WORST_CASE(Omega(n^1), O(n^3)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^3). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 41 ms] (4) CpxRelTRS (5) NonCtorToCtorProof [UPPER BOUND(ID), 0 ms] (6) CpxRelTRS (7) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxRelTRS (9) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxWeightedTrs (11) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxTypedWeightedTrs (13) CompletionProof [UPPER BOUND(ID), 0 ms] (14) CpxTypedWeightedCompleteTrs (15) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxTypedWeightedCompleteTrs (17) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (18) CpxRNTS (19) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (20) CpxRNTS (21) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (22) CpxRNTS (23) ResultPropagationProof [UPPER BOUND(ID), 1 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 133 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 35 ms] (28) CpxRNTS (29) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 244 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 129 ms] (34) CpxRNTS (35) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 466 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 127 ms] (40) CpxRNTS (41) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (42) CpxRNTS (43) IntTrsBoundProof [UPPER BOUND(ID), 245 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 46 ms] (46) CpxRNTS (47) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (48) CpxRNTS (49) IntTrsBoundProof [UPPER BOUND(ID), 147 ms] (50) CpxRNTS (51) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (52) CpxRNTS (53) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (54) CpxRNTS (55) IntTrsBoundProof [UPPER BOUND(ID), 305 ms] (56) CpxRNTS (57) IntTrsBoundProof [UPPER BOUND(ID), 7 ms] (58) CpxRNTS (59) FinalProof [FINISHED, 0 ms] (60) BOUNDS(1, n^3) (61) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (62) TRS for Loop Detection (63) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (64) BEST (65) proven lower bound (66) LowerBoundPropagationProof [FINISHED, 0 ms] (67) BOUNDS(n^1, INF) (68) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: w(r(x)) -> r(w(x)) b(r(x)) -> r(b(x)) b(w(x)) -> w(b(x)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(r(x_1)) -> r(encArg(x_1)) encArg(cons_w(x_1)) -> w(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_w(x_1) -> w(encArg(x_1)) encode_r(x_1) -> r(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: w(r(x)) -> r(w(x)) b(r(x)) -> r(b(x)) b(w(x)) -> w(b(x)) The (relative) TRS S consists of the following rules: encArg(r(x_1)) -> r(encArg(x_1)) encArg(cons_w(x_1)) -> w(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_w(x_1) -> w(encArg(x_1)) encode_r(x_1) -> r(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: w(r(x)) -> r(w(x)) b(r(x)) -> r(b(x)) b(w(x)) -> w(b(x)) The (relative) TRS S consists of the following rules: encArg(r(x_1)) -> r(encArg(x_1)) encArg(cons_w(x_1)) -> w(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_w(x_1) -> w(encArg(x_1)) encode_r(x_1) -> r(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (5) NonCtorToCtorProof (UPPER BOUND(ID)) transformed non-ctor to ctor-system ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: w(r(x)) -> r(w(x)) b(r(x)) -> r(b(x)) b(c_w(x)) -> w(b(x)) The (relative) TRS S consists of the following rules: encArg(r(x_1)) -> r(encArg(x_1)) encArg(cons_w(x_1)) -> w(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_w(x_1) -> w(encArg(x_1)) encode_r(x_1) -> r(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) w(x0) -> c_w(x0) Rewrite Strategy: FULL ---------------------------------------- (7) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS is a non-duplicating overlay system, we have rc = irc. ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: w(r(x)) -> r(w(x)) b(r(x)) -> r(b(x)) b(c_w(x)) -> w(b(x)) The (relative) TRS S consists of the following rules: encArg(r(x_1)) -> r(encArg(x_1)) encArg(cons_w(x_1)) -> w(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_w(x_1) -> w(encArg(x_1)) encode_r(x_1) -> r(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) w(x0) -> c_w(x0) Rewrite Strategy: INNERMOST ---------------------------------------- (9) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (10) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: w(r(x)) -> r(w(x)) [1] b(r(x)) -> r(b(x)) [1] b(c_w(x)) -> w(b(x)) [1] encArg(r(x_1)) -> r(encArg(x_1)) [0] encArg(cons_w(x_1)) -> w(encArg(x_1)) [0] encArg(cons_b(x_1)) -> b(encArg(x_1)) [0] encode_w(x_1) -> w(encArg(x_1)) [0] encode_r(x_1) -> r(encArg(x_1)) [0] encode_b(x_1) -> b(encArg(x_1)) [0] w(x0) -> c_w(x0) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (11) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: w(r(x)) -> r(w(x)) [1] b(r(x)) -> r(b(x)) [1] b(c_w(x)) -> w(b(x)) [1] encArg(r(x_1)) -> r(encArg(x_1)) [0] encArg(cons_w(x_1)) -> w(encArg(x_1)) [0] encArg(cons_b(x_1)) -> b(encArg(x_1)) [0] encode_w(x_1) -> w(encArg(x_1)) [0] encode_r(x_1) -> r(encArg(x_1)) [0] encode_b(x_1) -> b(encArg(x_1)) [0] w(x0) -> c_w(x0) [0] The TRS has the following type information: w :: r:c_w:cons_w:cons_b -> r:c_w:cons_w:cons_b r :: r:c_w:cons_w:cons_b -> r:c_w:cons_w:cons_b b :: r:c_w:cons_w:cons_b -> r:c_w:cons_w:cons_b c_w :: r:c_w:cons_w:cons_b -> r:c_w:cons_w:cons_b encArg :: r:c_w:cons_w:cons_b -> r:c_w:cons_w:cons_b cons_w :: r:c_w:cons_w:cons_b -> r:c_w:cons_w:cons_b cons_b :: r:c_w:cons_w:cons_b -> r:c_w:cons_w:cons_b encode_w :: r:c_w:cons_w:cons_b -> r:c_w:cons_w:cons_b encode_r :: r:c_w:cons_w:cons_b -> r:c_w:cons_w:cons_b encode_b :: r:c_w:cons_w:cons_b -> r:c_w:cons_w:cons_b Rewrite Strategy: INNERMOST ---------------------------------------- (13) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: b_1 encArg_1 encode_w_1 encode_r_1 encode_b_1 w_1 Due to the following rules being added: encArg(v0) -> const [0] encode_w(v0) -> const [0] encode_r(v0) -> const [0] encode_b(v0) -> const [0] w(v0) -> const [0] b(v0) -> const [0] And the following fresh constants: const ---------------------------------------- (14) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: w(r(x)) -> r(w(x)) [1] b(r(x)) -> r(b(x)) [1] b(c_w(x)) -> w(b(x)) [1] encArg(r(x_1)) -> r(encArg(x_1)) [0] encArg(cons_w(x_1)) -> w(encArg(x_1)) [0] encArg(cons_b(x_1)) -> b(encArg(x_1)) [0] encode_w(x_1) -> w(encArg(x_1)) [0] encode_r(x_1) -> r(encArg(x_1)) [0] encode_b(x_1) -> b(encArg(x_1)) [0] w(x0) -> c_w(x0) [0] encArg(v0) -> const [0] encode_w(v0) -> const [0] encode_r(v0) -> const [0] encode_b(v0) -> const [0] w(v0) -> const [0] b(v0) -> const [0] The TRS has the following type information: w :: r:c_w:cons_w:cons_b:const -> r:c_w:cons_w:cons_b:const r :: r:c_w:cons_w:cons_b:const -> r:c_w:cons_w:cons_b:const b :: r:c_w:cons_w:cons_b:const -> r:c_w:cons_w:cons_b:const c_w :: r:c_w:cons_w:cons_b:const -> r:c_w:cons_w:cons_b:const encArg :: r:c_w:cons_w:cons_b:const -> r:c_w:cons_w:cons_b:const cons_w :: r:c_w:cons_w:cons_b:const -> r:c_w:cons_w:cons_b:const cons_b :: r:c_w:cons_w:cons_b:const -> r:c_w:cons_w:cons_b:const encode_w :: r:c_w:cons_w:cons_b:const -> r:c_w:cons_w:cons_b:const encode_r :: r:c_w:cons_w:cons_b:const -> r:c_w:cons_w:cons_b:const encode_b :: r:c_w:cons_w:cons_b:const -> r:c_w:cons_w:cons_b:const const :: r:c_w:cons_w:cons_b:const Rewrite Strategy: INNERMOST ---------------------------------------- (15) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (16) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: