WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 167 ms] (4) CpxRelTRS (5) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxWeightedTrs (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxTypedWeightedTrs (11) CompletionProof [UPPER BOUND(ID), 0 ms] (12) CpxTypedWeightedCompleteTrs (13) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxTypedWeightedCompleteTrs (15) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (16) CpxRNTS (17) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxRNTS (19) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (20) CpxRNTS (21) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 24 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 5 ms] (26) CpxRNTS (27) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 206 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 16 ms] (32) CpxRNTS (33) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 136 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 2 ms] (38) CpxRNTS (39) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (40) CpxRNTS (41) IntTrsBoundProof [UPPER BOUND(ID), 721 ms] (42) CpxRNTS (43) IntTrsBoundProof [UPPER BOUND(ID), 320 ms] (44) CpxRNTS (45) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (46) CpxRNTS (47) IntTrsBoundProof [UPPER BOUND(ID), 197 ms] (48) CpxRNTS (49) IntTrsBoundProof [UPPER BOUND(ID), 7 ms] (50) CpxRNTS (51) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (52) CpxRNTS (53) IntTrsBoundProof [UPPER BOUND(ID), 171 ms] (54) CpxRNTS (55) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (56) CpxRNTS (57) FinalProof [FINISHED, 0 ms] (58) BOUNDS(1, n^2) (59) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (60) CpxRelTRS (61) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (62) typed CpxTrs (63) OrderProof [LOWER BOUND(ID), 0 ms] (64) typed CpxTrs (65) RewriteLemmaProof [LOWER BOUND(ID), 1126 ms] (66) BEST (67) proven lower bound (68) LowerBoundPropagationProof [FINISHED, 0 ms] (69) BOUNDS(n^1, INF) (70) typed CpxTrs (71) RewriteLemmaProof [LOWER BOUND(ID), 11 ms] (72) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: rev(a) -> a rev(b) -> b rev(++(x, y)) -> ++(rev(y), rev(x)) rev(++(x, x)) -> rev(x) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(a) -> a encArg(b) -> b encArg(++(x_1, x_2)) -> ++(encArg(x_1), encArg(x_2)) encArg(cons_rev(x_1)) -> rev(encArg(x_1)) encode_rev(x_1) -> rev(encArg(x_1)) encode_a -> a encode_b -> b encode_++(x_1, x_2) -> ++(encArg(x_1), encArg(x_2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: rev(a) -> a rev(b) -> b rev(++(x, y)) -> ++(rev(y), rev(x)) rev(++(x, x)) -> rev(x) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(b) -> b encArg(++(x_1, x_2)) -> ++(encArg(x_1), encArg(x_2)) encArg(cons_rev(x_1)) -> rev(encArg(x_1)) encode_rev(x_1) -> rev(encArg(x_1)) encode_a -> a encode_b -> b encode_++(x_1, x_2) -> ++(encArg(x_1), encArg(x_2)) Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: rev(a) -> a rev(b) -> b rev(++(x, y)) -> ++(rev(y), rev(x)) rev(++(x, x)) -> rev(x) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(b) -> b encArg(++(x_1, x_2)) -> ++(encArg(x_1), encArg(x_2)) encArg(cons_rev(x_1)) -> rev(encArg(x_1)) encode_rev(x_1) -> rev(encArg(x_1)) encode_a -> a encode_b -> b encode_++(x_1, x_2) -> ++(encArg(x_1), encArg(x_2)) Rewrite Strategy: FULL ---------------------------------------- (5) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS is a non-duplicating overlay system, we have rc = irc. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: rev(a) -> a rev(b) -> b rev(++(x, y)) -> ++(rev(y), rev(x)) rev(++(x, x)) -> rev(x) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(b) -> b encArg(++(x_1, x_2)) -> ++(encArg(x_1), encArg(x_2)) encArg(cons_rev(x_1)) -> rev(encArg(x_1)) encode_rev(x_1) -> rev(encArg(x_1)) encode_a -> a encode_b -> b encode_++(x_1, x_2) -> ++(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: rev(a) -> a [1] rev(b) -> b [1] rev(++(x, y)) -> ++(rev(y), rev(x)) [1] rev(++(x, x)) -> rev(x) [1] encArg(a) -> a [0] encArg(b) -> b [0] encArg(++(x_1, x_2)) -> ++(encArg(x_1), encArg(x_2)) [0] encArg(cons_rev(x_1)) -> rev(encArg(x_1)) [0] encode_rev(x_1) -> rev(encArg(x_1)) [0] encode_a -> a [0] encode_b -> b [0] encode_++(x_1, x_2) -> ++(encArg(x_1), encArg(x_2)) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: rev(a) -> a [1] rev(b) -> b [1] rev(++(x, y)) -> ++(rev(y), rev(x)) [1] rev(++(x, x)) -> rev(x) [1] encArg(a) -> a [0] encArg(b) -> b [0] encArg(++(x_1, x_2)) -> ++(encArg(x_1), encArg(x_2)) [0] encArg(cons_rev(x_1)) -> rev(encArg(x_1)) [0] encode_rev(x_1) -> rev(encArg(x_1)) [0] encode_a -> a [0] encode_b -> b [0] encode_++(x_1, x_2) -> ++(encArg(x_1), encArg(x_2)) [0] The TRS has the following type information: rev :: a:b:++:cons_rev -> a:b:++:cons_rev a :: a:b:++:cons_rev b :: a:b:++:cons_rev ++ :: a:b:++:cons_rev -> a:b:++:cons_rev -> a:b:++:cons_rev encArg :: a:b:++:cons_rev -> a:b:++:cons_rev cons_rev :: a:b:++:cons_rev -> a:b:++:cons_rev encode_rev :: a:b:++:cons_rev -> a:b:++:cons_rev encode_a :: a:b:++:cons_rev encode_b :: a:b:++:cons_rev encode_++ :: a:b:++:cons_rev -> a:b:++:cons_rev -> a:b:++:cons_rev Rewrite Strategy: INNERMOST ---------------------------------------- (11) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: rev_1 encArg_1 encode_rev_1 encode_a encode_b encode_++_2 Due to the following rules being added: encArg(v0) -> null_encArg [0] encode_rev(v0) -> null_encode_rev [0] encode_a -> null_encode_a [0] encode_b -> null_encode_b [0] encode_++(v0, v1) -> null_encode_++ [0] rev(v0) -> null_rev [0] And the following fresh constants: null_encArg, null_encode_rev, null_encode_a, null_encode_b, null_encode_++, null_rev ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: rev(a) -> a [1] rev(b) -> b [1] rev(++(x, y)) -> ++(rev(y), rev(x)) [1] rev(++(x, x)) -> rev(x) [1] encArg(a) -> a [0] encArg(b) -> b [0] encArg(++(x_1, x_2)) -> ++(encArg(x_1), encArg(x_2)) [0] encArg(cons_rev(x_1)) -> rev(encArg(x_1)) [0] encode_rev(x_1) -> rev(encArg(x_1)) [0] encode_a -> a [0] encode_b -> b [0] encode_++(x_1, x_2) -> ++(encArg(x_1), encArg(x_2)) [0] encArg(v0) -> null_encArg [0] encode_rev(v0) -> null_encode_rev [0] encode_a -> null_encode_a [0] encode_b -> null_encode_b [0] encode_++(v0, v1) -> null_encode_++ [0] rev(v0) -> null_rev [0] The TRS has the following type information: rev :: a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev -> a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev a :: a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev b :: a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev ++ :: a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev -> a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev -> a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev encArg :: a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev -> a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev cons_rev :: a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev -> a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev encode_rev :: a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev -> a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev encode_a :: a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev encode_b :: a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev encode_++ :: a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev -> a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev -> a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev null_encArg :: a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev null_encode_rev :: a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev null_encode_a :: a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev null_encode_b :: a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev null_encode_++ :: a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev null_rev :: a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev Rewrite Strategy: INNERMOST ---------------------------------------- (13) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (14) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: rev(a) -> a [1] rev(b) -> b [1] rev(++(x, y)) -> ++(rev(y), rev(x)) [1] rev(++(x, x)) -> rev(x) [1] encArg(a) -> a [0] encArg(b) -> b [0] encArg(++(x_1, x_2)) -> ++(encArg(x_1), encArg(x_2)) [0] encArg(cons_rev(a)) -> rev(a) [0] encArg(cons_rev(b)) -> rev(b) [0] encArg(cons_rev(++(x_1', x_2'))) -> rev(++(encArg(x_1'), encArg(x_2'))) [0] encArg(cons_rev(cons_rev(x_1''))) -> rev(rev(encArg(x_1''))) [0] encArg(cons_rev(x_1)) -> rev(null_encArg) [0] encode_rev(a) -> rev(a) [0] encode_rev(b) -> rev(b) [0] encode_rev(++(x_11, x_2'')) -> rev(++(encArg(x_11), encArg(x_2''))) [0] encode_rev(cons_rev(x_12)) -> rev(rev(encArg(x_12))) [0] encode_rev(x_1) -> rev(null_encArg) [0] encode_a -> a [0] encode_b -> b [0] encode_++(x_1, x_2) -> ++(encArg(x_1), encArg(x_2)) [0] encArg(v0) -> null_encArg [0] encode_rev(v0) -> null_encode_rev [0] encode_a -> null_encode_a [0] encode_b -> null_encode_b [0] encode_++(v0, v1) -> null_encode_++ [0] rev(v0) -> null_rev [0] The TRS has the following type information: rev :: a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev -> a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev a :: a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev b :: a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev ++ :: a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev -> a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev -> a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev encArg :: a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev -> a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev cons_rev :: a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev -> a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev encode_rev :: a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev -> a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev encode_a :: a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev encode_b :: a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev encode_++ :: a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev -> a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev -> a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev null_encArg :: a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev null_encode_rev :: a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev null_encode_a :: a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev null_encode_b :: a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev null_encode_++ :: a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev null_rev :: a:b:++:cons_rev:null_encArg:null_encode_rev:null_encode_a:null_encode_b:null_encode_++:null_rev Rewrite Strategy: INNERMOST ---------------------------------------- (15) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: a => 0 b => 1 null_encArg => 0 null_encode_rev => 0 null_encode_a => 0 null_encode_b => 0 null_encode_++ => 0 null_rev => 0 ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> rev(rev(encArg(x_1''))) :|: z = 1 + (1 + x_1''), x_1'' >= 0 encArg(z) -{ 0 }-> rev(1) :|: z = 1 + 1 encArg(z) -{ 0 }-> rev(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> rev(0) :|: z = 1 + x_1, x_1 >= 0 encArg(z) -{ 0 }-> rev(1 + encArg(x_1') + encArg(x_2')) :|: z = 1 + (1 + x_1' + x_2'), x_2' >= 0, x_1' >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_++(z, z') -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_rev(z) -{ 0 }-> rev(rev(encArg(x_12))) :|: z = 1 + x_12, x_12 >= 0 encode_rev(z) -{ 0 }-> rev(1) :|: z = 1 encode_rev(z) -{ 0 }-> rev(0) :|: z = 0 encode_rev(z) -{ 0 }-> rev(0) :|: x_1 >= 0, z = x_1 encode_rev(z) -{ 0 }-> rev(1 + encArg(x_11) + encArg(x_2'')) :|: z = 1 + x_11 + x_2'', x_11 >= 0, x_2'' >= 0 encode_rev(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 rev(z) -{ 1 }-> rev(x) :|: z = 1 + x + x, x >= 0 rev(z) -{ 1 }-> 1 :|: z = 1 rev(z) -{ 1 }-> 0 :|: z = 0 rev(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 rev(z) -{ 1 }-> 1 + rev(y) + rev(x) :|: z = 1 + x + y, x >= 0, y >= 0 ---------------------------------------- (17) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> rev(rev(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> rev(1) :|: z = 1 + 1 encArg(z) -{ 0 }-> rev(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> rev(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> rev(1 + encArg(x_1') + encArg(x_2')) :|: z = 1 + (1 + x_1' + x_2'), x_2' >= 0, x_1' >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_++(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_rev(z) -{ 0 }-> rev(rev(encArg(z - 1))) :|: z - 1 >= 0 encode_rev(z) -{ 0 }-> rev(1) :|: z = 1 encode_rev(z) -{ 0 }-> rev(0) :|: z = 0 encode_rev(z) -{ 0 }-> rev(0) :|: z >= 0 encode_rev(z) -{ 