WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 163 ms] (4) CpxRelTRS (5) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxWeightedTrs (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxTypedWeightedTrs (11) CompletionProof [UPPER BOUND(ID), 0 ms] (12) CpxTypedWeightedCompleteTrs (13) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxTypedWeightedCompleteTrs (15) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (16) CpxRNTS (17) InliningProof [UPPER BOUND(ID), 36 ms] (18) CpxRNTS (19) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (20) CpxRNTS (21) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (22) CpxRNTS (23) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 20 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 3 ms] (28) CpxRNTS (29) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 26 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 31 ms] (34) CpxRNTS (35) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 88 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 2 ms] (40) CpxRNTS (41) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (42) CpxRNTS (43) IntTrsBoundProof [UPPER BOUND(ID), 107 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 42 ms] (46) CpxRNTS (47) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (48) CpxRNTS (49) IntTrsBoundProof [UPPER BOUND(ID), 90 ms] (50) CpxRNTS (51) IntTrsBoundProof [UPPER BOUND(ID), 32 ms] (52) CpxRNTS (53) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (54) CpxRNTS (55) IntTrsBoundProof [UPPER BOUND(ID), 159 ms] (56) CpxRNTS (57) IntTrsBoundProof [UPPER BOUND(ID), 125 ms] (58) CpxRNTS (59) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (60) CpxRNTS (61) IntTrsBoundProof [UPPER BOUND(ID), 127 ms] (62) CpxRNTS (63) IntTrsBoundProof [UPPER BOUND(ID), 73 ms] (64) CpxRNTS (65) FinalProof [FINISHED, 0 ms] (66) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(x, x) -> f(a, b) b -> c S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(a) -> a encArg(c) -> c encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_b) -> b encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_b -> b encode_c -> c ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(x, x) -> f(a, b) b -> c The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(c) -> c encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_b) -> b encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_b -> b encode_c -> c Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(x, x) -> f(a, b) b -> c The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(c) -> c encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_b) -> b encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_b -> b encode_c -> c Rewrite Strategy: FULL ---------------------------------------- (5) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS is a non-duplicating overlay system, we have rc = irc. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(x, x) -> f(a, b) b -> c The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(c) -> c encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_b) -> b encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_b -> b encode_c -> c Rewrite Strategy: INNERMOST ---------------------------------------- (7) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(x, x) -> f(a, b) [1] b -> c [1] encArg(a) -> a [0] encArg(c) -> c [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encArg(cons_b) -> b [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_a -> a [0] encode_b -> b [0] encode_c -> c [0] Rewrite Strategy: INNERMOST ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(x, x) -> f(a, b) [1] b -> c [1] encArg(a) -> a [0] encArg(c) -> c [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encArg(cons_b) -> b [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_a -> a [0] encode_b -> b [0] encode_c -> c [0] The TRS has the following type information: f :: a:c:cons_f:cons_b -> a:c:cons_f:cons_b -> a:c:cons_f:cons_b a :: a:c:cons_f:cons_b b :: a:c:cons_f:cons_b c :: a:c:cons_f:cons_b encArg :: a:c:cons_f:cons_b -> a:c:cons_f:cons_b cons_f :: a:c:cons_f:cons_b -> a:c:cons_f:cons_b -> a:c:cons_f:cons_b cons_b :: a:c:cons_f:cons_b encode_f :: a:c:cons_f:cons_b -> a:c:cons_f:cons_b -> a:c:cons_f:cons_b encode_a :: a:c:cons_f:cons_b encode_b :: a:c:cons_f:cons_b encode_c :: a:c:cons_f:cons_b Rewrite Strategy: INNERMOST ---------------------------------------- (11) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: b f_2 encArg_1 encode_f_2 encode_a encode_b encode_c Due to the following rules being added: encArg(v0) -> null_encArg [0] encode_f(v0, v1) -> null_encode_f [0] encode_a -> null_encode_a [0] encode_b -> null_encode_b [0] encode_c -> null_encode_c [0] f(v0, v1) -> null_f [0] And the following fresh constants: null_encArg, null_encode_f, null_encode_a, null_encode_b, null_encode_c, null_f ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(x, x) -> f(a, b) [1] b -> c [1] encArg(a) -> a [0] encArg(c) -> c [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encArg(cons_b) -> b [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_a -> a [0] encode_b -> b [0] encode_c -> c [0] encArg(v0) -> null_encArg [0] encode_f(v0, v1) -> null_encode_f [0] encode_a -> null_encode_a [0] encode_b -> null_encode_b [0] encode_c -> null_encode_c [0] f(v0, v1) -> null_f [0] The TRS has the following type information: f :: a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f -> a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f -> a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f a :: a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f b :: a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f c :: a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f encArg :: a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f -> a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f cons_f :: a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f -> a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f -> a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f cons_b :: a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f encode_f :: a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f -> a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f -> a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f encode_a :: a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f encode_b :: a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f encode_c :: a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f null_encArg :: a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f null_encode_f :: a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f null_encode_a :: a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f null_encode_b :: a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f null_encode_c :: a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f null_f :: a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f Rewrite Strategy: INNERMOST ---------------------------------------- (13) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (14) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(x, x) -> f(a, c) [2] b -> c [1] encArg(a) -> a [0] encArg(c) -> c [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encArg(cons_b) -> b [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_a -> a [0] encode_b -> b [0] encode_c -> c [0] encArg(v0) -> null_encArg [0] encode_f(v0, v1) -> null_encode_f [0] encode_a -> null_encode_a [0] encode_b -> null_encode_b [0] encode_c -> null_encode_c [0] f(v0, v1) -> null_f [0] The TRS has the following type information: f :: a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f -> a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f -> a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f a :: a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f b :: a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f c :: a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f encArg :: a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f -> a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f cons_f :: a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f -> a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f -> a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f cons_b :: a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f encode_f :: a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f -> a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f -> a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f encode_a :: a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f encode_b :: a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f encode_c :: a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f null_encArg :: a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f null_encode_f :: a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f null_encode_a :: a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f null_encode_b :: a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f null_encode_c :: a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f null_f :: a:c:cons_f:cons_b:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f Rewrite Strategy: INNERMOST ---------------------------------------- (15) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: a => 0 c => 1 cons_b => 2 null_encArg => 0 null_encode_f => 0 null_encode_a => 0 null_encode_b => 0 null_encode_c => 0 null_f => 0 ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: b -{ 1 }-> 1 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> b :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> b :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 0 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_f(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 f(z, z') -{ 2 }-> f(0, 1) :|: z' = x, x >= 0, z = x f(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 ---------------------------------------- (17) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: b -{ 1 }-> 1 :|: ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: b -{ 1 }-> 1 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_a -{ 0 }-> 0 :|: encode_b -{ 1 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 0 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_f(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 f(z, z') -{ 2 }-> f(0, 1) :|: z' = x, x >= 0, z = x f(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 ---------------------------------------- (19) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: b -{ 1 }-> 1 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_a -{ 0 }-> 0 :|: encode_b -{ 1 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 0 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 2 }-> f(0, 1) :|: z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 ---------------------------------------- (21) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { encode_a } { encode_c } { f } { encode_b } { b } { encArg } { encode_f } ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: b -{ 1 }-> 1 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_a -{ 0 }-> 0 :|: encode_b -{ 1 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 0 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 2 }-> f(0, 1) :|: z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_a}, {encode_c}, {f}, {encode_b}, {b}, {encArg}, {encode_f} ---------------------------------------- (23) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: b -{ 1 }-> 1 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_a -{ 0 }-> 0 :|: encode_b -{ 1 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 0 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 2 }-> f(0, 1) :|: z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_a}, {encode_c}, {f}, {encode_b}, {b}, {encArg}, {encode_f} ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_a after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: b -{ 1 }-> 1 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_a -{ 0 }-> 0 :|: encode_b -{ 1 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 0 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 2 }-> f(0, 1) :|: z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_a}, {encode_c}, {f}, {encode_b}, {b}, {encArg}, {encode_f} Previous analysis results