w(r(x)) -> r(w(x)) [1] b(r(x)) -> r(b(x)) [1] b(c_w(r(x'))) -> w(r(b(x'))) [2] b(c_w(c_w(x''))) -> w(w(b(x''))) [2] b(c_w(x)) -> w(const) [1] encArg(r(x_1)) -> r(encArg(x_1)) [0] encArg(cons_w(r(x_1'))) -> w(r(encArg(x_1'))) [0] encArg(cons_w(cons_w(x_1''))) -> w(w(encArg(x_1''))) [0] encArg(cons_w(cons_b(x_11))) -> w(b(encArg(x_11))) [0] encArg(cons_w(x_1)) -> w(const) [0] encArg(cons_b(r(x_12))) -> b(r(encArg(x_12))) [0] encArg(cons_b(cons_w(x_13))) -> b(w(encArg(x_13))) [0] encArg(cons_b(cons_b(x_14))) -> b(b(encArg(x_14))) [0] encArg(cons_b(x_1)) -> b(const) [0] encode_w(r(x_15)) -> w(r(encArg(x_15))) [0] encode_w(cons_w(x_16)) -> w(w(encArg(x_16))) [0] encode_w(cons_b(x_17)) -> w(b(encArg(x_17))) [0] encode_w(x_1) -> w(const) [0] encode_r(x_1) -> r(encArg(x_1)) [0] encode_b(r(x_18)) -> b(r(encArg(x_18))) [0] encode_b(cons_w(x_19)) -> b(w(encArg(x_19))) [0] encode_b(cons_b(x_110)) -> b(b(encArg(x_110))) [0] encode_b(x_1) -> b(const) [0] w(x0) -> c_w(x0) [0] encArg(v0) -> const [0] encode_w(v0) -> const [0] encode_r(v0) -> const [0] encode_b(v0) -> const [0] w(v0) -> const [0] b(v0) -> const [0] The TRS has the following type information: w :: r:c_w:cons_w:cons_b:const -> r:c_w:cons_w:cons_b:const r :: r:c_w:cons_w:cons_b:const -> r:c_w:cons_w:cons_b:const b :: r:c_w:cons_w:cons_b:const -> r:c_w:cons_w:cons_b:const c_w :: r:c_w:cons_w:cons_b:const -> r:c_w:cons_w:cons_b:const encArg :: r:c_w:cons_w:cons_b:const -> r:c_w:cons_w:cons_b:const cons_w :: r:c_w:cons_w:cons_b:const -> r:c_w:cons_w:cons_b:const cons_b :: r:c_w:cons_w:cons_b:const -> r:c_w:cons_w:cons_b:const encode_w :: r:c_w:cons_w:cons_b:const -> r:c_w:cons_w:cons_b:const encode_r :: r:c_w:cons_w:cons_b:const -> r:c_w:cons_w:cons_b:const encode_b :: r:c_w:cons_w:cons_b:const -> r:c_w:cons_w:cons_b:const const :: r:c_w:cons_w:cons_b:const Rewrite Strategy: INNERMOST ---------------------------------------- (17) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: const => 0 ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: b(z) -{ 2 }-> w(w(b(x''))) :|: x'' >= 0, z = 1 + (1 + x'') b(z) -{ 1 }-> w(0) :|: x >= 0, z = 1 + x b(z) -{ 2 }-> w(1 + b(x')) :|: x' >= 0, z = 1 + (1 + x') b(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 b(z) -{ 1 }-> 1 + b(x) :|: x >= 0, z = 1 + x encArg(z) -{ 0 }-> w(w(encArg(x_1''))) :|: z = 1 + (1 + x_1''), x_1'' >= 0 encArg(z) -{ 0 }-> w(b(encArg(x_11))) :|: x_11 >= 0, z = 1 + (1 + x_11) encArg(z) -{ 0 }-> w(0) :|: z = 1 + x_1, x_1 >= 0 encArg(z) -{ 0 }-> w(1 + encArg(x_1')) :|: z = 1 + (1 + x_1'), x_1' >= 0 encArg(z) -{ 0 }-> b(w(encArg(x_13))) :|: z = 1 + (1 + x_13), x_13 >= 0 encArg(z) -{ 0 }-> b(b(encArg(x_14))) :|: x_14 >= 0, z = 1 + (1 + x_14) encArg(z) -{ 0 }-> b(0) :|: z = 1 + x_1, x_1 >= 0 encArg(z) -{ 0 }-> b(1 + encArg(x_12)) :|: z = 1 + (1 + x_12), x_12 >= 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encArg(z) -{ 0 }-> 1 + encArg(x_1) :|: z = 1 + x_1, x_1 >= 0 encode_b(z) -{ 0 }-> b(w(encArg(x_19))) :|: z = 1 + x_19, x_19 >= 0 encode_b(z) -{ 0 }-> b(b(encArg(x_110))) :|: z = 1 + x_110, x_110 >= 0 encode_b(z) -{ 0 }-> b(0) :|: x_1 >= 0, z = x_1 encode_b(z) -{ 0 }-> b(1 + encArg(x_18)) :|: z = 1 + x_18, x_18 >= 0 encode_b(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_r(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_r(z) -{ 0 }-> 1 + encArg(x_1) :|: x_1 >= 0, z = x_1 encode_w(z) -{ 0 }-> w(w(encArg(x_16))) :|: z = 1 + x_16, x_16 >= 0 encode_w(z) -{ 0 }-> w(b(encArg(x_17))) :|: x_17 >= 0, z = 1 + x_17 encode_w(z) -{ 0 }-> w(0) :|: x_1 >= 0, z = x_1 encode_w(z) -{ 0 }-> w(1 + encArg(x_15)) :|: x_15 >= 0, z = 1 + x_15 encode_w(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 w(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 w(z) -{ 0 }-> 1 + x0 :|: z = x0, x0 >= 0 w(z) -{ 1 }-> 1 + w(x) :|: x >= 0, z = 1 + x ---------------------------------------- (19) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: b(z) -{ 2 }-> w(w(b(z - 2))) :|: z - 2 >= 0 b(z) -{ 1 }-> w(0) :|: z - 1 >= 0 b(z) -{ 2 }-> w(1 + b(z - 2)) :|: z - 2 >= 0 b(z) -{ 0 }-> 0 :|: z >= 0 b(z) -{ 1 }-> 1 + b(z - 1) :|: z - 1 >= 0 encArg(z) -{ 0 }-> w(w(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> w(b(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> w(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> w(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> b(w(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> b(b(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> b(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> b(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_b(z) -{ 