0 }-> rev(1 + encArg(x_11) + encArg(x_2'')) :|: z = 1 + x_11 + x_2'', x_11 >= 0, x_2'' >= 0 encode_rev(z) -{ 0 }-> 0 :|: z >= 0 rev(z) -{ 1 }-> rev(x) :|: z = 1 + x + x, x >= 0 rev(z) -{ 1 }-> 1 :|: z = 1 rev(z) -{ 1 }-> 0 :|: z = 0 rev(z) -{ 0 }-> 0 :|: z >= 0 rev(z) -{ 1 }-> 1 + rev(y) + rev(x) :|: z = 1 + x + y, x >= 0, y >= 0 ---------------------------------------- (19) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { encode_a } { rev } { encode_b } { encArg } { encode_rev } { encode_++ } ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> rev(rev(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> rev(1) :|: z = 1 + 1 encArg(z) -{ 0 }-> rev(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> rev(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> rev(1 + encArg(x_1') + encArg(x_2')) :|: z = 1 + (1 + x_1' + x_2'), x_2' >= 0, x_1' >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_++(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_rev(z) -{ 0 }-> rev(rev(encArg(z - 1))) :|: z - 1 >= 0 encode_rev(z) -{ 0 }-> rev(1) :|: z = 1 encode_rev(z) -{ 0 }-> rev(0) :|: z = 0 encode_rev(z) -{ 0 }-> rev(0) :|: z >= 0 encode_rev(z) -{ 0 }-> rev(1 + encArg(x_11) + encArg(x_2'')) :|: z = 1 + x_11 + x_2'', x_11 >= 0, x_2'' >= 0 encode_rev(z) -{ 0 }-> 0 :|: z >= 0 rev(z) -{ 1 }-> rev(x) :|: z = 1 + x + x, x >= 0 rev(z) -{ 1 }-> 1 :|: z = 1 rev(z) -{ 1 }-> 0 :|: z = 0 rev(z) -{ 0 }-> 0 :|: z >= 0 rev(z) -{ 1 }-> 1 + rev(y) + rev(x) :|: z = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {encode_a}, {rev}, {encode_b}, {encArg}, {encode_rev}, {encode_++} ---------------------------------------- (21) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> rev(rev(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> rev(1) :|: z = 1 + 1 encArg(z) -{ 0 }-> rev(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> rev(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> rev(1 + encArg(x_1') + encArg(x_2')) :|: z = 1 + (1 + x_1' + x_2'), x_2' >= 0, x_1' >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_++(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_rev(z) -{ 0 }-> rev(rev(encArg(z - 1))) :|: z - 1 >= 0 encode_rev(z) -{ 0 }-> rev(1) :|: z = 1 encode_rev(z) -{ 0 }-> rev(0) :|: z = 0 encode_rev(z) -{ 0 }-> rev(0) :|: z >= 0 encode_rev(z) -{ 0 }-> rev(1 + encArg(x_11) + encArg(x_2'')) :|: z = 1 + x_11 + x_2'', x_11 >= 0, x_2'' >= 0 encode_rev(z) -{ 0 }-> 0 :|: z >= 0 rev(z) -{ 1 }-> rev(x) :|: z = 1 + x + x, x >= 0 rev(z) -{ 1 }-> 1 :|: z = 1 rev(z) -{ 1 }-> 0 :|: z = 0 rev(z) -{ 0 }-> 0 :|: z >= 0 rev(z) -{ 1 }-> 1 + rev(y) + rev(x) :|: z = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {encode_a}, {rev}, {encode_b}, {encArg}, {encode_rev}, {encode_++} ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_a after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> rev(rev(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> rev(1) :|: z = 1 + 1 encArg(z) -{ 0 }-> rev(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> rev(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> rev(1 + encArg(x_1') + encArg(x_2')) :|: z = 1 + (1 + x_1' + x_2'), x_2' >= 0, x_1' >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_++(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_rev(z) -{ 0 }-> rev(rev(encArg(z - 1))) :|: z - 1 >= 0 encode_rev(z) -{ 0 }-> rev(1) :|: z = 1 encode_rev(z) -{ 0 }-> rev(0) :|: z = 0 encode_rev(z) -{ 0 }-> rev(0) :|: z >= 0 encode_rev(z) -{ 0 }-> rev(1 + encArg(x_11) + encArg(x_2'')) :|: z = 1 + x_11 + x_2'', x_11 >= 0, x_2'' >= 0 encode_rev(z) -{ 0 }-> 0 :|: z >= 0 rev(z) -{ 1 }-> rev(x) :|: z = 1 + x + x, x >= 0 rev(z) -{ 1 }-> 1 :|: z = 1 rev(z) -{ 1 }-> 0 :|: z = 0 rev(z) -{ 0 }-> 0 :|: z >= 0 rev(z) -{ 1 }-> 1 + rev(y) + rev(x) :|: z = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {encode_a}, {rev}, {encode_b}, {encArg}, {encode_rev}, {encode_++} Previous analysis results are: encode_a: runtime: ?, size: O(1) [0] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_a after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> rev(rev(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> rev(1) :|: z = 1 + 1 encArg(z) -{ 0 }-> rev(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> rev(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> rev(1 + encArg(x_1') + encArg(x_2')) :|: z = 1 + (1 + x_1' + x_2'), x_2' >= 0, x_1' >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_++(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_rev(z) -{ 0 }-> rev(rev(encArg(z - 1))) :|: z - 1 >= 0 encode_rev(z) -{ 0 }-> rev(1) :|: z = 1 encode_rev(z) -{ 0 }-> rev(0) :|: z = 0 encode_rev(z) -{ 0 }-> rev(0) :|: z >= 0 encode_rev(z) -{ 0 }-> rev(1 + encArg(x_11) + encArg(x_2'')) :|: z = 1 + x_11 + x_2'', x_11 >= 0, x_2'' >= 0 encode_rev(z) -{ 0 }-> 0 :|: z >= 0 rev(z) -{ 1 }-> rev(x) :|: z = 1 + x + x, x >= 0 rev(z) -{ 1 }-> 1 :|: z = 1 rev(z) -{ 1 }-> 0 :|: z = 0 rev(z) -{ 0 }-> 0 :|: z >= 0 rev(z) -{ 1 }-> 1 + rev(y) + rev(x) :|: z = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {rev}, {encode_b}, {encArg}, {encode_rev}, {encode_++} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (27) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> rev(rev(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> rev(1) :|: z = 1 + 1 encArg(z) -{ 0 }-> rev(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> rev(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> rev(1 + encArg(x_1') + encArg(x_2')) :|: z = 1 + (1 + x_1' + x_2'), x_2' >= 0, x_1' >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_++(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_rev(z) -{ 0 }-> rev(rev(encArg(z - 1))) :|: z - 1 >= 0 encode_rev(z) -{ 0 }-> rev(1) :|: z = 1 encode_rev(z) -{ 0 }-> rev(0) :|: z = 0 encode_rev(z) -{ 0 }-> rev(0) :|: z >= 0 encode_rev(z) -{ 0 }-> rev(1 + encArg(x_11) + encArg(x_2'')) :|: z = 1 + x_11 + x_2'', x_11 >= 0, x_2'' >= 0 encode_rev(z) -{ 0 }-> 0 :|: z >= 0 rev(z) -{ 1 }-> rev(x) :|: z = 1 + x + x, x >= 0 rev(z) -{ 1 }-> 1 :|: z = 1 rev(z) -{ 1 }-> 0 :|: z = 0 rev(z) -{ 0 }-> 0 :|: z >= 0 rev(z) -{ 1 }-> 1 + rev(y) + rev(x) :|: z = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {rev}, {encode_b}, {encArg}, {encode_rev}, {encode_++} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: rev after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> rev(rev(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> rev(1) :|: z = 1 + 1 encArg(z) -{ 0 }-> rev(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> rev(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> rev(1 + encArg(x_1') + encArg(x_2')) :|: z = 1 + (1 + x_1' + x_2'), x_2' >= 0, x_1' >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_++(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_rev(z) -{ 0 }-> rev(rev(encArg(z - 1))) :|: z - 1 >= 0 encode_rev(z) -{ 0 }-> rev(1) :|: z = 1 encode_rev(z) -{ 0 }-> rev(0) :|: z = 0 encode_rev(z) -{ 0 }-> rev(0) :|: z >= 0 encode_rev(z) -{ 0 }-> rev(1 + encArg(x_11) + encArg(x_2'')) :|: z = 1 + x_11 + x_2'', x_11 >= 0, x_2'' >= 0 encode_rev(z) -{ 0 }-> 0 :|: z >= 0 rev(z) -{ 1 }-> rev(x) :|: z = 1 + x + x, x >= 0 rev(z) -{ 1 }-> 1 :|: z = 1 rev(z) -{ 1 }-> 0 :|: z = 0 rev(z) -{ 0 }-> 0 :|: z >= 0 rev(z) -{ 1 }-> 1 + rev(y) + rev(x) :|: z = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {rev}, {encode_b}, {encArg}, {encode_rev}, {encode_++} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] rev: runtime: ?, size: O(n^1) [1 + z] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: rev after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + 2*z ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> rev(rev(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> rev(1) :|: z = 1 + 1 encArg(z) -{ 0 }-> rev(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> rev(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> rev(1 + encArg(x_1') + encArg(x_2')) :|: z = 1 + (1 + x_1' + x_2'), x_2' >= 0, x_1' >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_++(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_rev(z) -{ 0 }-> rev(rev(encArg(z - 1))) :|: z - 1 >= 0 encode_rev(z) -{ 0 }-> rev(1) :|: z = 1 encode_rev(z) -{ 0 }-> rev(0) :|: z = 0 encode_rev(z) -{ 0 }-> rev(0) :|: z >= 0 encode_rev(z) -{ 0 }-> rev(1 + encArg(x_11) + encArg(x_2'')) :|: z = 1 + x_11 + x_2'', x_11 >= 0, x_2'' >= 0 encode_rev(z) -{ 0 }-> 0 :|: z >= 0 rev(z) -{ 1 }-> rev(x) :|: z = 1 + x + x, x >= 0 rev(z) -{ 1 }-> 1 :|: z = 1 rev(z) -{ 1 }-> 0 :|: z = 0 rev(z) -{ 0 }-> 0 :|: z >= 0 rev(z) -{ 1 }-> 1 + rev(y) + rev(x) :|: z = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {encode_b}, {encArg}, {encode_rev}, {encode_++} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] rev: runtime: O(n^1) [1 + 2*z], size: O(n^1) [1 + z] ---------------------------------------- (33) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0 + 1, z = 1 + 0 encArg(z) -{ 3 }-> s2 :|: s2 >= 0, s2 <= 1 + 1, z = 1 + 1 encArg(z) -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0 + 1, z - 1 >= 0 encArg(z) -{ 0 }-> rev(rev(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> rev(1 + encArg(x_1') + encArg(x_2')) :|: z = 1 + (1 + x_1' + x_2'), x_2' >= 0, x_1' >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_++(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_rev(z) -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0 + 1, z = 0 encode_rev(z) -{ 3 }-> s5 :|: s5 >= 0, s5 <= 1 + 1, z = 1 encode_rev(z) -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0 + 1, z >= 0 encode_rev(z) -{ 0 }-> rev(rev(encArg(z - 1))) :|: z - 1 >= 0 encode_rev(z) -{ 0 }-> rev(1 + encArg(x_11) + encArg(x_2'')) :|: z = 1 + x_11 + x_2'', x_11 >= 0, x_2'' >= 0 encode_rev(z) -{ 0 }-> 0 :|: z >= 0 rev(z) -{ 2 + 2*x }-> s'' :|: s'' >= 0, s'' <= x + 1, z = 1 + x + x, x >= 0 rev(z) -{ 1 }-> 1 :|: z = 1 rev(z) -{ 1 }-> 0 :|: z = 0 rev(z) -{ 0 }-> 0 :|: z >= 0 rev(z) -{ 3 + 2*x + 2*y }-> 1 + s + s' :|: s >= 0, s <= y + 1, s' >= 0, s' <= x + 1, z = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {encode_b}, {encArg}, {encode_rev}, {encode_++} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] rev: runtime: O(n^1) [1 + 2*z], size: O(n^1) [1 + z] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_b after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0 + 1, z = 1 + 0 encArg(z) -{ 3 }-> s2 :|: s2 >= 0, s2 <= 1 + 1, z = 1 + 1 encArg(z) -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0 + 1, z - 1 >= 0 encArg(z) -{ 0 }-> rev(rev(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> rev(1 + encArg(x_1') + encArg(x_2')) :|: z = 1 + (1 + x_1' + x_2'), x_2' >= 0, x_1' >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_++(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_rev(z) -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0 + 1, z = 0 encode_rev(z) -{ 3 }-> s5 :|: s5 >= 0, s5 <= 1 + 1, z = 1 encode_rev(z) -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0 + 1, z >= 0 encode_rev(z) -{ 0 }-> rev(rev(encArg(z - 1))) :|: z - 1 >= 0 encode_rev(z) -{ 0 }-> rev(1 + encArg(x_11) + encArg(x_2'')) :|: z = 1 + x_11 + x_2'', x_11 >= 0, x_2'' >= 0 encode_rev(z) -{ 0 }-> 0 :|: z >= 0 rev(z) -{ 2 + 2*x }-> s'' :|: s'' >= 0, s'' <= x + 1, z = 1 + x + x, x >= 0 rev(z) -{ 1 }-> 1 :|: z = 1 rev(z) -{ 1 }-> 0 :|: z = 0 rev(z) -{ 0 }-> 0 :|: z >= 0 rev(z) -{ 3 + 2*x + 2*y }-> 1 + s + s' :|: s >= 0, s <= y + 1, s' >= 0, s' <= x + 1, z = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {encode_b}, {encArg}, {encode_rev}, {encode_++} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] rev: runtime: O(n^1) [1 + 2*z], size: O(n^1) [1 + z] encode_b: runtime: ?, size: O(1) [1] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_b after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0 + 1, z = 1 + 0 encArg(z) -{ 3 }-> s2 :|: s2 >= 0, s2 <= 1 + 1, z = 1 + 1 encArg(z) -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0 + 1, z - 1 >= 0 encArg(z) -{ 0 }-> rev(rev(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> rev(1 + encArg(x_1') + encArg(x_2')) :|: z = 1 + (1 + x_1' + x_2'), x_2' >= 0, x_1' >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_++(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_rev(z) -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0 + 1, z = 0 encode_rev(z) -{ 3 }-> s5 :|: s5 >= 0, s5 <= 1 + 1, z = 1 encode_rev(z) -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0 + 1, z >= 0 encode_rev(z) -{ 0 }-> rev(rev(encArg(z - 1))) :|: z - 1 >= 0 encode_rev(z) -{ 0 }-> rev(1 + encArg(x_11) + encArg(x_2'')) :|: z = 1 + x_11 + x_2'', x_11 >= 0, x_2'' >= 0 encode_rev(z) -{ 0 }-> 0 :|: z >= 0 rev(z) -{ 2 + 2*x }-> s'' :|: s'' >= 0, s'' <= x + 1, z = 1 + x + x, x >= 0 rev(z) -{ 1 }-> 1 :|: z = 1 rev(z) -{ 1 }-> 0 :|: z = 0 rev(z) -{ 0 }-> 0 :|: z >= 0 rev(z) -{ 3 + 2*x + 2*y }-> 1 + s + s' :|: s >= 0, s <= y + 1, s' >= 0, s' <= x + 1, z = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {encArg}, {encode_rev}, {encode_++} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] rev: runtime: O(n^1) [1 + 2*z], size: O(n^1) [1 + z] encode_b: runtime: O(1) [0], size: O(1) [1] ---------------------------------------- (39) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0 + 1, z = 1 + 0 encArg(z) -{ 3 }-> s2 :|: s2 >= 0, s2 <= 1 + 1, z = 1 + 1 encArg(z) -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0 + 1, z - 1 >= 0 encArg(z) -{ 0 }-> rev(rev(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> rev(1 + encArg(x_1') + encArg(x_2')) :|: z = 1 + (1 + x_1' + x_2'), x_2' >= 0, x_1' >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_++(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_rev(z) -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0 + 1, z = 0 encode_rev(z) -{ 3 }-> s5 :|: s5 >= 0, s5 <= 1 + 1, z = 1 encode_rev(z) -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0 + 1, z >= 0 encode_rev(z) -{ 0 }-> rev(rev(encArg(z - 1))) :|: z - 1 >= 0 encode_rev(z) -{ 0 }-> rev(1 + encArg(x_11) + encArg(x_2'')) :|: z = 1 + x_11 + x_2'', x_11 >= 0, x_2'' >= 0 encode_rev(z) -{ 0 }-> 0 :|: z >= 0 rev(z) -{ 2 + 2*x }-> s'' :|: s'' >= 0, s'' <= x + 1, z = 1 + x + x, x >= 0 rev(z) -{ 1 }-> 1 :|: z = 1 rev(z) -{ 1 }-> 0 :|: z = 0 rev(z) -{ 0 }-> 0 :|: z >= 0 rev(z) -{ 3 + 2*x + 2*y }-> 1 + s + s' :|: s >= 0, s <= y + 1, s' >= 0, s' <= x + 1, z = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {encArg}, {encode_rev}, {encode_++} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] rev: runtime: O(n^1) [1 + 2*z], size: O(n^1) [1 + z] encode_b: runtime: O(1) [0], size: O(1) [1] ---------------------------------------- (41) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + 2*z ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0 + 1, z = 1 + 0 encArg(z) -{ 3 }-> s2 :|: s2 >= 0, s2 <= 1 + 1, z = 1 + 1 encArg(z) -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0 + 1, z - 1 >= 0 encArg(z) -{ 0 }-> rev(rev(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> rev(1 + encArg(x_1') + encArg(x_2')) :|: z = 1 + (1 + x_1' + x_2'), x_2' >= 0, x_1' >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_++(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_rev(z) -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0 + 1, z = 0 encode_rev(z) -{ 3 }-> s5 :|: s5 >= 0, s5 <= 1 + 1, z = 1 encode_rev(z) -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0 + 1, z >= 0 encode_rev(z) -{ 0 }-> rev(rev(encArg(z - 1))) :|: z - 1 >= 0 encode_rev(z) -{ 0 }-> rev(1 + encArg(x_11) + encArg(x_2'')) :|: z = 1 + x_11 + x_2'', x_11 >= 0, x_2'' >= 0 encode_rev(z) -{ 0 }-> 0 :|: z >= 0 rev(z) -{ 2 + 2*x }-> s'' :|: s'' >= 0, s'' <= x + 1, z = 1 + x + x, x >= 0 rev(z) -{ 1 }-> 1 :|: z = 1 rev(z) -{ 1 }-> 0 :|: z = 0 rev(z) -{ 0 }-> 0 :|: z >= 0 rev(z) -{ 3 + 2*x + 2*y }-> 1 + s + s' :|: s >= 0, s <= y + 1, s' >= 0, s' <= x + 1, z = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {encArg}, {encode_rev}, {encode_++} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] rev: runtime: O(n^1) [1 + 2*z], size: O(n^1) [1 + z] encode_b: runtime: O(1) [0], size: O(1) [1] encArg: runtime: ?, size: O(n^1) [2 + 2*z] ---------------------------------------- (43) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 3 + 9*z + 8*z^2 ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0 + 1, z = 1 + 0 encArg(z) -{ 3 }-> s2 :|: s2 >= 0, s2 <= 1 + 1, z = 1 + 1 encArg(z) -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0 + 1, z - 1 >= 0 encArg(z) -{ 0 }-> rev(rev(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> rev(1 + encArg(x_1') + encArg(x_2')) :|: z = 1 + (1 + x_1' + x_2'), x_2' >= 0, x_1' >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_++(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_rev(z) -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0 + 1, z = 0 encode_rev(z) -{ 3 }-> s5 :|: s5 >= 0, s5 <= 1 + 1, z = 1 encode_rev(z) -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0 + 1, z >= 0 encode_rev(z) -{ 0 }-> rev(rev(encArg(z - 1))) :|: z - 1 >= 0 encode_rev(z) -{ 0 }-> rev(1 + encArg(x_11) + encArg(x_2'')) :|: z = 1 + x_11 + x_2'', x_11 >= 0, x_2'' >= 0 encode_rev(z) -{ 0 }-> 0 :|: z >= 0 rev(z) -{ 2 + 2*x }-> s'' :|: s'' >= 0, s'' <= x + 1, z = 1 + x + x, x >= 0 rev(z) -{ 1 }-> 1 :|: z = 1 rev(z) -{ 1 }-> 0 :|: z = 0 rev(z) -{ 0 }-> 0 :|: z >= 0 rev(z) -{ 3 + 2*x + 2*y }-> 1 + s + s' :|: s >= 0, s <= y + 1, s' >= 0, s' <= x + 1, z = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {encode_rev}, {encode_++} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] rev: runtime: O(n^1) [1 + 2*z], size: O(n^1) [1 + z] encode_b: runtime: O(1) [0], size: O(1) [1] encArg: runtime: O(n^2) [3 + 9*z + 8*z^2], size: O(n^1) [2 + 2*z] ---------------------------------------- (45) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0 + 1, z = 1 + 0 encArg(z) -{ 9 + 2*s10 + 2*s9 + 9*x_1' + 8*x_1'^2 + 9*x_2' + 8*x_2'^2 }-> s11 :|: s9 >= 0, s9 <= 2 * x_1' + 2, s10 >= 0, s10 <= 2 * x_2' + 2, s11 >= 0, s11 <= 1 + s9 + s10 + 1, z = 1 + (1 + x_1' + x_2'), x_2' >= 0, x_1' >= 0 encArg(z) -{ 19 + 2*s12 + 2*s13 + -23*z + 8*z^2 }-> s14 :|: s12 >= 0, s12 <= 2 * (z - 2) + 2, s13 >= 0, s13 <= s12 + 1, s14 >= 0, s14 <= s13 + 1, z - 2 >= 0 encArg(z) -{ 3 }-> s2 :|: s2 >= 0, s2 <= 1 + 1, z = 1 + 1 encArg(z) -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0 + 1, z - 1 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 6 + 9*x_1 + 8*x_1^2 + 9*x_2 + 8*x_2^2 }-> 1 + s7 + s8 :|: s7 >= 0, s7 <= 2 * x_1 + 2, s8 >= 0, s8 <= 2 * x_2 + 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_++(z, z') -{ 6 + 9*z + 8*z^2 + 9*z' + 8*z'^2 }-> 1 + s21 + s22 :|: s21 >= 0, s21 <= 2 * z + 2, s22 >= 0, s22 <= 2 * z' + 2, z >= 0, z' >= 0 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_rev(z) -{ 9 + 2*s15 + 2*s16 + 9*x_11 + 8*x_11^2 + 9*x_2'' + 8*x_2''^2 }-> s17 :|: s15 >= 0, s15 <= 2 * x_11 + 2, s16 >= 0, s16 <= 2 * x_2'' + 2, s17 >= 0, s17 <= 1 + s15 + s16 + 1, z = 1 + x_11 + x_2'', x_11 >= 0, x_2'' >= 0 encode_rev(z) -{ 4 + 2*s18 + 2*s19 + -7*z + 8*z^2 }-> s20 :|: s18 >= 0, s18 <= 2 * (z - 1) + 2, s19 >= 0, s19 <= s18 + 1, s20 >= 0, s20 <= s19 + 1, z - 1 >= 0 encode_rev(z) -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0 + 1, z = 0 encode_rev(z) -{ 3 }-> s5 :|: s5 >= 0, s5 <= 1 + 1, z = 1 