are: encode_a: runtime: ?, size: O(1) [0] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_a after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: b -{ 1 }-> 1 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_a -{ 0 }-> 0 :|: encode_b -{ 1 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 0 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 2 }-> f(0, 1) :|: z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_c}, {f}, {encode_b}, {b}, {encArg}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (29) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: b -{ 1 }-> 1 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_a -{ 0 }-> 0 :|: encode_b -{ 1 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 0 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 2 }-> f(0, 1) :|: z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_c}, {f}, {encode_b}, {b}, {encArg}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_c after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: b -{ 1 }-> 1 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_a -{ 0 }-> 0 :|: encode_b -{ 1 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 0 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 2 }-> f(0, 1) :|: z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_c}, {f}, {encode_b}, {b}, {encArg}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] encode_c: runtime: ?, size: O(1) [1] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_c after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: b -{ 1 }-> 1 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_a -{ 0 }-> 0 :|: encode_b -{ 1 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 0 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 2 }-> f(0, 1) :|: z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {f}, {encode_b}, {b}, {encArg}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] encode_c: runtime: O(1) [0], size: O(1) [1] ---------------------------------------- (35) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: b -{ 1 }-> 1 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_a -{ 0 }-> 0 :|: encode_b -{ 1 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 0 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 2 }-> f(0, 1) :|: z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {f}, {encode_b}, {b}, {encArg}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] encode_c: runtime: O(1) [0], size: O(1) [1] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: b -{ 1 }-> 1 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_a -{ 0 }-> 0 :|: encode_b -{ 1 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 0 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 2 }-> f(0, 1) :|: z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {f}, {encode_b}, {b}, {encArg}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] encode_c: runtime: O(1) [0], size: O(1) [1] f: runtime: ?, size: O(1) [0] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: b -{ 1 }-> 1 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_a -{ 0 }-> 0 :|: encode_b -{ 1 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 0 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 2 }-> f(0, 1) :|: z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_b}, {b}, {encArg}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] encode_c: runtime: O(1) [0], size: O(1) [1] f: runtime: O(1) [2], size: O(1) [0] ---------------------------------------- (41) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: b -{ 1 }-> 1 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_a -{ 0 }-> 0 :|: encode_b -{ 1 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 0 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 4 }-> s :|: s >= 0, s <= 0, z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_b}, {b}, {encArg}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] encode_c: runtime: O(1) [0], size: O(1) [1] f: runtime: O(1) [2], size: O(1) [0] ---------------------------------------- (43) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_b after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: b -{ 1 }-> 1 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_a -{ 0 }-> 0 :|: encode_b -{ 1 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 0 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 4 }-> s :|: s >= 0, s <= 0, z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_b}, {b}, {encArg}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] encode_c: runtime: O(1) [0], size: O(1) [1] f: runtime: O(1) [2], size: O(1) [0] encode_b: runtime: ?, size: O(1) [1] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_b after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: b -{ 1 }-> 1 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_a -{ 0 }-> 0 :|: encode_b -{ 1 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 0 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 4 }-> s :|: s >= 0, s <= 0, z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {b}, {encArg}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] encode_c: runtime: O(1) [0], size: O(1) [1] f: runtime: O(1) [2], size: O(1) [0] encode_b: runtime: O(1) [1], size: O(1) [1] ---------------------------------------- (47) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: b -{ 1 }-> 1 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_a -{ 0 }-> 0 :|: encode_b -{ 1 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 0 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 4 }-> s :|: s >= 0, s <= 0, z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {b}, {encArg}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] encode_c: runtime: O(1) [0], size: O(1) [1] f: runtime: O(1) [2], size: O(1) [0] encode_b: runtime: O(1) [1], size: O(1) [1] ---------------------------------------- (49) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: b after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: b -{ 1 }-> 1 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_a -{ 0 }-> 0 :|: encode_b -{ 1 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 0 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 