0 }-> b(w(encArg(z - 1))) :|: z - 1 >= 0 encode_b(z) -{ 0 }-> b(b(encArg(z - 1))) :|: z - 1 >= 0 encode_b(z) -{ 0 }-> b(0) :|: z >= 0 encode_b(z) -{ 0 }-> b(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_b(z) -{ 0 }-> 0 :|: z >= 0 encode_r(z) -{ 0 }-> 0 :|: z >= 0 encode_r(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_w(z) -{ 0 }-> w(w(encArg(z - 1))) :|: z - 1 >= 0 encode_w(z) -{ 0 }-> w(b(encArg(z - 1))) :|: z - 1 >= 0 encode_w(z) -{ 0 }-> w(0) :|: z >= 0 encode_w(z) -{ 0 }-> w(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_w(z) -{ 0 }-> 0 :|: z >= 0 w(z) -{ 0 }-> 0 :|: z >= 0 w(z) -{ 0 }-> 1 + z :|: z >= 0 w(z) -{ 1 }-> 1 + w(z - 1) :|: z - 1 >= 0 ---------------------------------------- (21) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { w } { b } { encArg } { encode_b } { encode_r } { encode_w } ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: b(z) -{ 2 }-> w(w(b(z - 2))) :|: z - 2 >= 0 b(z) -{ 1 }-> w(0) :|: z - 1 >= 0 b(z) -{ 2 }-> w(1 + b(z - 2)) :|: z - 2 >= 0 b(z) -{ 0 }-> 0 :|: z >= 0 b(z) -{ 1 }-> 1 + b(z - 1) :|: z - 1 >= 0 encArg(z) -{ 0 }-> w(w(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> w(b(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> w(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> w(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> b(w(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> b(b(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> b(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> b(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_b(z) -{ 0 }-> b(w(encArg(z - 1))) :|: z - 1 >= 0 encode_b(z) -{ 0 }-> b(b(encArg(z - 1))) :|: z - 1 >= 0 encode_b(z) -{ 0 }-> b(0) :|: z >= 0 encode_b(z) -{ 0 }-> b(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_b(z) -{ 0 }-> 0 :|: z >= 0 encode_r(z) -{ 0 }-> 0 :|: z >= 0 encode_r(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_w(z) -{ 0 }-> w(w(encArg(z - 1))) :|: z - 1 >= 0 encode_w(z) -{ 0 }-> w(b(encArg(z - 1))) :|: z - 1 >= 0 encode_w(z) -{ 0 }-> w(0) :|: z >= 0 encode_w(z) -{ 0 }-> w(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_w(z) -{ 0 }-> 0 :|: z >= 0 w(z) -{ 0 }-> 0 :|: z >= 0 w(z) -{ 0 }-> 1 + z :|: z >= 0 w(z) -{ 1 }-> 1 + w(z - 1) :|: z - 1 >= 0 Function symbols to be analyzed: {w}, {b}, {encArg}, {encode_b}, {encode_r}, {encode_w} ---------------------------------------- (23) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: b(z) -{ 2 }-> w(w(b(z - 2))) :|: z - 2 >= 0 b(z) -{ 1 }-> w(0) :|: z - 1 >= 0 b(z) -{ 2 }-> w(1 + b(z - 2)) :|: z - 2 >= 0 b(z) -{ 0 }-> 0 :|: z >= 0 b(z) -{ 1 }-> 1 + b(z - 1) :|: z - 1 >= 0 encArg(z) -{ 0 }-> w(w(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> w(b(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> w(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> w(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> b(w(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> b(b(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> b(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> b(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_b(z) -{ 0 }-> b(w(encArg(z - 1))) :|: z - 1 >= 0 encode_b(z) -{ 0 }-> b(b(encArg(z - 1))) :|: z - 1 >= 0 encode_b(z) -{ 0 }-> b(0) :|: z >= 0 encode_b(z) -{ 0 }-> b(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_b(z) -{ 0 }-> 0 :|: z >= 0 encode_r(z) -{ 0 }-> 0 :|: z >= 0 encode_r(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_w(z) -{ 0 }-> w(w(encArg(z - 1))) :|: z - 1 >= 0 encode_w(z) -{ 0 }-> w(b(encArg(z - 1))) :|: z - 1 >= 0 encode_w(z) -{ 0 }-> w(0) :|: z >= 0 encode_w(z) -{ 0 }-> w(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_w(z) -{ 0 }-> 0 :|: z >= 0 w(z) -{ 0 }-> 0 :|: z >= 0 w(z) -{ 0 }-> 1 + z :|: z >= 0 w(z) -{ 1 }-> 1 + w(z - 1) :|: z - 1 >= 0 Function symbols to be analyzed: {w}, {b}, {encArg}, {encode_b}, {encode_r}, {encode_w} ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: w after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: b(z) -{ 2 }-> w(w(b(z - 2))) :|: z - 2 >= 0 b(z) -{ 1 }-> w(0) :|: z - 1 >= 0 b(z) -{ 2 }-> w(1 + b(z - 2)) :|: z - 2 >= 0 b(z) -{ 0 }-> 0 :|: z >= 0 b(z) -{ 1 }-> 1 + b(z - 1) :|: z - 1 >= 0 encArg(z) -{ 0 }-> w(w(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> w(b(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> w(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> w(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> b(w(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> b(b(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> b(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> b(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_b(z) -{ 0 }-> b(w(encArg(z - 1))) :|: z - 1 >= 0 encode_b(z) -{ 0 }-> b(b(encArg(z - 1))) :|: z - 1 >= 0 encode_b(z) -{ 0 }-> b(0) :|: z >= 0 encode_b(z) -{ 0 }-> b(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_b(z) -{ 0 }-> 0 :|: z >= 0 encode_r(z) -{ 0 }-> 0 :|: z >= 0 encode_r(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_w(z) -{ 0 }-> w(w(encArg(z - 1))) :|: z - 1 >= 0 encode_w(z) -{ 0 }-> w(b(encArg(z - 1))) :|: z - 1 >= 0 encode_w(z) -{ 0 }-> w(0) :|: z >= 0 encode_w(z) -{ 0 }-> w(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_w(z) -{ 0 }-> 0 :|: z >= 0 w(z) -{ 0 }-> 0 :|: z >= 0 w(z) -{ 0 }-> 1 + z :|: z >= 0 w(z) -{ 1 }-> 1 + w(z - 1) :|: z - 1 >= 0 Function symbols to be analyzed: {w}, {b}, {encArg}, {encode_b}, {encode_r}, {encode_w} Previous analysis results are: w: runtime: ?, size: O(n^1) [1 + z] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: w after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: b(z) -{ 2 }-> w(w(b(z - 2))) :|: z - 2 >= 0 b(z) -{ 1 }-> w(0) :|: z - 1 >= 0 b(z) -{ 2 }-> w(1 + b(z - 2)) :|: z - 2 >= 0 b(z) -{ 0 }-> 0 :|: z >= 0 b(z) -{ 1 }-> 1 + b(z - 1) :|: z - 1 >= 0 encArg(z) -{ 0 }-> w(w(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> w(b(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> w(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> w(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> b(w(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> b(b(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> b(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> b(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_b(z) -{ 0 }-> b(w(encArg(z - 1))) :|: z - 1 >= 0 encode_b(z) -{ 0 }-> b(b(encArg(z - 1))) :|: z - 1 >= 0 encode_b(z) -{ 0 }-> b(0) :|: z >= 0 encode_b(z) -{ 0 }-> b(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_b(z) -{ 0 }-> 0 :|: z >= 0 encode_r(z) -{ 0 }-> 0 :|: z >= 0 encode_r(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_w(z) -{ 0 }-> w(w(encArg(z - 1))) :|: z - 1 >= 0 encode_w(z) -{ 0 }-> w(b(encArg(z - 1))) :|: z - 1 >= 0 encode_w(z) -{ 0 }-> w(0) :|: z >= 0 encode_w(z) -{ 0 }-> w(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_w(z) -{ 0 }-> 0 :|: z >= 0 w(z) -{ 0 }-> 0 :|: z >= 0 w(z) -{ 0 }-> 1 + z :|: z >= 0 w(z) -{ 1 }-> 1 + w(z - 1) :|: z - 1 >= 0 Function symbols to be analyzed: {b}, {encArg}, {encode_b}, {encode_r}, {encode_w} Previous analysis results are: w: runtime: O(n^1) [z], size: O(n^1) [1 + z] ---------------------------------------- (29) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: b(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0 + 1, z - 1 >= 0 b(z) -{ 2 }-> w(w(b(z - 2))) :|: z - 2 >= 0 b(z) -{ 2 }-> w(1 + b(z - 2)) :|: z - 2 >= 0 b(z) -{ 0 }-> 0 :|: z >= 0 b(z) -{ 1 }-> 1 + b(z - 1) :|: z - 1 >= 0 encArg(z) -{ 0 }-> s'' :|: s'' >= 0, s'' <= 0 + 1, z - 1 >= 0 encArg(z) -{ 0 }-> w(w(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> w(b(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> w(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> b(w(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> b(b(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> b(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> b(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_b(z) -{ 