2) U1_ag(x1, x2, x3, x4) = U1_ag(x3, x4) member_in_ag(x1, x2) = member_in_ag(x2) .(x1, x2) = .(x1, x2) member_out_ag(x1, x2) = member_out_ag(x1, x2) U3_ag(x1, x2, x3, x4) = U3_ag(x2, x3, x4) U2_ag(x1, x2, x3, x4) = U2_ag(x1, x3, x4) Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog ---------------------------------------- (24) Obligation: Pi-finite rewrite system: The TRS R consists of the following rules: subset_in_ag([], X1) -> subset_out_ag([], X1) subset_in_ag(.(X, Xs), Ys) -> U1_ag(X, Xs, Ys, member_in_ag(X, Ys)) member_in_ag(X, .(X, X2)) -> member_out_ag(X, .(X, X2)) member_in_ag(X, .(X3, Xs)) -> U3_ag(X, X3, Xs, member_in_ag(X, Xs)) U3_ag(X, X3, Xs, member_out_ag(X, Xs)) -> member_out_ag(X, .(X3, Xs)) U1_ag(X, Xs, Ys, member_out_ag(X, Ys)) -> U2_ag(X, Xs, Ys, subset_in_ag(Xs, Ys)) U2_ag(X, Xs, Ys, subset_out_ag(Xs, Ys)) -> subset_out_ag(.(X, Xs), Ys) The argument filtering Pi contains the following mapping: subset_in_ag(x1, x2) = subset_in_ag(x2) subset_out_ag(x1, x2) = subset_out_ag(x1, x2) U1_ag(x1, x2, x3, x4) = U1_ag(x3, x4) member_in_ag(x1, x2) = member_in_ag(x2) .(x1, x2) = .(x1, x2) member_out_ag(x1, x2) = member_out_ag(x1, x2) U3_ag(x1, x2, x3, x4) = U3_ag(x2, x3, x4) U2_ag(x1, x2, x3, x4) = U2_ag(x1, x3, x4) ---------------------------------------- (25) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem: Pi DP problem: The TRS P consists of the following rules: SUBSET_IN_AG(.(X, Xs), Ys) -> U1_AG(X, Xs, Ys, member_in_ag(X, Ys)) SUBSET_IN_AG(.(X, Xs), Ys) -> MEMBER_IN_AG(X, Ys) MEMBER_IN_AG(X, .(X3, Xs)) -> U3_AG(X, X3, Xs, member_in_ag(X, Xs)) MEMBER_IN_AG(X, .(X3, Xs)) -> MEMBER_IN_AG(X, Xs) U1_AG(X, Xs, Ys, member_out_ag(X, Ys)) -> U2_AG(X, Xs, Ys, subset_in_ag(Xs, Ys)) U1_AG(X, Xs, Ys, member_out_ag(X, Ys)) -> SUBSET_IN_AG(Xs, Ys) The TRS R consists of the following rules: subset_in_ag([], X1) -> subset_out_ag([], X1) subset_in_ag(.(X, Xs), Ys) -> U1_ag(X, Xs, Ys, member_in_ag(X, Ys)) member_in_ag(X, .(X, X2)) -> member_out_ag(X, .(X, X2)) member_in_ag(X, .(X3, Xs)) -> U3_ag(X, X3, Xs, member_in_ag(X, Xs)) U3_ag(X, X3, Xs, member_out_ag(X, Xs)) -> member_out_ag(X, .(X3, Xs)) U1_ag(X, Xs, Ys, member_out_ag(X, Ys)) -> U2_ag(X, Xs, Ys, subset_in_ag(Xs, Ys)) U2_ag(X, Xs, Ys, subset_out_ag(Xs, Ys)) -> subset_out_ag(.(X, Xs), Ys) The argument filtering Pi contains the following mapping: subset_in_ag(x1, x2) = subset_in_ag(x2) subset_out_ag(x1, x2) = subset_out_ag(x1, x2) U1_ag(x1, x2, x3, x4) = U1_ag(x3, x4) member_in_ag(x1, x2) = member_in_ag(x2) .(x1, x2) = .(x1, x2) member_out_ag(x1, x2) = member_out_ag(x1, x2) U3_ag(x1, x2, x3, x4) = U3_ag(x2, x3, x4) U2_ag(x1, x2, x3, x4) = U2_ag(x1, x3, x4) SUBSET_IN_AG(x1, x2) = SUBSET_IN_AG(x2) U1_AG(x1, x2, x3, x4) = U1_AG(x3, x4) MEMBER_IN_AG(x1, x2) = MEMBER_IN_AG(x2) U3_AG(x1, x2, x3, x4) = U3_AG(x2, x3, x4) U2_AG(x1, x2, x3, x4) = U2_AG(x1, x3, x4) We have to consider all (P,R,Pi)-chains ---------------------------------------- (26) Obligation: Pi DP problem: The TRS P consists of the following rules: SUBSET_IN_AG(.(X, Xs), Ys) -> U1_AG(X, Xs, Ys, member_in_ag(X, Ys)) SUBSET_IN_AG(.(X, Xs), Ys) -> MEMBER_IN_AG(X, Ys) MEMBER_IN_AG(X, .(X3, Xs)) -> U3_AG(X, X3, Xs, member_in_ag(X, Xs)) MEMBER_IN_AG(X, .(X3, Xs)) -> MEMBER_IN_AG(X, Xs) U1_AG(X, Xs, Ys, member_out_ag(X, Ys)) -> U2_AG(X, Xs, Ys, subset_in_ag(Xs, Ys)) U1_AG(X, Xs, Ys, member_out_ag(X, Ys)) -> SUBSET_IN_AG(Xs, Ys) The TRS R consists of the following rules: subset_in_ag([], X1) -> subset_out_ag([], X1) subset_in_ag(.(X, Xs), Ys) -> U1_ag(X, Xs, Ys, member_in_ag(X, Ys)) member_in_ag(X, .(X, X2)) -> member_out_ag(X, .(X, X2)) member_in_ag(X, .(X3, Xs)) -> U3_ag(X, X3, Xs, member_in_ag(X, Xs)) U3_ag(X, X3, Xs, member_out_ag(X, Xs)) -> member_out_ag(X, .(X3, Xs)) U1_ag(X, Xs, Ys, member_out_ag(X, Ys)) -> U2_ag(X, Xs, Ys, subset_in_ag(Xs, Ys)) U2_ag(X, Xs, Ys, subset_out_ag(Xs, Ys)) -> subset_out_ag(.(X, Xs), Ys) The argument filtering Pi contains the following mapping: subset_in_ag(x1, x2) = subset_in_ag(x2) subset_out_ag(x1, x2) = subset_out_ag(x1, x2) U1_ag(x1, x2, x3, x4) = U1_ag(x3, x4) member_in_ag(x1, x2) = member_in_ag(x2) .(x1, x2) = .(x1, x2) member_out_ag(x1, x2) = member_out_ag(x1, x2) U3_ag(x1, x2, x3, x4) = U3_ag(x2, x3, x4) U2_ag(x1, x2, x3, x4) = U2_ag(x1, x3, x4) SUBSET_IN_AG(x1, x2) = SUBSET_IN_AG(x2) U1_AG(x1, x2, x3, x4) = U1_AG(x3, x4) MEMBER_IN_AG(x1, x2) = MEMBER_IN_AG(x2) U3_AG(x1, x2, x3, x4) = U3_AG(x2, x3, x4) U2_AG(x1, x2, x3, x4) = U2_AG(x1, x3, x4) We have to consider all (P,R,Pi)-chains ---------------------------------------- (27) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 3 less nodes. ---------------------------------------- (28) Complex Obligation (AND) ---------------------------------------- (29) Obligation: Pi DP problem: The TRS P consists of the following rules: MEMBER_IN_AG(X, .(X3, Xs)) -> MEMBER_IN_AG(X, Xs) The TRS R consists of the following rules: subset_in_ag([], X1) -> subset_out_ag([], X1) subset_in_ag(.(X, Xs), Ys) -> U1_ag(X, Xs, Ys, member_in_ag(X, Ys)) member_in_ag(X, .(X, X2)) -> member_out_ag(X, .(X, X2)) member_in_ag(X, .(X3, Xs)) -> U3_ag(X, X3, Xs, member_in_ag(X, Xs)) U3_ag(X, X3, Xs, member_out_ag(X, Xs)) -> member_out_ag(X, .(X3, Xs)) U1_ag(X, Xs, Ys, member_out_ag(X, Ys)) -> U2_ag(X, Xs, Ys, subset_in_ag(Xs, Ys)) U2_ag(X, Xs, Ys, subset_out_ag(Xs, Ys)) -> subset_out_ag(.(X, Xs), Ys) The argument filtering Pi contains the following mapping: subset_in_ag(x1, x2) = subset_in_ag(x2) subset_out_ag(x1, x2) = subset_out_ag(x1, x2) U1_ag(x1, x2, x3, x4) = U1_ag(x3, x4) member_in_ag(x1, x2) = member_in_ag(x2) .(x1, x2) = .(x1, x2) member_out_ag(x1, x2) = member_out_ag(x1, x2) U3_ag(x1, x2, x3, x4) = U3_ag(x2, x3, x4) U2_ag(x1, x2, x3, x4) = U2_ag(x1, x3, x4) MEMBER_IN_AG(x1, x2) = MEMBER_IN_AG(x2) We have to consider all (P,R,Pi)-chains ---------------------------------------- (30) UsableRulesProof (EQUIVALENT) For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. ---------------------------------------- (31) Obligation: Pi DP problem: The TRS P consists of the following rules: MEMBER_IN_AG(X, .(X3, Xs)) -> MEMBER_IN_AG(X, Xs) R is empty. The argument filtering Pi contains the following mapping: .(x1, x2) = .(x1, x2) MEMBER_IN_AG(x1, x2) = MEMBER_IN_AG(x2) We have to consider all (P,R,Pi)-chains ---------------------------------------- (32) PiDPToQDPProof (SOUND) Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. ---------------------------------------- (33) Obligation: Q DP problem: The TRS P consists of the following rules: MEMBER_IN_AG(.