encode_rev(z) -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0 + 1, z >= 0 encode_rev(z) -{ 0 }-> 0 :|: z >= 0 rev(z) -{ 2 + 2*x }-> s'' :|: s'' >= 0, s'' <= x + 1, z = 1 + x + x, x >= 0 rev(z) -{ 1 }-> 1 :|: z = 1 rev(z) -{ 1 }-> 0 :|: z = 0 rev(z) -{ 0 }-> 0 :|: z >= 0 rev(z) -{ 3 + 2*x + 2*y }-> 1 + s + s' :|: s >= 0, s <= y + 1, s' >= 0, s' <= x + 1, z = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {encode_rev}, {encode_++} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] rev: runtime: O(n^1) [1 + 2*z], size: O(n^1) [1 + z] encode_b: runtime: O(1) [0], size: O(1) [1] encArg: runtime: O(n^2) [3 + 9*z + 8*z^2], size: O(n^1) [2 + 2*z] ---------------------------------------- (47) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_rev after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 4 + 2*z ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0 + 1, z = 1 + 0 encArg(z) -{ 9 + 2*s10 + 2*s9 + 9*x_1' + 8*x_1'^2 + 9*x_2' + 8*x_2'^2 }-> s11 :|: s9 >= 0, s9 <= 2 * x_1' + 2, s10 >= 0, s10 <= 2 * x_2' + 2, s11 >= 0, s11 <= 1 + s9 + s10 + 1, z = 1 + (1 + x_1' + x_2'), x_2' >= 0, x_1' >= 0 encArg(z) -{ 19 + 2*s12 + 2*s13 + -23*z + 8*z^2 }-> s14 :|: s12 >= 0, s12 <= 2 * (z - 2) + 2, s13 >= 0, s13 <= s12 + 1, s14 >= 0, s14 <= s13 + 1, z - 2 >= 0 encArg(z) -{ 3 }-> s2 :|: s2 >= 0, s2 <= 1 + 1, z = 1 + 1 encArg(z) -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0 + 1, z - 1 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 6 + 9*x_1 + 8*x_1^2 + 9*x_2 + 8*x_2^2 }-> 1 + s7 + s8 :|: s7 >= 0, s7 <= 2 * x_1 + 2, s8 >= 0, s8 <= 2 * x_2 + 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_++(z, z') -{ 6 + 9*z + 8*z^2 + 9*z' + 8*z'^2 }-> 1 + s21 + s22 :|: s21 >= 0, s21 <= 2 * z + 2, s22 >= 0, s22 <= 2 * z' + 2, z >= 0, z' >= 0 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_rev(z) -{ 9 + 2*s15 + 2*s16 + 9*x_11 + 8*x_11^2 + 9*x_2'' + 8*x_2''^2 }-> s17 :|: s15 >= 0, s15 <= 2 * x_11 + 2, s16 >= 0, s16 <= 2 * x_2'' + 2, s17 >= 0, s17 <= 1 + s15 + s16 + 1, z = 1 + x_11 + x_2'', x_11 >= 0, x_2'' >= 0 encode_rev(z) -{ 4 + 2*s18 + 2*s19 + -7*z + 8*z^2 }-> s20 :|: s18 >= 0, s18 <= 2 * (z - 1) + 2, s19 >= 0, s19 <= s18 + 1, s20 >= 0, s20 <= s19 + 1, z - 1 >= 0 encode_rev(z) -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0 + 1, z = 0 encode_rev(z) -{ 3 }-> s5 :|: s5 >= 0, s5 <= 1 + 1, z = 1 encode_rev(z) -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0 + 1, z >= 0 encode_rev(z) -{ 0 }-> 0 :|: z >= 0 rev(z) -{ 2 + 2*x }-> s'' :|: s'' >= 0, s'' <= x + 1, z = 1 + x + x, x >= 0 rev(z) -{ 1 }-> 1 :|: z = 1 rev(z) -{ 1 }-> 0 :|: z = 0 rev(z) -{ 0 }-> 0 :|: z >= 0 rev(z) -{ 3 + 2*x + 2*y }-> 1 + s + s' :|: s >= 0, s <= y + 1, s' >= 0, s' <= x + 1, z = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {encode_rev}, {encode_++} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] rev: runtime: O(n^1) [1 + 2*z], size: O(n^1) [1 + z] encode_b: runtime: O(1) [0], size: O(1) [1] encArg: runtime: O(n^2) [3 + 9*z + 8*z^2], size: O(n^1) [2 + 2*z] encode_rev: runtime: ?, size: O(n^1) [4 + 2*z] ---------------------------------------- (49) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_rev after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 26 + 29*z + 24*z^2 ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0 + 1, z = 1 + 0 encArg(z) -{ 9 + 2*s10 + 2*s9 + 9*x_1' + 8*x_1'^2 + 9*x_2' + 8*x_2'^2 }-> s11 :|: s9 >= 0, s9 <= 2 * x_1' + 2, s10 >= 0, s10 <= 2 * x_2' + 2, s11 >= 0, s11 <= 1 + s9 + s10 + 1, z = 1 + (1 + x_1' + x_2'), x_2' >= 0, x_1' >= 0 encArg(z) -{ 19 + 2*s12 + 2*s13 + -23*z + 8*z^2 }-> s14 :|: s12 >= 0, s12 <= 2 * (z - 2) + 2, s13 >= 0, s13 <= s12 + 1, s14 >= 0, s14 <= s13 + 1, z - 2 >= 0 encArg(z) -{ 3 }-> s2 :|: s2 >= 0, s2 <= 1 + 1, z = 1 + 1 encArg(z) -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0 + 1, z - 1 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 6 + 9*x_1 + 8*x_1^2 + 9*x_2 + 8*x_2^2 }-> 1 + s7 + s8 :|: s7 >= 0, s7 <= 2 * x_1 + 2, s8 >= 0, s8 <= 2 * x_2 + 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_++(z, z') -{ 6 + 9*z + 8*z^2 + 9*z' + 8*z'^2 }-> 1 + s21 + s22 :|: s21 >= 0, s21 <= 2 * z + 2, s22 >= 0, s22 <= 2 * z' + 2, z >= 0, z' >= 0 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_rev(z) -{ 9 + 2*s15 + 2*s16 + 9*x_11 + 8*x_11^2 + 9*x_2'' + 8*x_2''^2 }-> s17 :|: s15 >= 0, s15 <= 2 * x_11 + 2, s16 >= 0, s16 <= 2 * x_2'' + 2, s17 >= 0, s17 <= 1 + s15 + s16 + 1, z = 1 + x_11 + x_2'', x_11 >= 0, x_2'' >= 0 encode_rev(z) -{ 4 + 2*s18 + 2*s19 + -7*z + 8*z^2 }-> s20 :|: s18 >= 0, s18 <= 2 * (z - 1) + 2, s19 >= 0, s19 <= s18 + 1, s20 >= 0, s20 <= s19 + 1, z - 1 >= 0 encode_rev(z) -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0 + 1, z = 0 encode_rev(z) -{ 3 }-> s5 :|: s5 >= 0, s5 <= 1 + 1, z = 1 encode_rev(z) -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0 + 1, z >= 0 encode_rev(z) -{ 0 }-> 0 :|: z >= 0 rev(z) -{ 2 + 2*x }-> s'' :|: s'' >= 0, s'' <= x + 1, z = 1 + x + x, x >= 0 rev(z) -{ 1 }-> 1 :|: z = 1 rev(z) -{ 1 }-> 0 :|: z = 0 rev(z) -{ 0 }-> 0 :|: z >= 0 rev(z) -{ 3 + 2*x + 2*y }-> 1 + s + s' :|: s >= 0, s <= y + 1, s' >= 0, s' <= x + 1, z = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {encode_++} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] rev: runtime: O(n^1) [1 + 2*z], size: O(n^1) [1 + z] encode_b: runtime: O(1) [0], size: O(1) [1] encArg: runtime: O(n^2) [3 + 9*z + 8*z^2], size: O(n^1) [2 + 2*z] encode_rev: runtime: O(n^2) [26 + 29*z + 24*z^2], size: O(n^1) [4 + 2*z] ---------------------------------------- (51) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0 + 1, z = 1 + 0 encArg(z) -{ 9 + 2*s10 + 2*s9 + 9*x_1' + 8*x_1'^2 + 9*x_2' + 8*x_2'^2 }-> s11 :|: s9 >= 0, s9 <= 2 * x_1' + 2, s10 >= 0, s10 <= 2 * x_2' + 2, s11 >= 0, s11 <= 1 + s9 + s10 + 1, z = 1 + (1 + x_1' + x_2'), x_2' >= 0, x_1' >= 0 encArg(z) -{ 19 + 2*s12 + 2*s13 + -23*z + 8*z^2 }-> s14 :|: s12 >= 0, s12 <= 2 * (z - 2) + 2, s13 >= 0, s13 <= s12 + 1, s14 >= 0, s14 <= s13 + 1, z - 2 >= 0 encArg(z) -{ 3 }-> s2 :|: s2 >= 0, s2 <= 1 + 1, z = 1 + 1 encArg(z) -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0 + 1, z - 1 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 6 + 9*x_1 + 8*x_1^2 + 9*x_2 + 8*x_2^2 }-> 1 + s7 + s8 :|: s7 >= 0, s7 <= 2 * x_1 + 2, s8 >= 0, s8 <= 2 * x_2 + 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_++(z, z') -{ 6 + 9*z + 8*z^2 + 9*z' + 8*z'^2 }-> 1 + s21 + s22 :|: s21 >= 