0 }-> b(w(encArg(z - 1))) :|: z - 1 >= 0 encode_b(z) -{ 0 }-> b(b(encArg(z - 1))) :|: z - 1 >= 0 encode_b(z) -{ 0 }-> b(0) :|: z >= 0 encode_b(z) -{ 0 }-> b(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_b(z) -{ 0 }-> 0 :|: z >= 0 encode_r(z) -{ 0 }-> 0 :|: z >= 0 encode_r(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_w(z) -{ 0 }-> s1 :|: s1 >= 0, s1 <= 0 + 1, z >= 0 encode_w(z) -{ 0 }-> w(w(encArg(z - 1))) :|: z - 1 >= 0 encode_w(z) -{ 0 }-> w(b(encArg(z - 1))) :|: z - 1 >= 0 encode_w(z) -{ 0 }-> w(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_w(z) -{ 0 }-> 0 :|: z >= 0 w(z) -{ 0 }-> 0 :|: z >= 0 w(z) -{ z }-> 1 + s :|: s >= 0, s <= z - 1 + 1, z - 1 >= 0 w(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {b}, {encArg}, {encode_b}, {encode_r}, {encode_w} Previous analysis results are: w: runtime: O(n^1) [z], size: O(n^1) [1 + z] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: b after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: b(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0 + 1, z - 1 >= 0 b(z) -{ 2 }-> w(w(b(z - 2))) :|: z - 2 >= 0 b(z) -{ 2 }-> w(1 + b(z - 2)) :|: z - 2 >= 0 b(z) -{ 0 }-> 0 :|: z >= 0 b(z) -{ 1 }-> 1 + b(z - 1) :|: z - 1 >= 0 encArg(z) -{ 0 }-> s'' :|: s'' >= 0, s'' <= 0 + 1, z - 1 >= 0 encArg(z) -{ 0 }-> w(w(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> w(b(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> w(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> b(w(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> b(b(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> b(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> b(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_b(z) -{ 0 }-> b(w(encArg(z - 1))) :|: z - 1 >= 0 encode_b(z) -{ 0 }-> b(b(encArg(z - 1))) :|: z - 1 >= 0 encode_b(z) -{ 0 }-> b(0) :|: z >= 0 encode_b(z) -{ 0 }-> b(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_b(z) -{ 0 }-> 0 :|: z >= 0 encode_r(z) -{ 0 }-> 0 :|: z >= 0 encode_r(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_w(z) -{ 0 }-> s1 :|: s1 >= 0, s1 <= 0 + 1, z >= 0 encode_w(z) -{ 0 }-> w(w(encArg(z - 1))) :|: z - 1 >= 0 encode_w(z) -{ 0 }-> w(b(encArg(z - 1))) :|: z - 1 >= 0 encode_w(z) -{ 0 }-> w(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_w(z) -{ 0 }-> 0 :|: z >= 0 w(z) -{ 0 }-> 0 :|: z >= 0 w(z) -{ z }-> 1 + s :|: s >= 0, s <= z - 1 + 1, z - 1 >= 0 w(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {b}, {encArg}, {encode_b}, {encode_r}, {encode_w} Previous analysis results are: w: runtime: O(n^1) [z], size: O(n^1) [1 + z] b: runtime: ?, size: O(n^1) [z] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: b after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 4 + 5*z + 2*z^2 ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: b(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0 + 1, z - 1 >= 0 b(z) -{ 2 }-> w(w(b(z - 2))) :|: z - 2 >= 0 b(z) -{ 2 }-> w(1 + b(z - 2)) :|: z - 2 >= 0 b(z) -{ 0 }-> 0 :|: z >= 0 b(z) -{ 1 }-> 1 + b(z - 1) :|: z - 1 >= 0 encArg(z) -{ 0 }-> s'' :|: s'' >= 0, s'' <= 0 + 1, z - 1 >= 0 encArg(z) -{ 0 }-> w(w(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> w(b(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> w(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> b(w(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> b(b(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> b(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> b(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_b(z) -{ 0 }-> b(w(encArg(z - 1))) :|: z - 1 >= 0 encode_b(z) -{ 0 }-> b(b(encArg(z - 1))) :|: z - 1 >= 0 encode_b(z) -{ 0 }-> b(0) :|: z >= 0 encode_b(z) -{ 0 }-> b(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_b(z) -{ 0 }-> 0 :|: z >= 0 encode_r(z) -{ 0 }-> 0 :|: z >= 0 encode_r(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_w(z) -{ 