(X3, Xs)) -> MEMBER_IN_AG(Xs) R is empty. Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (34) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MEMBER_IN_AG(.(X3, Xs)) -> MEMBER_IN_AG(Xs) The graph contains the following edges 1 > 1 ---------------------------------------- (35) YES ---------------------------------------- (36) Obligation: Pi DP problem: The TRS P consists of the following rules: U1_AG(X, Xs, Ys, member_out_ag(X, Ys)) -> SUBSET_IN_AG(Xs, Ys) SUBSET_IN_AG(.(X, Xs), Ys) -> U1_AG(X, Xs, Ys, member_in_ag(X, Ys)) The TRS R consists of the following rules: subset_in_ag([], X1) -> subset_out_ag([], X1) subset_in_ag(.(X, Xs), Ys) -> U1_ag(X, Xs, Ys, member_in_ag(X, Ys)) member_in_ag(X, .(X, X2)) -> member_out_ag(X, .(X, X2)) member_in_ag(X, .(X3, Xs)) -> U3_ag(X, X3, Xs, member_in_ag(X, Xs)) U3_ag(X, X3, Xs, member_out_ag(X, Xs)) -> member_out_ag(X, .(X3, Xs)) U1_ag(X, Xs, Ys, member_out_ag(X, Ys)) -> U2_ag(X, Xs, Ys, subset_in_ag(Xs, Ys)) U2_ag(X, Xs, Ys, subset_out_ag(Xs, Ys)) -> subset_out_ag(.(X, Xs), Ys) The argument filtering Pi contains the following mapping: subset_in_ag(x1, x2) = subset_in_ag(x2) subset_out_ag(x1, x2) = subset_out_ag(x1, x2) U1_ag(x1, x2, x3, x4) = U1_ag(x3, x4) member_in_ag(x1, x2) = member_in_ag(x2) .(x1, x2) = .(x1, x2) member_out_ag(x1, x2) = member_out_ag(x1, x2) U3_ag(x1, x2, x3, x4) = U3_ag(x2, x3, x4) U2_ag(x1, x2, x3, x4) = U2_ag(x1, x3, x4) SUBSET_IN_AG(x1, x2) = SUBSET_IN_AG(x2) U1_AG(x1, x2, x3, x4) = U1_AG(x3, x4) We have to consider all (P,R,Pi)-chains ---------------------------------------- (37) UsableRulesProof (EQUIVALENT) For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. ---------------------------------------- (38) Obligation: Pi DP problem: The TRS P consists of the following rules: U1_AG(X, Xs, Ys, member_out_ag(X, Ys)) -> SUBSET_IN_AG(Xs, Ys) SUBSET_IN_AG(.(X, Xs), Ys) -> U1_AG(X, Xs, Ys, member_in_ag(X, Ys)) The TRS R consists of the following rules: member_in_ag(X, .(X, X2)) -> member_out_ag(X, .(X, X2)) member_in_ag(X, .(X3, Xs)) -> U3_ag(X, X3, Xs, member_in_ag(X, Xs)) U3_ag(X, X3, Xs, member_out_ag(X, Xs)) -> member_out_ag(X, .(X3, Xs)) The argument filtering Pi contains the following mapping: member_in_ag(x1, x2) = member_in_ag(x2) .(x1, x2) = .(x1, x2) member_out_ag(x1, x2) = member_out_ag(x1, x2) U3_ag(x1, x2, x3, x4) = U3_ag(x2, x3, x4) SUBSET_IN_AG(x1, x2) = SUBSET_IN_AG(x2) U1_AG(x1, x2, x3, x4) = U1_AG(x3, x4) We have to consider all (P,R,Pi)-chains ---------------------------------------- (39) PiDPToQDPProof (SOUND) Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. ---------------------------------------- (40) Obligation: Q DP problem: The TRS P consists of the following rules: U1_AG(Ys, member_out_ag(X, Ys)) -> SUBSET_IN_AG(Ys) SUBSET_IN_AG(Ys) -> U1_AG(Ys, member_in_ag(Ys)) The TRS R consists of the following rules: member_in_ag(.(X, X2)) -> member_out_ag(X, .(X, X2)) member_in_ag(.(X3, Xs)) -> U3_ag(X3, Xs, member_in_ag(Xs)) U3_ag(X3, Xs, member_out_ag(X, Xs)) -> member_out_ag(X, .(X3, Xs)) The set Q consists of the following terms: member_in_ag(x0) U3_ag(x0, x1, x2) We have to consider all (P,Q,R)-chains. ---------------------------------------- (41) TransformationProof (SOUND) By narrowing [LPAR04] the rule SUBSET_IN_AG(Ys) -> U1_AG(Ys, member_in_ag(Ys)) at position [1] we obtained the following new rules [LPAR04]: (SUBSET_IN_AG(.(x0, x1)) -> U1_AG(.(x0, x1), member_out_ag(x0, .(x0, x1))),SUBSET_IN_AG(.(x0, x1)) -> U1_AG(.(x0, x1), member_out_ag(x0, .(x0, x1)))) (SUBSET_IN_AG(.(x0, x1)) -> U1_AG(.(x0, x1), U3_ag(x0, x1, member_in_ag(x1))),SUBSET_IN_AG(.(x0, x1)) -> U1_AG(.(x0, x1), U3_ag(x0, x1, member_in_ag(x1)))) ---------------------------------------- (42) Obligation: Q DP problem: The TRS P consists of the following rules: U1_AG(Ys, member_out_ag(X, Ys)) -> SUBSET_IN_AG(Ys) SUBSET_IN_AG(.(x0, x1)) -> U1_AG(.(x0, x1), member_out_ag(x0, .(x0, x1))) SUBSET_IN_AG(.(x0, x1)) -> U1_AG(.(x0, x1), U3_ag(x0, x1, member_in_ag(x1))) The TRS R consists of the following rules: member_in_ag(.(X, X2)) -> member_out_ag(X, .(X, X2)) member_in_ag(.(X3, Xs)) -> U3_ag(X3, Xs, member_in_ag(Xs)) U3_ag(X3, Xs, member_out_ag(X, Xs)) -> member_out_ag(X, .(X3, Xs)) The set Q consists of the following terms: member_in_ag(x0) U3_ag(x0, x1, x2) We have to consider all (P,Q,R)-chains. ---------------------------------------- (43) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule U1_AG(Ys, member_out_ag(X, Ys)) -> SUBSET_IN_AG(Ys) we obtained the following new rules [LPAR04]: (U1_AG(.(z0, z1), member_out_ag(z0, .(z0, z1))) -> SUBSET_IN_AG(.(z0, z1)),U1_AG(.(z0, z1), member_out_ag(z0, .(z0, z1))) -> SUBSET_IN_AG(.(z0, z1))) (U1_AG(.(z0, z1), member_out_ag(x1, .(z0, z1))) -> SUBSET_IN_AG(.(z0, z1)),U1_AG(.(z0, z1), member_out_ag(x1, .(z0, z1))) -> SUBSET_IN_AG(.(z0, z1))) ---------------------------------------- (44) Obligation: Q DP problem: The TRS P consists of the following rules: SUBSET_IN_AG(.(x0, x1)) -> U1_AG(.(x0, x1), member_out_ag(x0, .(x0, x1))) SUBSET_IN_AG(.(x0, x1)) -> U1_AG(.(x0, x1), U3_ag(x0, x1, member_in_ag(x1))) U1_AG(.(z0, z1), member_out_ag(z0, .(z0, z1))) -> SUBSET_IN_AG(.(z0, z1)) U1_AG(.(z0, z1), member_out_ag(x1, .(z0, z1))) -> SUBSET_IN_AG(.(z0, z1)) The TRS R consists of the following rules: member_in_ag(.(X, X2)) -> member_out_ag(X, .(X, X2)) member_in_ag(.(X3, Xs)) -> U3_ag(X3, Xs, member_in_ag(Xs)) U3_ag(X3, Xs, member_out_ag(X, Xs)) -> member_out_ag(X, .(X3, Xs)) The set Q consists of the following terms: member_in_ag(x0) U3_ag(x0, x1, x2) We have to consider all (P,Q,R)-chains. ---------------------------------------- (45) PrologToTRSTransformerProof (SOUND) Transformed Prolog program to TRS. { "root": 1, "program": { "directives": [], "clauses": [ [ "(subset ([]) X1)", null ], [ "(subset (. X Xs) Ys)", "(',' (member X Ys) (subset Xs Ys))" ], [ "(member X (. X X2))", null ], [ "(member X (. X3 Xs))", "(member X Xs)" ] ] }, "graph": { "nodes": { "33": { "goal": [{ "clause": -1, "scope": -1, "term": "(true)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "78": { "goal": [{ "clause": -1, "scope": -1, "term": "(',' (member T17 T16) (subset T18 T16))" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T16"], "free": [], "exprvars": [] } }, "36": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "17": { "goal": [{ "clause": 0, "scope": 1, "term": "(subset T1 T2)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T2"], "free": [], "exprvars": [] } }, "18": { "goal": [{ "clause": 1, "scope": 1, "term": "(subset T1 T2)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T2"], "free": [], "exprvars": [] } }, "type": "Nodes", "153": { "goal": [ { "clause": 2, "scope": 2, "term": "(member T17 T16)" }, { "clause": 3, "scope": 2, "term": "(member T17 T16)" } ], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T16"], "free": [], "exprvars": [] } }, "154": { "goal": [{ "clause": 2, "scope": 2, "term": "(member T17 T16)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T16"], "free": [], "exprvars": [] } }, "1": { "goal": [{ "clause": -1, "scope": -1, "term": "(subset T1 T2)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T2"], "free": [], "exprvars": [] } }, "155": { "goal": [{ "clause": 3, "scope": 2, "term": "(member T17 T16)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T16"], "free": [], "exprvars": [] } }, "177": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "145": { "goal": [{ "clause": -1, "scope": -1, "term": "(member T17 T16)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T16"], "free": [], "exprvars": [] } }, "178": { "goal": [{ "clause": -1, "scope": -1, "term": "(member T47 T46)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T46"], "free": [], "exprvars": [] } }, "179": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "147": { "goal": [{ "clause": -1, "scope": -1, "term": "(subset T23 T16)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T16"], "free": [], "exprvars": [] } }, "158": { "goal": [{ "clause": -1, "scope": -1, "term": "(true)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "5": { "goal": [ { "clause": 0, "scope": 1, "term": "(subset T1 T2)" }, { "clause": 1, "scope": 1, "term": "(subset T1 T2)" } ], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T2"], "free": [], "exprvars": [] } }, "159": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "83": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "40": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } } }, "edges": [ { "from": 1, "to": 5, "label": "CASE" }, { "from": 5, "to": 17, "label": "PARALLEL" }, { "from": 5, "to": 18, "label": "PARALLEL" }, { "from": 17, "to": 33, "label": "EVAL with clause\nsubset([], X8).\nand substitutionT1 -> [],\nT2 -> T7,\nX8 -> T7" }, { "from": 17, "to": 36, "label": "EVAL-BACKTRACK" }, { "from": 18, "to": 78, "label": "EVAL with clause\nsubset(.(X15, X16), X17) :- ','(member(X15, X17), subset(X16, X17)).\nand substitutionX15 -> T17,\nX16 -> T18,\nT1 -> .(T17, T18),\nT2 -> T16,\nX17 -> T16,\nT14 -> T17,\nT15 -> T18" }, { "from": 18, "to": 83, "label": "EVAL-BACKTRACK" }, { "from": 33, "to": 40, "label": "SUCCESS" }, { "from": 78, "to": 145, "label": "SPLIT 1" }, { "from": 78, "to": 147, "label": "SPLIT 2\nnew knowledge:\nT17 is ground\nT16 is ground\nreplacements:T18 -> T23" }, { "from": 145, "to": 153, "label": "CASE" }, { "from": 147, "to": 1, "label": "INSTANCE with matching:\nT1 -> T23\nT2 -> T16" }, { "from": 153, "to": 154, "label": "PARALLEL" }, { "from": 153, "to": 155, "label": "PARALLEL" }, { "from": 154, "to": 158, "label": "EVAL with clause\nmember(X34, .(X34, X35)).\nand substitutionT17 -> T36,\nX34 -> T36,\nX35 -> T37,\nT16 -> .(T36, T37)" }, { "from": 154, "to": 159, "label": "EVAL-BACKTRACK" }, { "from": 155, "to": 178, "label": "EVAL with clause\nmember(X42, .(X43, X44)) :- member(X42, X44).\nand substitutionT17 -> T47,\nX42 -> T47,\nX43 -> T45,\nX44 -> T46,\nT16 -> .(T45, T46),\nT44 -> T47" }, { "from": 155, "to": 179, "label": "EVAL-BACKTRACK" }, { "from": 158, "to": 177, "label": "SUCCESS" }, { "from": 178, "to": 145, "label": "INSTANCE with matching:\nT17 -> T47\nT16 -> T46" } ], "type": "Graph" } } ---------------------------------------- (46) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f1_in(T7) -> f1_out1([]) f1_in(T16) -> U1(f78_in(T16), T16) U1(f78_out1(T17, T18), T16) -> f1_out1(.(T17, T18)) f145_in(.(T36, T37)) -> f145_out1(T36) f145_in(.(T45, T46)) -> U2(f145_in(T46), .(T45, T46)) U2(f145_out1(T47), .(T45, T46)) -> f145_out1(T47) f78_in(T16) -> U3(f145_in(T16), T16) U3(f145_out1(T17), T16) -> U4(f1_in(T16), T16, T17) U4(f1_out1(T23), T16, T17) -> f78_out1(T17, T23) Q is empty. ---------------------------------------- (47) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (48) Obligation: Q DP problem: The TRS P consists of the following rules: F1_IN(T16) -> U1^1(f78_in(T16), T16) F1_IN(T16) -> F78_IN(T16) F145_IN(.(T45, T46)) -> U2^1(f145_in(T46), .(T45, T46)) F145_IN(.(T45, T46)) -> F145_IN(T46) F78_IN(T16) -> U3^1(f145_in(T16), T16) F78_IN(T16) -> F145_IN(T16) U3^1(f145_out1(T17), T16) -> U4^1(f1_in(T16), T16, T17) U3^1(f145_out1(T17), T16) -> F1_IN(T16) The TRS R consists of the following rules: f1_in(T7) -> f1_out1([]) f1_in(T16) -> U1(f78_in(T16), T16) U1(f78_out1(T17, T18), T16) -> f1_out1(.(T17, T18)) f145_in(.(T36, T37)) -> f145_out1(T36) f145_in(.(T45, T46)) -> U2(f145_in(T46), .(T45, T46)) U2(f145_out1(T47), .(T45, T46)) -> f145_out1(T47) f78_in(T16) -> U3(f145_in(T16), T16) U3(f145_out1(T17), T16) -> U4(f1_in(T16), T16, T17) U4(f1_out1(T23), T16, T17) -> f78_out1(T17, T23) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (49) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 4 less nodes. ---------------------------------------- (50) Complex Obligation (AND) ---------------------------------------- (51) Obligation: Q DP problem: The TRS P consists of the following rules: F145_IN(.(T45, T46)) -> F145_IN(T46) The TRS R consists of the following rules: f1_in(T7) -> f1_out1([]) f1_in(T16) -> U1(f78_in(T16), T16) U1(f78_out1(T17, T18), T16) -> f1_out1(.(T17, T18)) f145_in(.(T36, T37)) -> f145_out1(T36) f145_in(.(T45, T46)) -> U2(f145_in(T46), .(T45, T46)) U2(f145_out1(T47), .(T45, T46)) -> f145_out1(T47) f78_in(T16) -> U3(f145_in(T16), T16) U3(f145_out1(T17), T16) -> U4(f1_in(T16), T16, T17) U4(f1_out1(T23), T16, T17) -> f78_out1(T17, T23) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (52) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (53) Obligation: Q DP problem: The TRS P consists of the following rules: F145_IN(.(T45, T46)) -> F145_IN(T46) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (54) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *F145_IN(.