4 }-> s :|: s >= 0, s <= 0, z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {b}, {encArg}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] encode_c: runtime: O(1) [0], size: O(1) [1] f: runtime: O(1) [2], size: O(1) [0] encode_b: runtime: O(1) [1], size: O(1) [1] b: runtime: ?, size: O(1) [1] ---------------------------------------- (51) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: b after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: b -{ 1 }-> 1 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_a -{ 0 }-> 0 :|: encode_b -{ 1 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 0 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 4 }-> s :|: s >= 0, s <= 0, z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encArg}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] encode_c: runtime: O(1) [0], size: O(1) [1] f: runtime: O(1) [2], size: O(1) [0] encode_b: runtime: O(1) [1], size: O(1) [1] b: runtime: O(1) [1], size: O(1) [1] ---------------------------------------- (53) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (54) Obligation: Complexity RNTS consisting of the following rules: b -{ 1 }-> 1 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_a -{ 0 }-> 0 :|: encode_b -{ 1 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 0 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 4 }-> s :|: s >= 0, s <= 0, z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encArg}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] encode_c: runtime: O(1) [0], size: O(1) [1] f: runtime: O(1) [2], size: O(1) [0] encode_b: runtime: O(1) [1], size: O(1) [1] b: runtime: O(1) [1], size: O(1) [1] ---------------------------------------- (55) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (56) Obligation: Complexity RNTS consisting of the following rules: b -{ 1 }-> 1 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_a -{ 0 }-> 0 :|: encode_b -{ 1 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 0 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 4 }-> s :|: s >= 0, s <= 0, z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encArg}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] encode_c: runtime: O(1) [0], size: O(1) [1] f: runtime: O(1) [2], size: O(1) [0] encode_b: runtime: O(1) [1], size: O(1) [1] b: runtime: O(1) [1], size: O(1) [1] encArg: runtime: ?, size: O(1) [1] ---------------------------------------- (57) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + 3*z ---------------------------------------- (58) Obligation: Complexity RNTS consisting of the following rules: b -{ 1 }-> 1 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_a -{ 0 }-> 0 :|: encode_b -{ 1 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 0 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 4 }-> s :|: s >= 0, s <= 0, z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] encode_c: runtime: O(1) [0], size: O(1) [1] f: runtime: O(1) [2], size: O(1) [0] encode_b: runtime: O(1) [1], size: O(1) [1] b: runtime: O(1) [1], size: O(1) [1] encArg: runtime: O(n^1) [1 + 3*z], size: O(1) [1] ---------------------------------------- (59) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (60) Obligation: Complexity RNTS consisting of the following rules: b -{ 1 }-> 1 :|: encArg(z) -{ 4 + 3*x_1 + 3*x_2 }-> s1 :|: s' >= 0, s' <= 1, s'' >= 0, s'' <= 1, s1 >= 0, s1 <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_a -{ 0 }-> 0 :|: encode_b -{ 1 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 0 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z') -{ 4 + 3*z + 3*z' }-> s4 :|: s2 >= 0, s2 <= 1, s3 >= 0, s3 <= 1, s4 >= 0, s4 <= 0, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 4 }-> s :|: s >= 0, s <= 0, z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] encode_c: runtime: O(1) [0], size: O(1) [1] f: runtime: O(1) [2], size: O(1) [0] encode_b: runtime: O(1) [1], size: O(1) [1] b: runtime: O(1) [1], size: O(1) [1] encArg: runtime: O(n^1) [1 + 3*z], size: O(1) [1] ---------------------------------------- (61) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_f after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (62) Obligation: Complexity RNTS consisting of the following rules: b -{ 1 }-> 1 :|: encArg(z) -{ 4 + 3*x_1 + 3*x_2 }-> s1 :|: s' >= 0, s' <= 1, s'' >= 0, s'' <= 1, s1 >= 0, s1 <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_a -{ 0 }-> 0 :|: encode_b -{ 1 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 0 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z') -{ 4 + 3*z + 3*z' }-> s4 :|: s2 >= 0, s2 <= 1, s3 >= 0, s3 <= 1, s4 >= 0, s4 <= 0, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 4 }-> s :|: s >= 0, s <= 0, z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] encode_c: runtime: O(1) [0], size: O(1) [1] f: runtime: O(1) [2], size: O(1) [0] encode_b: runtime: O(1) [1], size: O(1) [1] b: runtime: O(1) [1], size: O(1) [1] encArg: runtime: O(n^1) [1 + 3*z], size: O(1) [1] encode_f: runtime: ?, size: O(1) [0] ---------------------------------------- (63) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 4 + 3*z + 3*z' ---------------------------------------- (64) Obligation: Complexity RNTS consisting of the following rules: b -{ 1 }-> 1 :|: encArg(z) -{ 4 + 3*x_1 + 3*x_2 }-> s1 :|: s' >= 0, s' <= 1, s'' >= 0, s'' <= 1, s1 >= 0, s1 <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_a -{ 0 }-> 0 :|: encode_b -{ 1 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 0 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z') -{ 4 + 3*z + 3*z' }-> s4 :|: s2 >= 0, s2 <= 1, s3 >= 0, s3 <= 1, s4 >= 0, s4 <= 0, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 4 }-> s :|: s >= 0, s <= 0, z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] encode_c: runtime: O(1) [0], size: O(1) [1] f: runtime: O(1) [2], size: O(1) [0] encode_b: runtime: O(1) [1], size: O(1) [1] b: runtime: O(1) [1], size: O(1) [1] encArg: runtime: O(n^1) [1 + 3*z], size: O(1) [1] encode_f: runtime: O(n^1) [4 + 3*z + 3*z'], size: O(1) [0] ---------------------------------------- (65) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (66) BOUNDS(1, n^1)