0 }-> s1 :|: s1 >= 0, s1 <= 0 + 1, z >= 0 encode_w(z) -{ 0 }-> w(w(encArg(z - 1))) :|: z - 1 >= 0 encode_w(z) -{ 0 }-> w(b(encArg(z - 1))) :|: z - 1 >= 0 encode_w(z) -{ 0 }-> w(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_w(z) -{ 0 }-> 0 :|: z >= 0 w(z) -{ 0 }-> 0 :|: z >= 0 w(z) -{ z }-> 1 + s :|: s >= 0, s <= z - 1 + 1, z - 1 >= 0 w(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encArg}, {encode_b}, {encode_r}, {encode_w} Previous analysis results are: w: runtime: O(n^1) [z], size: O(n^1) [1 + z] b: runtime: O(n^2) [4 + 5*z + 2*z^2], size: O(n^1) [z] ---------------------------------------- (35) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: b(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0 + 1, z - 1 >= 0 b(z) -{ 5 + s3 + -3*z + 2*z^2 }-> s4 :|: s3 >= 0, s3 <= z - 2, s4 >= 0, s4 <= 1 + s3 + 1, z - 2 >= 0 b(z) -{ 4 + s5 + s6 + -3*z + 2*z^2 }-> s7 :|: s5 >= 0, s5 <= z - 2, s6 >= 0, s6 <= s5 + 1, s7 >= 0, s7 <= s6 + 1, z - 2 >= 0 b(z) -{ 0 }-> 0 :|: z >= 0 b(z) -{ 2 + z + 2*z^2 }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1, z - 1 >= 0 encArg(z) -{ 0 }-> s'' :|: s'' >= 0, s'' <= 0 + 1, z - 1 >= 0 encArg(z) -{ 4 }-> s8 :|: s8 >= 0, s8 <= 0, z - 1 >= 0 encArg(z) -{ 0 }-> w(w(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> w(b(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> w(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> b(w(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> b(b(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> b(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_b(z) -{ 4 }-> s9 :|: s9 >= 0, s9 <= 0, z >= 0 encode_b(z) -{ 0 }-> b(w(encArg(z - 1))) :|: z - 1 >= 0 encode_b(z) -{ 0 }-> b(b(encArg(z - 1))) :|: z - 1 >= 0 encode_b(z) -{ 0 }-> b(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_b(z) -{ 0 }-> 0 :|: z >= 0 encode_r(z) -{ 0 }-> 0 :|: z >= 0 encode_r(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_w(z) -{ 0 }-> s1 :|: s1 >= 0, s1 <= 0 + 1, z >= 0 encode_w(z) -{ 0 }-> w(w(encArg(z - 1))) :|: z - 1 >= 0 encode_w(z) -{ 0 }-> w(b(encArg(z - 1))) :|: z - 1 >= 0 encode_w(z) -{ 0 }-> w(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_w(z) -{ 0 }-> 0 :|: z >= 0 w(z) -{ 0 }-> 0 :|: z >= 0 w(z) -{ z }-> 1 + s :|: s >= 0, s <= z - 1 + 1, z - 1 >= 0 w(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encArg}, {encode_b}, {encode_r}, {encode_w} Previous analysis results are: w: runtime: O(n^1) [z], size: O(n^1) [1 + z] b: runtime: O(n^2) [4 + 5*z + 2*z^2], size: O(n^1) [z] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: b(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0 + 1, z - 1 >= 0 b(z) -{ 5 + s3 + -3*z + 2*z^2 }-> s4 :|: s3 >= 0, s3 <= z - 2, s4 >= 0, s4 <= 1 + s3 + 1, z - 2 >= 0 b(z) -{ 4 + s5 + s6 + -3*z + 2*z^2 }-> s7 :|: s5 >= 0, s5 <= z - 2, s6 >= 0, s6 <= s5 + 1, s7 >= 0, s7 <= s6 + 1, z - 2 >= 0 b(z) -{ 0 }-> 0 :|: z >= 0 b(z) -{ 2 + z + 2*z^2 }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1, z - 1 >= 0 encArg(z) -{ 0 }-> s'' :|: s'' >= 0, s'' <= 0 + 1, z - 1 >= 0 encArg(z) -{ 4 }-> s8 :|: s8 >= 0, s8 <= 0, z - 1 >= 0 encArg(z) -{ 0 }-> w(w(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> w(b(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> w(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> b(w(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> b(b(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> b(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_b(z) -{ 4 }-> s9 :|: s9 >= 0, s9 <= 0, z >= 0 encode_b(z) -{ 0 }-> b(w(encArg(z - 1))) :|: z - 1 >= 0 encode_b(z) -{ 0 }-> b(b(encArg(z - 1))) :|: z - 1 >= 0 encode_b(z) -{ 0 }-> b(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_b(z) -{ 0 }-> 0 :|: z >= 0 encode_r(z) -{ 0 }-> 0 :|: z >= 0 encode_r(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_w(z) -{ 0 }-> s1 :|: s1 >= 0, s1 <= 0 + 1, z >= 0 encode_w(z) -{ 0 }-> w(w(encArg(z - 1))) :|: z - 1 >= 0 encode_w(z) -{ 0 }-> w(b(encArg(z - 1))) :|: z - 1 >= 0 encode_w(z) -{ 