(T45, T46)) -> F145_IN(T46) The graph contains the following edges 1 > 1 ---------------------------------------- (55) YES ---------------------------------------- (56) Obligation: Q DP problem: The TRS P consists of the following rules: F1_IN(T16) -> F78_IN(T16) F78_IN(T16) -> U3^1(f145_in(T16), T16) U3^1(f145_out1(T17), T16) -> F1_IN(T16) The TRS R consists of the following rules: f1_in(T7) -> f1_out1([]) f1_in(T16) -> U1(f78_in(T16), T16) U1(f78_out1(T17, T18), T16) -> f1_out1(.(T17, T18)) f145_in(.(T36, T37)) -> f145_out1(T36) f145_in(.(T45, T46)) -> U2(f145_in(T46), .(T45, T46)) U2(f145_out1(T47), .(T45, T46)) -> f145_out1(T47) f78_in(T16) -> U3(f145_in(T16), T16) U3(f145_out1(T17), T16) -> U4(f1_in(T16), T16, T17) U4(f1_out1(T23), T16, T17) -> f78_out1(T17, T23) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (57) NonTerminationLoopProof (COMPLETE) We used the non-termination processor [FROCOS05] to show that the DP problem is infinite. Found a loop by narrowing to the left: s = F78_IN(.(T36, T37)) evaluates to t =F78_IN(.(T36, T37)) Thus s starts an infinite chain as s semiunifies with t with the following substitutions: * Matcher: [ ] * Semiunifier: [ ] -------------------------------------------------------------------------------- Rewriting sequence F78_IN(.(T36, T37)) -> U3^1(f145_in(.(T36, T37)), .(T36, T37)) with rule F78_IN(T16) -> U3^1(f145_in(T16), T16) at position [] and matcher [T16 / .(T36, T37)] U3^1(f145_in(.(T36, T37)), .(T36, T37)) -> U3^1(f145_out1(T36), .(T36, T37)) with rule f145_in(.(T36', T37')) -> f145_out1(T36') at position [0] and matcher [T36' / T36, T37' / T37] U3^1(f145_out1(T36), .(T36, T37)) -> F1_IN(.(T36, T37)) with rule U3^1(f145_out1(T17), T16') -> F1_IN(T16') at position [] and matcher [T17 / T36, T16' / .(T36, T37)] F1_IN(.(T36, T37)) -> F78_IN(.(T36, T37)) with rule F1_IN(T16) -> F78_IN(T16) Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence All these steps are and every following step will be a correct step w.r.t to Q. ---------------------------------------- (58) NO ---------------------------------------- (59) PrologToIRSwTTransformerProof (SOUND) Transformed Prolog program to IRSwT according to method in Master Thesis of A. Weinert { "root": 3, "program": { "directives": [], "clauses": [ [ "(subset ([]) X1)", null ], [ "(subset (. X Xs) Ys)", "(',' (member X Ys) (subset Xs Ys))" ], [ "(member X (. X X2))", null ], [ "(member X (. X3 Xs))", "(member X Xs)" ] ] }, "graph": { "nodes": { "15": { "goal": [{ "clause": 0, "scope": 1, "term": "(subset T1 T2)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T2"], "free": [], "exprvars": [] } }, "16": { "goal": [{ "clause": 1, "scope": 1, "term": "(subset T1 T2)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T2"], "free": [], "exprvars": [] } }, "27": { "goal": [{ "clause": -1, "scope": -1, "term": "(true)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "29": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "160": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "type": "Nodes", "161": { "goal": [{ "clause": -1, "scope": -1, "term": "(member T17 T16)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T16"], "free": [], "exprvars": [] } }, "162": { "goal": [{ "clause": -1, "scope": -1, "term": "(subset T23 T16)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T16"], "free": [], "exprvars": [] } }, "163": { "goal": [ { "clause": 2, "scope": 2, "term": "(member T17 T16)" }, { "clause": 3, "scope": 2, "term": "(member T17 T16)" } ], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T16"], "free": [], "exprvars": [] } }, "164": { "goal": [{ "clause": 2, "scope": 2, "term": "(member T17 T16)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T16"], "free": [], "exprvars": [] } }, "175": { "goal": [{ "clause": -1, "scope": -1, "term": "(member T47 T46)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T46"], "free": [], "exprvars": [] } }, "165": { "goal": [{ "clause": 3, "scope": 2, "term": "(member T17 T16)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T16"], "free": [], "exprvars": [] } }, "176": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "166": { "goal": [{ "clause": -1, "scope": -1, "term": "(true)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "167": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "3": { "goal": [{ "clause": -1, "scope": -1, "term": "(subset T1 T2)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T2"], "free": [], "exprvars": [] } }, "168": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "4": { "goal": [ { "clause": 0, "scope": 1, "term": "(subset T1 T2)" }, { "clause": 1, "scope": 1, "term": "(subset T1 T2)" } ], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T2"], "free": [], "exprvars": [] } }, "90": { "goal": [{ "clause": -1, "scope": -1, "term": "(',' (member T17 T16) (subset T18 T16))" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T16"], "free": [], "exprvars": [] } }, "31": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } } }, "edges": [ { "from": 3, "to": 4, "label": "CASE" }, { "from": 4, "to": 15, "label": "PARALLEL" }, { "from": 4, "to": 16, "label": "PARALLEL" }, { "from": 15, "to": 27, "label": "EVAL with clause\nsubset([], X8).\nand substitutionT1 -> [],\nT2 -> T7,\nX8 -> T7" }, { "from": 15, "to": 29, "label": "EVAL-BACKTRACK" }, { "from": 16, "to": 90, "label": "EVAL with clause\nsubset(.(X15, X16), X17) :- ','(member(X15, X17), subset(X16, X17)).\nand substitutionX15 -> T17,\nX16 -> T18,\nT1 -> .(T17, T18),\nT2 -> T16,\nX17 -> T16,\nT14 -> T17,\nT15 -> T18" }, { "from": 16, "to": 160, "label": "EVAL-BACKTRACK" }, { "from": 27, "to": 31, "label": "SUCCESS" }, { "from": 90, "to": 161, "label": "SPLIT 1" }, { "from": 90, "to": 162, "label": "SPLIT 2\nnew knowledge:\nT17 is ground\nT16 is ground\nreplacements:T18 -> T23" }, { "from": 161, "to": 163, "label": "CASE" }, { "from": 162, "to": 3, "label": "INSTANCE with matching:\nT1 -> T23\nT2 -> T16" }, { "from": 163, "to": 164, "label": "PARALLEL" }, { "from": 163, "to": 165, "label": "PARALLEL" }, { "from": 164, "to": 166, "label": "EVAL with clause\nmember(X34, .(X34, X35)).\nand substitutionT17 -> T36,\nX34 -> T36,\nX35 -> T37,\nT16 -> .(T36, T37)" }, { "from": 164, "to": 167, "label": "EVAL-BACKTRACK" }, { "from": 165, "to": 175, "label": "EVAL with clause\nmember(X42, .(X43, X44)) :- member(X42, X44).\nand substitutionT17 -> T47,\nX42 -> T47,\nX43 -> T45,\nX44 -> T46,\nT16 -> .