0, s21 <= 2 * z + 2, s22 >= 0, s22 <= 2 * z' + 2, z >= 0, z' >= 0 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_rev(z) -{ 9 + 2*s15 + 2*s16 + 9*x_11 + 8*x_11^2 + 9*x_2'' + 8*x_2''^2 }-> s17 :|: s15 >= 0, s15 <= 2 * x_11 + 2, s16 >= 0, s16 <= 2 * x_2'' + 2, s17 >= 0, s17 <= 1 + s15 + s16 + 1, z = 1 + x_11 + x_2'', x_11 >= 0, x_2'' >= 0 encode_rev(z) -{ 4 + 2*s18 + 2*s19 + -7*z + 8*z^2 }-> s20 :|: s18 >= 0, s18 <= 2 * (z - 1) + 2, s19 >= 0, s19 <= s18 + 1, s20 >= 0, s20 <= s19 + 1, z - 1 >= 0 encode_rev(z) -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0 + 1, z = 0 encode_rev(z) -{ 3 }-> s5 :|: s5 >= 0, s5 <= 1 + 1, z = 1 encode_rev(z) -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0 + 1, z >= 0 encode_rev(z) -{ 0 }-> 0 :|: z >= 0 rev(z) -{ 2 + 2*x }-> s'' :|: s'' >= 0, s'' <= x + 1, z = 1 + x + x, x >= 0 rev(z) -{ 1 }-> 1 :|: z = 1 rev(z) -{ 1 }-> 0 :|: z = 0 rev(z) -{ 0 }-> 0 :|: z >= 0 rev(z) -{ 3 + 2*x + 2*y }-> 1 + s + s' :|: s >= 0, s <= y + 1, s' >= 0, s' <= x + 1, z = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {encode_++} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] rev: runtime: O(n^1) [1 + 2*z], size: O(n^1) [1 + z] encode_b: runtime: O(1) [0], size: O(1) [1] encArg: runtime: O(n^2) [3 + 9*z + 8*z^2], size: O(n^1) [2 + 2*z] encode_rev: runtime: O(n^2) [26 + 29*z + 24*z^2], size: O(n^1) [4 + 2*z] ---------------------------------------- (53) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_++ after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 5 + 2*z + 2*z' ---------------------------------------- (54) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0 + 1, z = 1 + 0 encArg(z) -{ 9 + 2*s10 + 2*s9 + 9*x_1' + 8*x_1'^2 + 9*x_2' + 8*x_2'^2 }-> s11 :|: s9 >= 0, s9 <= 2 * x_1' + 2, s10 >= 0, s10 <= 2 * x_2' + 2, s11 >= 0, s11 <= 1 + s9 + s10 + 1, z = 1 + (1 + x_1' + x_2'), x_2' >= 0, x_1' >= 0 encArg(z) -{ 19 + 2*s12 + 2*s13 + -23*z + 8*z^2 }-> s14 :|: s12 >= 0, s12 <= 2 * (z - 2) + 2, s13 >= 0, s13 <= s12 + 1, s14 >= 0, s14 <= s13 + 1, z - 2 >= 0 encArg(z) -{ 3 }-> s2 :|: s2 >= 0, s2 <= 1 + 1, z = 1 + 1 encArg(z) -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0 + 1, z - 1 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 6 + 9*x_1 + 8*x_1^2 + 9*x_2 + 8*x_2^2 }-> 1 + s7 + s8 :|: s7 >= 0, s7 <= 2 * x_1 + 2, s8 >= 0, s8 <= 2 * x_2 + 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_++(z, z') -{ 6 + 9*z + 8*z^2 + 9*z' + 8*z'^2 }-> 1 + s21 + s22 :|: s21 >= 0, s21 <= 2 * z + 2, s22 >= 0, s22 <= 2 * z' + 2, z >= 0, z' >= 0 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_rev(z) -{ 9 + 2*s15 + 2*s16 + 9*x_11 + 8*x_11^2 + 9*x_2'' + 8*x_2''^2 }-> s17 :|: s15 >= 0, s15 <= 2 * x_11 + 2, s16 >= 0, s16 <= 2 * x_2'' + 2, s17 >= 0, s17 <= 1 + s15 + s16 + 1, z = 1 + x_11 + x_2'', x_11 >= 0, x_2'' >= 0 encode_rev(z) -{ 4 + 2*s18 + 2*s19 + -7*z + 8*z^2 }-> s20 :|: s18 >= 0, s18 <= 2 * (z - 1) + 2, s19 >= 0, s19 <= s18 + 1, s20 >= 0, s20 <= s19 + 1, z - 1 >= 0 encode_rev(z) -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0 + 1, z = 0 encode_rev(z) -{ 3 }-> s5 :|: s5 >= 0, s5 <= 1 + 1, z = 1 encode_rev(z) -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0 + 1, z >= 0 encode_rev(z) -{ 0 }-> 0 :|: z >= 0 rev(z) -{ 2 + 2*x }-> s'' :|: s'' >= 0, s'' <= x + 1, z = 1 + x + x, x >= 0 rev(z) -{ 1 }-> 1 :|: z = 1 rev(z) -{ 1 }-> 0 :|: z = 0 rev(z) -{ 0 }-> 0 :|: z >= 0 rev(z) -{ 3 + 2*x + 2*y }-> 1 + s + s' :|: s >= 0, s <= y + 1, s' >= 0, s' <= x + 1, z = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {encode_++} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] rev: runtime: O(n^1) [1 + 2*z], size: O(n^1) [1 + z] encode_b: runtime: O(1) [0], size: O(1) [1] encArg: runtime: O(n^2) [3 + 9*z + 8*z^2], size: O(n^1) [2 + 2*z] encode_rev: runtime: O(n^2) [26 + 29*z + 24*z^2], size: O(n^1) [4 + 2*z] encode_++: runtime: ?, size: O(n^1) [5 + 2*z + 2*z'] ---------------------------------------- (55) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_++ after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 6 + 9*z + 8*z^2 + 9*z' + 8*z'^2 ---------------------------------------- (56) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0 + 1, z = 1 + 0 encArg(z) -{ 9 + 2*s10 + 2*s9 + 9*x_1' + 8*x_1'^2 + 9*x_2' + 8*x_2'^2 }-> s11 :|: s9 >= 0, s9 <= 2 * x_1' + 2, s10 >= 0, s10 <= 2 * x_2' + 2, s11 >= 0, s11 <= 1 + s9 + s10 + 1, z = 1 + (1 + x_1' + x_2'), x_2' >= 0, x_1' >= 0 encArg(z) -{ 19 + 2*s12 + 2*s13 + -23*z + 8*z^2 }-> s14 :|: s12 >= 0, s12 <= 2 * (z - 2) + 2, s13 >= 0, s13 <= s12 + 1, s14 >= 0, s14 <= s13 + 1, z - 2 >= 0 encArg(z) -{ 3 }-> s2 :|: s2 >= 0, s2 <= 1 + 1, z = 1 + 1 encArg(z) -{ 1 }-> s3 :|: s3 >= 0, s3 <= 0 + 1, z - 1 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 6 + 9*x_1 + 8*x_1^2 + 9*x_2 + 8*x_2^2 }-> 1 + s7 + s8 :|: s7 >= 0, s7 <= 2 * x_1 + 2, s8 >= 0, s8 <= 2 * x_2 + 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_++(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_++(z, z') -{ 6 + 9*z + 8*z^2 + 9*z' + 8*z'^2 }-> 1 + s21 + s22 :|: s21 >= 0, s21 <= 2 * z + 2, s22 >= 0, s22 <= 2 * z' + 2, z >= 0, z' >= 0 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_rev(z) -{ 9 + 2*s15 + 2*s16 + 9*x_11 + 8*x_11^2 + 9*x_2'' + 8*x_2''^2 }-> s17 :|: s15 >= 0, s15 <= 2 * x_11 + 2, s16 >= 0, s16 <= 2 * x_2'' + 2, s17 >= 0, s17 <= 1 + s15 + s16 + 1, z = 1 + x_11 + x_2'', x_11 >= 0, x_2'' >= 0 encode_rev(z) -{ 4 + 2*s18 + 2*s19 + -7*z + 8*z^2 }-> s20 :|: s18 >= 0, s18 <= 2 * (z - 1) + 2, s19 >= 0, s19 <= s18 + 1, s20 >= 0, s20 <= s19 + 1, z - 1 >= 0 encode_rev(z) -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0 + 1, z = 0 encode_rev(z) -{ 3 }-> s5 :|: s5 >= 0, s5 <= 1 + 1, z = 1 encode_rev(z) -{ 1 }-> s6 :|: s6 >= 0, s6 <= 0 + 1, z >= 0 encode_rev(z) -{ 0 }-> 0 :|: z >= 0 rev(z) -{ 2 + 2*x }-> s'' :|: s'' >= 0, s'' <= x + 1, z = 1 + x + x, x >= 0 rev(z) -{ 1 }-> 1 :|: z = 1 rev(z) -{ 1 }-> 0 :|: z = 0 rev(z) -{ 0 }-> 0 :|: z >= 0 rev(z) -{ 3 + 2*x + 2*y }-> 1 + s + s' :|: s >= 0, s <= y + 1, s' >= 0, s' <= x + 1, z = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] rev: runtime: O(n^1) [1 + 2*z], size: O(n^1) [1 + z] encode_b: runtime: O(1) [0], size: O(1) [1] encArg: runtime: O(n^2) [3 + 9*z + 8*z^2], size: O(n^1) [2 + 2*z] encode_rev: runtime: O(n^2) [26 + 29*z + 24*z^2], size: O(n^1) [4 + 2*z] encode_++: runtime: O(n^2) [6 + 9*z + 8*z^2 + 9*z' + 8*z'^2], size: O(n^1) [5 + 2*z + 