MAYBE DP problem for innermost termination. P = f4#(x1, x2, x3, x4, x5) -> f3#(x1, x2, x3, x4, x5) f3#(I0, I1, I2, I3, I4) -> f2#(I0, I1, I2, I3, I0 + I4) [1 + I0 <= I0 + I4] f3#(I5, I6, I7, I8, I9) -> f1#(I5, I6, I7, I8, I6 + I9) [1 + I5 <= I6 + I9] f2#(I10, I11, I12, I13, I14) -> f1#(I10, I11, I12, I13, I13 + I14) [1 + I10 <= I13 + I14] f1#(I15, I16, I17, I18, I19) -> f2#(I15, I16, I17, I18, I17 + I19) [1 + I15 <= I17 + I19] R = f4(x1, x2, x3, x4, x5) -> f3(x1, x2, x3, x4, x5) f3(I0, I1, I2, I3, I4) -> f2(I0, I1, I2, I3, I0 + I4) [1 + I0 <= I0 + I4] f3(I5, I6, I7, I8, I9) -> f1(I5, I6, I7, I8, I6 + I9) [1 + I5 <= I6 + I9] f2(I10, I11, I12, I13, I14) -> f1(I10, I11, I12, I13, I13 + I14) [1 + I10 <= I13 + I14] f1(I15, I16, I17, I18, I19) -> f2(I15, I16, I17, I18, I17 + I19) [1 + I15 <= I17 + I19] The dependency graph for this problem is: 0 -> 1, 2 1 -> 3 2 -> 4 3 -> 4 4 -> 3 Where: 0) f4#(x1, x2, x3, x4, x5) -> f3#(x1, x2, x3, x4, x5) 1) f3#(I0, I1, I2, I3, I4) -> f2#(I0, I1, I2, I3, I0 + I4) [1 + I0 <= I0 + I4] 2) f3#(I5, I6, I7, I8, I9) -> f1#(I5, I6, I7, I8, I6 + I9) [1 + I5 <= I6 + I9] 3) f2#(I10, I11, I12, I13, I14) -> f1#(I10, I11, I12, I13, I13 + I14) [1 + I10 <= I13 + I14] 4) f1#(I15, I16, I17, I18, I19) -> f2#(I15, I16, I17, I18, I17 + I19) [1 + I15 <= I17 + I19] We have the following SCCs. { 3, 4 } DP problem for innermost termination. P = f2#(I10, I11, I12, I13, I14) -> f1#(I10, I11, I12, I13, I13 + I14) [1 + I10 <= I13 + I14] f1#(I15, I16, I17, I18, I19) -> f2#(I15, I16, I17, I18, I17 + I19) [1 + I15 <= I17 + I19] R = f4(x1, x2, x3, x4, x5) -> f3(x1, x2, x3, x4, x5) f3(I0, I1, I2, I3, I4) -> f2(I0, I1, I2, I3, I0 + I4) [1 + I0 <= I0 + I4] f3(I5, I6, I7, I8, I9) -> f1(I5, I6, I7, I8, I6 + I9) [1 + I5 <= I6 + I9] f2(I10, I11, I12, I13, I14) -> f1(I10, I11, I12, I13, I13 + I14) [1 + I10 <= I13 + I14] f1(I15, I16, I17, I18, I19) -> f2(I15, I16, I17, I18, I17 + I19) [1 + I15 <= I17 + I19]