(T45, T46),\nT44 -> T47" }, { "from": 165, "to": 176, "label": "EVAL-BACKTRACK" }, { "from": 166, "to": 168, "label": "SUCCESS" }, { "from": 175, "to": 161, "label": "INSTANCE with matching:\nT17 -> T47\nT16 -> T46" } ], "type": "Graph" } } ---------------------------------------- (60) Complex Obligation (AND) ---------------------------------------- (61) Obligation: Rules: f163_out(T16) -> f161_out(T16) :|: TRUE f161_in(x) -> f163_in(x) :|: TRUE f163_in(x1) -> f164_in(x1) :|: TRUE f165_out(x2) -> f163_out(x2) :|: TRUE f163_in(x3) -> f165_in(x3) :|: TRUE f164_out(x4) -> f163_out(x4) :|: TRUE f161_out(T46) -> f175_out(T46) :|: TRUE f175_in(x5) -> f161_in(x5) :|: TRUE f176_out -> f165_out(x6) :|: TRUE f165_in(x7) -> f176_in :|: TRUE f165_in(.(x8, x9)) -> f175_in(x9) :|: TRUE f175_out(x10) -> f165_out(.(x11, x10)) :|: TRUE f4_out(T2) -> f3_out(T2) :|: TRUE f3_in(x12) -> f4_in(x12) :|: TRUE f15_out(x13) -> f4_out(x13) :|: TRUE f4_in(x14) -> f15_in(x14) :|: TRUE f4_in(x15) -> f16_in(x15) :|: TRUE f16_out(x16) -> f4_out(x16) :|: TRUE f160_out -> f16_out(x17) :|: TRUE f90_out(x18) -> f16_out(x18) :|: TRUE f16_in(x19) -> f160_in :|: TRUE f16_in(x20) -> f90_in(x20) :|: TRUE f162_out(x21) -> f90_out(x21) :|: TRUE f90_in(x22) -> f161_in(x22) :|: TRUE f161_out(x23) -> f162_in(x23) :|: TRUE Start term: f3_in(T2) ---------------------------------------- (62) IRSwTSimpleDependencyGraphProof (EQUIVALENT) Constructed simple dependency graph. Simplified to the following IRSwTs: intTRSProblem: f161_in(x) -> f163_in(x) :|: TRUE f163_in(x3) -> f165_in(x3) :|: TRUE f175_in(x5) -> f161_in(x5) :|: TRUE f165_in(.(x8, x9)) -> f175_in(x9) :|: TRUE ---------------------------------------- (63) Obligation: Rules: f161_in(x) -> f163_in(x) :|: TRUE f163_in(x3) -> f165_in(x3) :|: TRUE f175_in(x5) -> f161_in(x5) :|: TRUE f165_in(.(x8, x9)) -> f175_in(x9) :|: TRUE ---------------------------------------- (64) IntTRSCompressionProof (EQUIVALENT) Compressed rules. ---------------------------------------- (65) Obligation: Rules: f175_in(.(x8:0, x9:0)) -> f175_in(x9:0) :|: TRUE ---------------------------------------- (66) IRSFormatTransformerProof (EQUIVALENT) Reformatted IRS to match normalized format (transformed away non-linear left-hand sides, !=, / and %). ---------------------------------------- (67) Obligation: Rules: f175_in(.(x8:0, x9:0)) -> f175_in(x9:0) :|: TRUE ---------------------------------------- (68) IRSwTTerminationDigraphProof (EQUIVALENT) Constructed termination digraph! Nodes: (1) f175_in(.(x8:0, x9:0)) -> f175_in(x9:0) :|: TRUE Arcs: (1) -> (1) This digraph is fully evaluated! ---------------------------------------- (69) Obligation: Termination digraph: Nodes: (1) f175_in(.(x8:0, x9:0)) -> f175_in(x9:0) :|: TRUE Arcs: (1) -> (1) This digraph is fully evaluated! ---------------------------------------- (70) IntTRSUnneededArgumentFilterProof (EQUIVALENT) Some arguments are removed because they cannot influence termination. We removed arguments according to the following replacements: .(x1, x2) -> .(x2) ---------------------------------------- (71) Obligation: Rules: f175_in(.(x9:0)) -> f175_in(x9:0) :|: TRUE ---------------------------------------- (72) TempFilterProof (SOUND) Used the following sort dictionary for filtering: f175_in(VARIABLE) .(VARIABLE) Removed predefined arithmetic. ---------------------------------------- (73) Obligation: Rules: f175_in(.(x9:0)) -> f175_in(x9:0) ---------------------------------------- (74) IRSwTToQDPProof (SOUND) Removed the integers and created a QDP-Problem. ---------------------------------------- (75) Obligation: Q DP problem: The TRS P consists of the following rules: f175_in(.(x9:0)) -> f175_in(x9:0) R is empty. Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (76) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *f175_in(.(x9:0)) -> f175_in(x9:0) The graph contains the following edges 1 > 1 ---------------------------------------- (77) YES ---------------------------------------- (78) Obligation: Rules: f163_out(T16) -> f161_out(T16) :|: TRUE f161_in(x) -> f163_in(x) :|: TRUE f4_out(T2) -> f3_out(T2) :|: TRUE f3_in(x1) -> f4_in(x1) :|: TRUE f166_in -> f166_out :|: TRUE f162_out(x2) -> f90_out(x2) :|: TRUE f90_in(x3) -> f161_in(x3) :|: TRUE f161_out(x4) -> f162_in(x4) :|: TRUE f163_in(x5) -> f164_in(x5) :|: TRUE f165_out(x6) -> f163_out(x6) :|: TRUE f163_in(x7) -> f165_in(x7) :|: TRUE f164_out(x8) -> f163_out(x8) :|: TRUE f160_out -> f16_out(x9) :|: TRUE f90_out(x10) -> f16_out(x10) :|: TRUE f16_in(x11) -> f160_in :|: TRUE f16_in(x12) -> f90_in(x12) :|: TRUE f167_out -> f164_out(x13) :|: TRUE f166_out -> f164_out(.(T36, T37)) :|: TRUE f164_in(.(x14, x15)) -> f166_in :|: TRUE f164_in(x16) -> f167_in :|: TRUE f162_in(x17) -> f3_in(x17) :|: TRUE f3_out(x18) -> f162_out(x18) :|: TRUE f161_out(T46) -> f175_out(T46) :|: TRUE f175_in(x19) -> f161_in(x19) :|: TRUE f15_out(x20) -> f4_out(x20) :|: TRUE f4_in(x21) -> f15_in(x21) :|: TRUE f4_in(x22) -> f16_in(x22) :|: TRUE f16_out(x23) -> f4_out(x23) :|: TRUE f176_out -> f165_out(x24) :|: TRUE f165_in(x25) -> f176_in :|: TRUE f165_in(.(x26, x27)) -> f175_in(x27) :|: TRUE f175_out(x28) -> f165_out(.(x29, x28)) :|: TRUE Start term: f3_in(T2) ---------------------------------------- (79) IRSwTSimpleDependencyGraphProof (EQUIVALENT) Constructed simple dependency graph. Simplified to the following IRSwTs: intTRSProblem: f163_out(T16) -> f161_out(T16) :|: TRUE f161_in(x) -> f163_in(x) :|: TRUE f3_in(x1) -> f4_in(x1) :|: TRUE f166_in -> f166_out :|: TRUE f90_in(x3) -> f161_in(x3) :|: TRUE f161_out(x4) -> f162_in(x4) :|: TRUE f163_in(x5) -> f164_in(x5) :|: TRUE f165_out(x6) -> f163_out(x6) :|: TRUE f163_in(x7) -> f165_in(x7) :|: TRUE f164_out(x8) -> f163_out(x8) :|: TRUE f16_in(x12) -> f90_in(x12) :|: TRUE f166_out -> f164_out(.(T36, T37)) :|: TRUE f164_in(.(x14, x15)) -> f166_in :|: TRUE f162_in(x17) -> f3_in(x17) :|: TRUE f161_out(T46) -> f175_out(T46) :|: TRUE f175_in(x19) -> f161_in(x19) :|: TRUE f4_in(x22) -> f16_in(x22) :|: TRUE f165_in(.(x26, x27)) -> f175_in(x27) :|: TRUE f175_out(x28) -> f165_out(.(x29, x28)) :|: TRUE ---------------------------------------- (80) Obligation: Rules: f163_out(T16) -> f161_out(T16) :|: TRUE f161_in(x) -> f163_in(x) :|: TRUE f3_in(x1) -> f4_in(x1) :|: TRUE f166_in -> f166_out :|: TRUE f90_in(x3) -> f161_in(x3) :|: TRUE f161_out(x4) -> f162_in(x4) :|: TRUE f163_in(x5) -> f164_in(x5) :|: TRUE f165_out(x6) -> f163_out(x6) :|: TRUE f163_in(x7) -> f165_in(x7) :|: TRUE f164_out(x8) -> f163_out(x8) :|: TRUE f16_in(x12) -> f90_in(x12) :|: TRUE f166_out -> f164_out(.(T36, T37)) :|: TRUE f164_in(.(x14, x15)) -> f166_in :|: TRUE f162_in(x17) -> f3_in(x17) :|: TRUE f161_out(T46) -> f175_out(T46) :|: TRUE f175_in(x19) -> f161_in(x19) :|: TRUE f4_in(x22) -> f16_in(x22) :|: TRUE f165_in(.