2*z'] ---------------------------------------- (57) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (58) BOUNDS(1, n^2) ---------------------------------------- (59) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (60) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: rev(a) -> a rev(b) -> b rev(++(x, y)) -> ++(rev(y), rev(x)) rev(++(x, x)) -> rev(x) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(b) -> b encArg(++(x_1, x_2)) -> ++(encArg(x_1), encArg(x_2)) encArg(cons_rev(x_1)) -> rev(encArg(x_1)) encode_rev(x_1) -> rev(encArg(x_1)) encode_a -> a encode_b -> b encode_++(x_1, x_2) -> ++(encArg(x_1), encArg(x_2)) Rewrite Strategy: FULL ---------------------------------------- (61) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (62) Obligation: TRS: Rules: rev(a) -> a rev(b) -> b rev(++(x, y)) -> ++(rev(y), rev(x)) rev(++(x, x)) -> rev(x) encArg(a) -> a encArg(b) -> b encArg(++(x_1, x_2)) -> ++(encArg(x_1), encArg(x_2)) encArg(cons_rev(x_1)) -> rev(encArg(x_1)) encode_rev(x_1) -> rev(encArg(x_1)) encode_a -> a encode_b -> b encode_++(x_1, x_2) -> ++(encArg(x_1), encArg(x_2)) Types: rev :: a:b:++:cons_rev -> a:b:++:cons_rev a :: a:b:++:cons_rev b :: a:b:++:cons_rev ++ :: a:b:++:cons_rev -> a:b:++:cons_rev -> a:b:++:cons_rev encArg :: a:b:++:cons_rev -> a:b:++:cons_rev cons_rev :: a:b:++:cons_rev -> a:b:++:cons_rev encode_rev :: a:b:++:cons_rev -> a:b:++:cons_rev encode_a :: a:b:++:cons_rev encode_b :: a:b:++:cons_rev encode_++ :: a:b:++:cons_rev -> a:b:++:cons_rev -> a:b:++:cons_rev hole_a:b:++:cons_rev1_0 :: a:b:++:cons_rev gen_a:b:++:cons_rev2_0 :: Nat -> a:b:++:cons_rev ---------------------------------------- (63) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: rev, encArg They will be analysed ascendingly in the following order: rev < encArg ---------------------------------------- (64) Obligation: TRS: Rules: rev(a) -> a rev(b) -> b rev(++(x, y)) -> ++(rev(y), rev(x)) rev(++(x, x)) -> rev(x) encArg(a) -> a encArg(b) -> b encArg(++(x_1, x_2)) -> ++(encArg(x_1), encArg(x_2)) encArg(cons_rev(x_1)) -> rev(encArg(x_1)) encode_rev(x_1) -> rev(encArg(x_1)) encode_a -> a encode_b -> b encode_++(x_1, x_2) -> ++(encArg(x_1), encArg(x_2)) Types: rev :: a:b:++:cons_rev -> a:b:++:cons_rev a :: a:b:++:cons_rev b :: a:b:++:cons_rev ++ :: a:b:++:cons_rev -> a:b:++:cons_rev -> a:b:++:cons_rev encArg :: a:b:++:cons_rev -> a:b:++:cons_rev cons_rev :: a:b:++:cons_rev -> a:b:++:cons_rev encode_rev :: a:b:++:cons_rev -> a:b:++:cons_rev encode_a :: a:b:++:cons_rev encode_b :: a:b:++:cons_rev encode_++ :: a:b:++:cons_rev -> a:b:++:cons_rev -> a:b:++:cons_rev hole_a:b:++:cons_rev1_0 :: a:b:++:cons_rev gen_a:b:++:cons_rev2_0 :: Nat -> a:b:++:cons_rev Generator Equations: gen_a:b:++:cons_rev2_0(0) <=> a gen_a:b:++:cons_rev2_0(+(x, 1)) <=> ++(a, gen_a:b:++:cons_rev2_0(x)) The following defined symbols remain to be analysed: rev, encArg They will be analysed ascendingly in the following order: rev < encArg ---------------------------------------- (65) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: rev(gen_a:b:++:cons_rev2_0(+(1, n4_0))) -> *3_0, rt in Omega(n4_0) Induction Base: rev(gen_a:b:++:cons_rev2_0(+(1, 0))) Induction Step: rev(gen_a:b:++:cons_rev2_0(+(1, +(n4_0, 1)))) ->_R^Omega(1) ++(rev(gen_a:b:++:cons_rev2_0(+(1, n4_0))), rev(a)) ->_IH ++(*3_0, rev(a)) ->_R^Omega(1) ++(*3_0, a) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (66) Complex Obligation (BEST) ---------------------------------------- (67) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: rev(a) -> a rev(b) -> b rev(++(x, y)) -> ++(rev(y), rev(x)) rev(++(x, x)) -> rev(x) encArg(a) -> a encArg(b) -> b encArg(++(x_1, x_2)) -> ++(encArg(x_1), encArg(x_2)) encArg(cons_rev(x_1)) -> rev(encArg(x_1)) encode_rev(x_1) -> rev(encArg(x_1)) encode_a -> a encode_b -> b encode_++(x_1, x_2) -> ++(encArg(x_1), encArg(x_2)) Types: rev :: a:b:++:cons_rev -> a:b:++:cons_rev a :: a:b:++:cons_rev b :: a:b:++:cons_rev ++ :: a:b:++:cons_rev -> a:b:++:cons_rev -> a:b:++:cons_rev encArg :: a:b:++:cons_rev -> a:b:++:cons_rev cons_rev :: a:b:++:cons_rev -> a:b:++:cons_rev encode_rev :: a:b:++:cons_rev -> a:b:++:cons_rev encode_a :: a:b:++:cons_rev encode_b :: a:b:++:cons_rev encode_++ :: a:b:++:cons_rev -> a:b:++:cons_rev -> a:b:++:cons_rev hole_a:b:++:cons_rev1_0 :: a:b:++:cons_rev gen_a:b:++:cons_rev2_0 :: Nat -> a:b:++:cons_rev Generator Equations: gen_a:b:++:cons_rev2_0(0) <=> a gen_a:b:++:cons_rev2_0(+(x, 1)) <=> ++(a, gen_a:b:++:cons_rev2_0(x)) The following defined symbols remain to be analysed: rev, encArg They will be analysed ascendingly in the following order: rev < encArg ---------------------------------------- (68) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (69) BOUNDS(n^1, INF) ---------------------------------------- (70) Obligation: TRS: Rules: rev(a) -> a rev(b) -> b rev(++(x, y)) -> ++(rev(y), rev(x)) rev(++(x, x)) -> rev(x) encArg(a) -> a encArg(b) -> b encArg(++(x_1, x_2)) -> ++(encArg(x_1), encArg(x_2)) encArg(cons_rev(x_1)) -> rev(encArg(x_1)) encode_rev(x_1) -> rev(encArg(x_1)) encode_a -> a encode_b -> b encode_++(x_1, x_2) -> ++(encArg(x_1), encArg(x_2)) Types: rev :: a:b:++:cons_rev -> a:b:++:cons_rev a :: a:b:++:cons_rev b :: a:b:++:cons_rev ++ :: a:b:++:cons_rev -> a:b:++:cons_rev -> a:b:++:cons_rev encArg :: a:b:++:cons_rev -> a:b:++:cons_rev cons_rev :: a:b:++:cons_rev -> a:b:++:cons_rev encode_rev :: a:b:++:cons_rev -> a:b:++:cons_rev encode_a :: a:b:++:cons_rev encode_b :: a:b:++:cons_rev encode_++ :: a:b:++:cons_rev -> a:b:++:cons_rev -> a:b:++:cons_rev hole_a:b:++:cons_rev1_0 :: a:b:++:cons_rev gen_a:b:++:cons_rev2_0 :: Nat -> a:b:++:cons_rev Lemmas: rev(gen_a:b:++:cons_rev2_0(+(1, n4_0))) -> *3_0, rt in Omega(n4_0) Generator Equations: gen_a:b:++:cons_rev2_0(0) <=> a gen_a:b:++:cons_rev2_0(+(x, 1)) <=> ++(a, gen_a:b:++:cons_rev2_0(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (71) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_a:b:++:cons_rev2_0(n11769_0)) -> gen_a:b:++:cons_rev2_0(n11769_0), rt in Omega(0) Induction Base: encArg(gen_a:b:++:cons_rev2_0(0)) ->_R^Omega(0) a Induction Step: encArg(gen_a:b:++:cons_rev2_0(+(n11769_0, 1))) ->_R^Omega(0) ++(encArg(a), encArg(gen_a:b:++:cons_rev2_0(n11769_0))) ->_R^Omega(0) ++(a, encArg(gen_a:b:++:cons_rev2_0(n11769_0))) ->_IH ++(a, gen_a:b:++:cons_rev2_0(c11770_0)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (72) BOUNDS(1, INF)