(x26, x27)) -> f175_in(x27) :|: TRUE f175_out(x28) -> f165_out(.(x29, x28)) :|: TRUE ---------------------------------------- (81) IntTRSCompressionProof (EQUIVALENT) Compressed rules. ---------------------------------------- (82) Obligation: Rules: f161_in(.(x14:0, x15:0)) -> f163_out(.(T36:0, T37:0)) :|: TRUE f163_out(T16:0) -> f161_in(T16:0) :|: TRUE f163_out(x) -> f163_out(.(x1, x)) :|: TRUE f161_in(.(x26:0, x27:0)) -> f161_in(x27:0) :|: TRUE ---------------------------------------- (83) IRSFormatTransformerProof (EQUIVALENT) Reformatted IRS to match normalized format (transformed away non-linear left-hand sides, !=, / and %). ---------------------------------------- (84) Obligation: Rules: f161_in(.(x14:0, x15:0)) -> f163_out(.(T36:0, T37:0)) :|: TRUE f163_out(T16:0) -> f161_in(T16:0) :|: TRUE f163_out(x) -> f163_out(.(x1, x)) :|: TRUE f161_in(.(x26:0, x27:0)) -> f161_in(x27:0) :|: TRUE ---------------------------------------- (85) PrologToDTProblemTransformerProof (SOUND) Built DT problem from termination graph DT10. { "root": 2, "program": { "directives": [], "clauses": [ [ "(subset ([]) X1)", null ], [ "(subset (. X Xs) Ys)", "(',' (member X Ys) (subset Xs Ys))" ], [ "(member X (. X X2))", null ], [ "(member X (. X3 Xs))", "(member X Xs)" ] ] }, "graph": { "nodes": { "28": { "goal": [ { "clause": -1, "scope": -1, "term": "(true)" }, { "clause": 1, "scope": 1, "term": "(subset T1 T4)" } ], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T4"], "free": [], "exprvars": [] } }, "190": { "goal": [{ "clause": -1, "scope": -1, "term": "(member T67 T66)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T66"], "free": [], "exprvars": [] } }, "191": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "192": { "goal": [{ "clause": -1, "scope": -1, "term": "(',' (member T82 T81) (subset T83 T81))" }], "kb": { "nonunifying": [[ "(subset T1 T81)", "(subset ([]) X5)" ]], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T81"], "free": ["X5"], "exprvars": [] } }, "193": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "type": "Nodes", "150": { "goal": [ { "clause": 2, "scope": 2, "term": "(',' (member T11 T10) (subset T12 T10))" }, { "clause": 3, "scope": 2, "term": "(',' (member T11 T10) (subset T12 T10))" } ], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T10"], "free": [], "exprvars": [] } }, "194": { "goal": [ { "clause": 2, "scope": 4, "term": "(',' (member T82 T81) (subset T83 T81))" }, { "clause": 3, "scope": 4, "term": "(',' (member T82 T81) (subset T83 T81))" } ], "kb": { "nonunifying": [[ "(subset T1 T81)", "(subset ([]) X5)" ]], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T81"], "free": ["X5"], "exprvars": [] } }, "151": { "goal": [{ "clause": 2, "scope": 2, "term": "(',' (member T11 T10) (subset T12 T10))" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T10"], "free": [], "exprvars": [] } }, "195": { "goal": [{ "clause": 2, "scope": 4, "term": "(',' (member T82 T81) (subset T83 T81))" }], "kb": { "nonunifying": [[ "(subset T1 T81)", "(subset ([]) X5)" ]], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T81"], "free": ["X5"], "exprvars": [] } }, "152": { "goal": [{ "clause": 3, "scope": 2, "term": "(',' (member T11 T10) (subset T12 T10))" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T10"], "free": [], "exprvars": [] } }, "196": { "goal": [{ "clause": 3, "scope": 4, "term": "(',' (member T82 T81) (subset T83 T81))" }], "kb": { "nonunifying": [[ "(subset T1 T81)", "(subset ([]) X5)" ]], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T81"], "free": ["X5"], "exprvars": [] } }, "197": { "goal": [{ "clause": -1, "scope": -1, "term": "(subset T94 (. T92 T93))" }], "kb": { "nonunifying": [[ "(subset T1 (. T92 T93))", "(subset ([]) X5)" ]], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [ "T92", "T93" ], "free": ["X5"], "exprvars": [] } }, "198": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "199": { "goal": [{ "clause": -1, "scope": -1, "term": "(',' (member T108 T107) (subset T109 (. T106 T107)))" }], "kb": { "nonunifying": [[ "(subset T1 (. T106 T107))", "(subset ([]) X5)" ]], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [ "T106", "T107" ], "free": ["X5"], "exprvars": [] } }, "156": { "goal": [{ "clause": -1, "scope": -1, "term": "(subset T23 (. T21 T22))" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [ "T21", "T22" ], "free": [], "exprvars": [] } }, "157": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "30": { "goal": [{ "clause": 1, "scope": 1, "term": "(subset T1 T2)" }], "kb": { "nonunifying": [[ "(subset T1 T2)", "(subset ([]) X5)" ]], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T2"], "free": ["X5"], "exprvars": [] } }, "32": { "goal": [{ "clause": 1, "scope": 1, "term": "(subset T1 T4)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T4"], "free": [], "exprvars": [] } }, "180": { "goal": [{ "clause": -1, "scope": -1, "term": "(',' (member T37 T36) (subset T38 (. T35 T36)))" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [ "T35", "T36" ], "free": [], "exprvars": [] } }, "181": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "182": { "goal": [{ "clause": -1, "scope": -1, "term": "(member T37 T36)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T36"], "free": [], "exprvars": [] } }, "183": { "goal": [{ "clause": -1, "scope": -1, "term": "(subset T43 (. T35 T36))" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [ "T35", "T36" ], "free": [], "exprvars": [] } }, "184": { "goal": [ { "clause": 2, "scope": 3, "term": "(member T37 T36)" }, { "clause": 3, "scope": 3, "term": "(member T37 T36)" } ], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T36"], "free": [], "exprvars": [] } }, "185": { "goal": [{ "clause": 2, "scope": 3, "term": "(member T37 T36)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T36"], "free": [], "exprvars": [] } }, "186": { "goal": [{ "clause": 3, "scope": 3, "term": "(member T37 T36)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T36"], "free": [], "exprvars": [] } }, "187": { "goal": [{ "clause": -1, "scope": -1, "term": "(true)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "188": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "2": { "goal": [{ "clause": -1, "scope": -1, "term": "(subset T1 T2)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T2"], "free": [], "exprvars": [] } }, "189": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "200": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "148": { "goal": [{ "clause": -1, "scope": -1, "term": "(',' (member T11 T10) (subset T12 T10))" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T10"], "free": [], "exprvars": [] } }, "6": { "goal": [ { "clause": 0, "scope": 1, "term": "(subset T1 T2)" }, { "clause": 1, "scope": 1, "term": "(subset T1 T2)" } ], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T2"], "free": [], "exprvars": [] } }, "149": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } } }, "edges": [ { "from": 2, "to": 6, "label": "CASE" }, { "from": 6, "to": 28, "label": "EVAL with clause\nsubset([], X5).\nand substitutionT1 -> [],\nT2 -> T4,\nX5 -> T4" }, { "from": 6, "to": 30, "label": "EVAL-BACKTRACK" }, { "from": 28, "to": 32, "label": "SUCCESS" }, { "from": 30, "to": 192, "label": "EVAL with clause\nsubset(.(X69, X70), X71) :- ','(member(X69, X71), subset(X70, X71)).\nand substitutionX69 -> T82,\nX70 -> T83,\nT1 -> .(T82, T83),\nT2 -> T81,\nX71 -> T81,\nT79 -> T82,\nT80 -> T83" }, { "from": 30, "to": 193, "label": "EVAL-BACKTRACK" }, { "from": 32, "to": 148, "label": "EVAL with clause\nsubset(.(X9, X10), X11) :- ','(member(X9, X11), subset(X10, X11)).\nand substitutionX9 -> T11,\nX10 -> T12,\nT1 -> .(T11, T12),\nT4 -> T10,\nX11 -> T10,\nT8 -> T11,\nT9 -> T12" }, { "from": 32, "to": 149, "label": "EVAL-BACKTRACK" }, { "from": 148, "to": 150, "label": "CASE" }, { "from": 150, "to": 151, "label": "PARALLEL" }, { "from": 150, "to": 152, "label": "PARALLEL" }, { "from": 151, "to": 156, "label": "EVAL with clause\nmember(X20, .(X20, X21)).\nand substitutionT11 -> T21,\nX20 -> T21,\nX21 -> T22,\nT10 -> .(T21, T22),\nT12 -> T23" }, { "from": 151, "to": 157, "label": "EVAL-BACKTRACK" }, { "from": 152, "to": 180, "label": "EVAL with clause\nmember(X30, .(X31, X32)) :- member(X30, X32).\nand substitutionT11 -> T37,\nX30 -> T37,\nX31 -> T35,\nX32 -> T36,\nT10 -> .(T35, T36),\nT34 -> T37,\nT12 -> T38" }, { "from": 152, "to": 181, "label": "EVAL-BACKTRACK" }, { "from": 156, "to": 2, "label": "INSTANCE with matching:\nT1 -> T23\nT2 -> .(T21, T22)" }, { "from": 180, "to": 182, "label": "SPLIT 1" }, { "from": 180, "to": 183, "label": "SPLIT 2\nnew knowledge:\nT37 is ground\nT36 is ground\nreplacements:T38 -> T43" }, { "from": 182, "to": 184, "label": "CASE" }, { "from": 183, "to": 2, "label": "INSTANCE with matching:\nT1 -> T43\nT2 -> .(T35, T36)" }, { "from": 184, "to": 185, "label": "PARALLEL" }, { "from": 184, "to": 186, "label": "PARALLEL" }, { "from": 185, "to": 187, "label": "EVAL with clause\nmember(X49, .(X49, X50)).\nand substitutionT37 -> T56,\nX49 -> T56,\nX50 -> T57,\nT36 -> .(T56, T57)" }, { "from": 185, "to": 188, "label": "EVAL-BACKTRACK" }, { "from": 186, "to": 190, "label": "EVAL with clause\nmember(X57, .(X58, X59)) :- member(X57, X59).\nand substitutionT37 -> T67,\nX57 -> T67,\nX58 -> T65,\nX59 -> T66,\nT36 -> .(T65, T66),\nT64 -> T67" }, { "from": 186, "to": 191, "label": "EVAL-BACKTRACK" }, { "from": 187, "to": 189, "label": "SUCCESS" }, { "from": 190, "to": 182, "label": "INSTANCE with matching:\nT37 -> T67\nT36 -> T66" }, { "from": 192, "to": 194, "label": "CASE" }, { "from": 194, "to": 195, "label": "PARALLEL" }, { "from": 194, "to": 196, "label": "PARALLEL" }, { "from": 195, "to": 197, "label": "EVAL with clause\nmember(X80, .(X80, X81)).\nand substitutionT82 -> T92,\nX80 -> T92,\nX81 -> T93,\nT81 -> .(T92, T93),\nT83 -> T94" }, { "from": 195, "to": 198, "label": "EVAL-BACKTRACK" }, { "from": 196, "to": 199, "label": "EVAL with clause\nmember(X90, .(X91, X92)) :- member(X90, X92).\nand substitutionT82 -> T108,\nX90 -> T108,\nX91 -> T106,\nX92 -> T107,\nT81 -> .(T106, T107),\nT105 -> T108,\nT83 -> T109" }, { "from": 196, "to": 200, "label": "EVAL-BACKTRACK" }, { "from": 197, "to": 2, "label": "INSTANCE with matching:\nT1 -> T94\nT2 -> .(T92, T93)" }, { "from": 199, "to": 180, "label": "INSTANCE with matching:\nT37 -> T108\nT36 -> T107\nT38 -> T109\nT35 -> T106" } ], "type": "Graph" } } ---------------------------------------- (86) Obligation: Triples: memberC(X1, .(X2, X3)) :- memberC(X1, X3). pB(X1, X2, X3, X4) :- memberC(X1, X2). pB(X1, X2, X3, X4) :- ','(membercC(X1, X2), subsetA(X3, .(X4, X2))). subsetA(.(X1, X2), .(X1, X3)) :- subsetA(X2, .(X1, X3)). subsetA(.(X1, X2), .(X3, X4)) :- pB(X1, X4, X2, X3). subsetA(.(X1, X2), .(X1, X3)) :- subsetA(X2, .(X1, X3)). subsetA(.(X1, X2), .(X3, X4)) :- pB(X1, X4, X2, X3). Clauses: subsetcA([], X1). subsetcA(.(X1, X2), .(X1, X3)) :- subsetcA(X2, .(X1, X3)). subsetcA(.(X1, X2), .(X3, X4)) :- qcB(X1, X4, X2, X3). subsetcA(.(X1, X2), .(X1, X3)) :- subsetcA(X2, .(X1, X3)). subsetcA(.(X1, X2), .(X3, X4)) :- qcB(X1, X4, X2, X3). membercC(X1, .(X1, X2)). membercC(X1, .(X2, X3)) :- membercC(X1, X3). qcB(X1, X2, X3, X4) :- ','(membercC(X1, X2), subsetcA(X3, .(X4, X2))). Afs: subsetA(x1, x2) = subsetA(x2) ---------------------------------------- (87) TriplesToPiDPProof (SOUND) We use the technique of [DT09]. With regard to the inferred argument filtering the predicates were used in the following modes: subsetA_in_2: (f,b) pB_in_4: (f,b,f,b) memberC_in_2: (f,b) membercC_in_2: (f,b) Transforming TRIPLES into the following Term Rewriting System: Pi DP problem: The TRS P consists of the following rules: SUBSETA_IN_AG(.(X1, X2), .(X1, X3)) -> U5_AG(X1, X2, X3, subsetA_in_ag(X2, .(X1, X3))) SUBSETA_IN_AG(.(X1, X2), .(X1, X3)) -> SUBSETA_IN_AG(X2, .(X1, X3)) SUBSETA_IN_AG(.(X1, X2), .(X3, X4)) -> U6_AG(X1, X2, X3, X4, pB_in_agag(X1, X4, X2, X3)) SUBSETA_IN_AG(.(X1, X2), .(X3, X4)) -> PB_IN_AGAG(X1, X4, X2, X3) PB_IN_AGAG(X1, X2, X3, X4) -> U2_AGAG(X1, X2, X3, X4, memberC_in_ag(X1, X2)) PB_IN_AGAG(X1, X2, X3, X4) -> MEMBERC_IN_AG(X1, X2) MEMBERC_IN_AG(X1, .(X2, X3)) -> U1_AG(X1, X2, X3, memberC_in_ag(X1, X3)) MEMBERC_IN_AG(X1, .(X2, X3)) -> MEMBERC_IN_AG(X1, X3) PB_IN_AGAG(X1, X2, X3, X4) -> U3_AGAG(X1, X2, X3, X4, membercC_in_ag(X1, X2)) U3_AGAG(X1, X2, X3, X4, membercC_out_ag(X1, X2)) -> U4_AGAG(X1, X2, X3, X4, subsetA_in_ag(X3, .(X4, X2))) U3_AGAG(X1, X2, X3, X4, membercC_out_ag(X1, X2)) -> SUBSETA_IN_AG(X3, .(X4, X2)) The TRS R consists of the following rules: membercC_in_ag(X1, .(X1, X2)) -> membercC_out_ag(X1, .(X1, X2)) membercC_in_ag(X1, .(X2, X3)) -> U10_ag(X1, X2, X3, membercC_in_ag(X1, X3)) U10_ag(X1, X2, X3, membercC_out_ag(X1, X3)) -> membercC_out_ag(X1, .(X2, X3)) The argument filtering Pi contains the following mapping: subsetA_in_ag(x1, x2) = subsetA_in_ag(x2) .(x1, x2) = .(x1, x2) pB_in_agag(x1, x2, x3, x4) = pB_in_agag(x2, x4) memberC_in_ag(x1, x2) = memberC_in_ag(x2) membercC_in_ag(x1, x2) = membercC_in_ag(x2) membercC_out_ag(x1, x2) = membercC_out_ag(x1, x2) U10_ag(x1, x2, x3, x4) = U10_ag(x2, x3, x4) SUBSETA_IN_AG(x1, x2) = SUBSETA_IN_AG(x2) U5_AG(x1, x2, x3, x4) = U5_AG(x1, x3, x4) U6_AG(x1, x2, x3, x4, x5) = U6_AG(x3, x4, x5) PB_IN_AGAG(x1, x2, x3, x4) = PB_IN_AGAG(x2, x4) U2_AGAG(x1, x2, x3, x4, x5) = U2_AGAG(x2, x4, x5) MEMBERC_IN_AG(x1, x2) = MEMBERC_IN_AG(x2) U1_AG(x1, x2, x3, x4) = U1_AG(x2, x3, x4) U3_AGAG(x1, x2, x3, x4, x5) = U3_AGAG(x2, x4, x5) U4_AGAG(x1, x2, x3, x4, x5) = U4_AGAG(x1, x2, x4, x5) We have to consider all (P,R,Pi)-chains Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES ---------------------------------------- (88) Obligation: Pi DP problem: The TRS P consists of the following rules: SUBSETA_IN_AG(.(X1, X2), .(X1, X3)) -> U5_AG(X1, X2, X3, subsetA_in_ag(X2, .(X1, X3))) SUBSETA_IN_AG(.(X1, X2), .(X1, X3)) -> SUBSETA_IN_AG(X2, .(X1, X3)) SUBSETA_IN_AG(.(X1, X2), .(X3, X4)) -> U6_AG(X1, X2, X3, X4, pB_in_agag(X1, X4, X2, X3)) SUBSETA_IN_AG(.(X1, X2), .(X3, X4)) -> PB_IN_AGAG(X1, X4, X2, X3) PB_IN_AGAG(X1, X2, X3, X4) -> U2_AGAG(X1, X2, X3, X4, memberC_in_ag(X1, X2)) PB_IN_AGAG(X1, X2, X3, X4) -> MEMBERC_IN_AG(X1, X2) MEMBERC_IN_AG(X1, .(X2, X3)) -> U1_AG(X1, X2, X3, memberC_in_ag(X1, X3)) MEMBERC_IN_AG(X1, .(X2, X3)) -> MEMBERC_IN_AG(X1, X3) PB_IN_AGAG(X1, X2, X3, X4) -> U3_AGAG(X1, X2, X3, X4, membercC_in_ag(X1, X2)) U3_AGAG(X1, X2, X3, X4, membercC_out_ag(X1, X2)) -> U4_AGAG(X1, X2, X3, X4, subsetA_in_ag(X3, .(X4, X2))) U3_AGAG(X1, X2, X3, X4, membercC_out_ag(X1, X2)) -> SUBSETA_IN_AG(X3, .(X4, X2)) The TRS R consists of the following rules: membercC_in_ag(X1, .(X1, X2)) -> membercC_out_ag(X1, .(X1, X2)) membercC_in_ag(X1, .(X2, X3)) -> U10_ag(X1, X2, X3, membercC_in_ag(X1, X3)) U10_ag(X1, X2, X3, membercC_out_ag(X1, X3)) -> membercC_out_ag(X1, .(X2, X3)) The argument filtering Pi contains the following mapping: subsetA_in_ag(x1, x2) = subsetA_in_ag(x2) .(x1, x2) = .(x1, x2) pB_in_agag(x1, x2, x3, x4) = pB_in_agag(x2, x4) memberC_in_ag(x1, x2) = memberC_in_ag(x2) membercC_in_ag(x1, x2) = membercC_in_ag(x2) membercC_out_ag(x1, x2) = membercC_out_ag(x1, x2) U10_ag(x1, x2, x3, x4) = U10_ag(x2, x3, x4) SUBSETA_IN_AG(x1, x2) = SUBSETA_IN_AG(x2) U5_AG(x1, x2, x3, x4) = U5_AG(x1, x3, x4) U6_AG(x1, x2, x3, x4, x5) = U6_AG(x3, x4, x5) PB_IN_AGAG(x1, x2, x3, x4) = PB_IN_AGAG(x2, x4) U2_AGAG(x1, x2, x3, x4, x5) = U2_AGAG(x2, x4, x5) MEMBERC_IN_AG(x1, x2) = MEMBERC_IN_AG(x2) U1_AG(x1, x2, x3, x4) = U1_AG(x2, x3, x4) U3_AGAG(x1, x2, x3, x4, x5) = U3_AGAG(x2, x4, x5) U4_AGAG(x1, x2, x3, x4, x5) = U4_AGAG(x1, x2, x4, x5) We have to consider all (P,R,Pi)-chains ---------------------------------------- (89) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 6 less nodes. ---------------------------------------- (90) Complex Obligation (AND) ---------------------------------------- (91) Obligation: Pi DP problem: The TRS P consists of the following rules: MEMBERC_IN_AG(X1, .(X2, X3)) -> MEMBERC_IN_AG(X1, X3) The TRS R consists of the following rules: membercC_in_ag(X1, .(X1, X2)) -> membercC_out_ag(X1, .(X1, X2)) membercC_in_ag(X1, .(X2, X3)) -> U10_ag(X1, X2, X3, membercC_in_ag(X1, X3)) U10_ag(X1, X2, X3, membercC_out_ag(X1, X3)) -> membercC_out_ag(X1, .(X2, X3)) The argument filtering Pi contains the following mapping: .(x1, x2) = .(x1, x2) membercC_in_ag(x1, x2) = membercC_in_ag(x2) membercC_out_ag(x1, x2) = membercC_out_ag(x1, x2) U10_ag(x1, x2, x3, x4) = U10_ag(x2, x3, x4) MEMBERC_IN_AG(x1, x2) = MEMBERC_IN_AG(x2) We have to consider all (P,R,Pi)-chains ---------------------------------------- (92) UsableRulesProof (EQUIVALENT) For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. ---------------------------------------- (93) Obligation: Pi DP problem: The TRS P consists of the following rules: MEMBERC_IN_AG(X1, .(X2, X3)) -> MEMBERC_IN_AG(X1, X3) R is empty. The argument filtering Pi contains the following mapping: .(x1, x2) = .(x1, x2) MEMBERC_IN_AG(x1, x2) = MEMBERC_IN_AG(x2) We have to consider all (P,R,Pi)-chains ---------------------------------------- (94) PiDPToQDPProof (SOUND) Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. ---------------------------------------- (95) Obligation: Q DP problem: The TRS P consists of the following rules: MEMBERC_IN_AG(.(X2, X3)) -> MEMBERC_IN_AG(X3) R is empty. Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (96) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MEMBERC_IN_AG(.(X2, X3)) -> MEMBERC_IN_AG(X3) The graph contains the following edges 1 > 1 ---------------------------------------- (97) YES ---------------------------------------- (98) Obligation: Pi DP problem: The TRS P consists of the following rules: SUBSETA_IN_AG(.(X1, X2), .(X3, X4)) -> PB_IN_AGAG(X1, X4, X2, X3) PB_IN_AGAG(X1, X2, X3, X4) -> U3_AGAG(X1, X2, X3, X4, membercC_in_ag(X1, X2)) U3_AGAG(X1, X2, X3, X4, membercC_out_ag(X1, X2)) -> SUBSETA_IN_AG(X3, .(X4, X2)) SUBSETA_IN_AG(.(X1, X2), .(X1, X3)) -> SUBSETA_IN_AG(X2, .(X1, X3)) The TRS R consists of the following rules: membercC_in_ag(X1, .(X1, X2)) -> membercC_out_ag(X1, .(X1, X2)) membercC_in_ag(X1, .(X2, X3)) -> U10_ag(X1, X2, X3, membercC_in_ag(X1, X3)) U10_ag(X1, X2, X3, membercC_out_ag(X1, X3)) -> membercC_out_ag(X1, .(X2, X3)) The argument filtering Pi contains the following mapping: .(x1, x2) = .(x1, x2) membercC_in_ag(x1, x2) = membercC_in_ag(x2) membercC_out_ag(x1, x2) = membercC_out_ag(x1, x2) U10_ag(x1, x2, x3, x4) = U10_ag(x2, x3, x4) SUBSETA_IN_AG(x1, x2) = SUBSETA_IN_AG(x2) PB_IN_AGAG(x1, x2, x3, x4) = PB_IN_AGAG(x2, x4) U3_AGAG(x1, x2, x3, x4, x5) = U3_AGAG(x2, x4, x5) We have to consider all (P,R,Pi)-chains ---------------------------------------- (99) PiDPToQDPProof (SOUND) Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. ---------------------------------------- (100) Obligation: Q DP problem: The TRS P consists of the following rules: SUBSETA_IN_AG(.(X3, X4)) -> PB_IN_AGAG(X4, X3) PB_IN_AGAG(X2, X4) -> U3_AGAG(X2, X4, membercC_in_ag(X2)) U3_AGAG(X2, X4, membercC_out_ag(X1, X2)) -> SUBSETA_IN_AG(.(X4, X2)) SUBSETA_IN_AG(.(X1, X3)) -> SUBSETA_IN_AG(.(X1, X3)) The TRS R consists of the following rules: membercC_in_ag(.(X1, X2)) -> membercC_out_ag(X1, .(X1, X2)) membercC_in_ag(.(X2, X3)) -> U10_ag(X2, X3, membercC_in_ag(X3)) U10_ag(X2, X3, membercC_out_ag(X1, X3)) -> membercC_out_ag(X1, .(X2, X3)) The set Q consists of the following terms: membercC_in_ag(x0) U10_ag(x0, x1, x2) We have to consider all (P,Q,R)-chains.