0 }-> w(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_w(z) -{ 0 }-> 0 :|: z >= 0 w(z) -{ 0 }-> 0 :|: z >= 0 w(z) -{ z }-> 1 + s :|: s >= 0, s <= z - 1 + 1, z - 1 >= 0 w(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encArg}, {encode_b}, {encode_r}, {encode_w} Previous analysis results are: w: runtime: O(n^1) [z], size: O(n^1) [1 + z] b: runtime: O(n^2) [4 + 5*z + 2*z^2], size: O(n^1) [z] encArg: runtime: ?, size: O(n^1) [z] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 4 + 5*z + 6*z^2 + 10*z^3 ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: b(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0 + 1, z - 1 >= 0 b(z) -{ 5 + s3 + -3*z + 2*z^2 }-> s4 :|: s3 >= 0, s3 <= z - 2, s4 >= 0, s4 <= 1 + s3 + 1, z - 2 >= 0 b(z) -{ 4 + s5 + s6 + -3*z + 2*z^2 }-> s7 :|: s5 >= 0, s5 <= z - 2, s6 >= 0, s6 <= s5 + 1, s7 >= 0, s7 <= s6 + 1, z - 2 >= 0 b(z) -{ 0 }-> 0 :|: z >= 0 b(z) -{ 2 + z + 2*z^2 }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1, z - 1 >= 0 encArg(z) -{ 0 }-> s'' :|: s'' >= 0, s'' <= 0 + 1, z - 1 >= 0 encArg(z) -{ 4 }-> s8 :|: s8 >= 0, s8 <= 0, z - 1 >= 0 encArg(z) -{ 0 }-> w(w(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> w(b(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> w(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> b(w(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> b(b(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> b(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_b(z) -{ 4 }-> s9 :|: s9 >= 0, s9 <= 0, z >= 0 encode_b(z) -{ 0 }-> b(w(encArg(z - 1))) :|: z - 1 >= 0 encode_b(z) -{ 0 }-> b(b(encArg(z - 1))) :|: z - 1 >= 0 encode_b(z) -{ 0 }-> b(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_b(z) -{ 0 }-> 0 :|: z >= 0 encode_r(z) -{ 0 }-> 0 :|: z >= 0 encode_r(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_w(z) -{ 0 }-> s1 :|: s1 >= 0, s1 <= 0 + 1, z >= 0 encode_w(z) -{ 0 }-> w(w(encArg(z - 1))) :|: z - 1 >= 0 encode_w(z) -{ 0 }-> w(b(encArg(z - 1))) :|: z - 1 >= 0 encode_w(z) -{ 0 }-> w(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_w(z) -{ 0 }-> 0 :|: z >= 0 w(z) -{ 0 }-> 0 :|: z >= 0 w(z) -{ z }-> 1 + s :|: s >= 0, s <= z - 1 + 1, z - 1 >= 0 w(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encode_b}, {encode_r}, {encode_w} Previous analysis results are: w: runtime: O(n^1) [z], size: O(n^1) [1 + z] b: runtime: O(n^2) [4 + 5*z + 2*z^2], size: O(n^1) [z] encArg: runtime: O(n^3) [4 + 5*z + 6*z^2 + 10*z^3], size: O(n^1) [z] ---------------------------------------- (41) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: b(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0 + 1, z - 1 >= 0 b(z) -{ 5 + s3 + -3*z + 2*z^2 }-> s4 :|: s3 >= 0, s3 <= z - 2, s4 >= 0, s4 <= 1 + s3 + 1, z - 2 >= 0 b(z) -{ 4 + s5 + s6 + -3*z + 2*z^2 }-> s7 :|: s5 >= 0, s5 <= z - 2, s6 >= 0, s6 <= s5 + 1, s7 >= 0, s7 <= s6 + 1, z - 2 >= 0 b(z) -{ 0 }-> 0 :|: z >= 0 b(z) -{ 2 + z + 2*z^2 }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1, z - 1 >= 0 encArg(z) -{ 0 }-> s'' :|: s'' >= 0, s'' <= 0 + 1, z - 1 >= 0 encArg(z) -{ -61 + s11 + 101*z + -54*z^2 + 10*z^3 }-> s12 :|: s11 >= 0, s11 <= z - 2, s12 >= 0, s12 <= 1 + s11 + 1, z - 2 >= 0 encArg(z) -{ -62 + s13 + s14 + 101*z + -54*z^2 + 10*z^3 }-> s15 :|: s13 >= 0, s13 <= z - 2, s14 >= 0, s14 <= s13 + 1, s15 >= 0, s15 <= s14 + 1, z - 2 >= 0 encArg(z) -{ -58 + 5*s16 + 2*s16^2 + s17 + 101*z + -54*z^2 + 10*z^3 }-> s18 :|: s16 >= 0, s16 <= z - 2, s17 >= 0, s17 <= s16, s18 >= 0, s18 <= s17 + 1, z - 2 >= 0 encArg(z) -{ -51 + 9*s19 + 2*s19^2 + 101*z + -54*z^2 + 10*z^3 }-> s20 :|: s19 >= 0, s19 <= z - 2, s20 >= 0, s20 <= 1 + s19, z - 2 >= 0 encArg(z) -{ -58 + s21 + 5*s22 + 2*s22^2 + 101*z + -54*z^2 + 10*z^3 }-> s23 :|: s21 >= 0, s21 <= z - 2, s22 >= 0, s22 <= s21 + 1, s23 >= 0, s23 <= s22, z - 2 >= 0 encArg(z) -{ -54 + 5*s24 + 2*s24^2 + 5*s25 + 2*s25^2 + 101*z + -54*z^2 + 10*z^3 }-> s26 :|: s24 >= 0, s24 <= z - 2, s25 >= 0, s25 <= s24, s26 >= 0, s26 <= s25, z - 2 >= 0 encArg(z) -{ 4 }-> s8 :|: s8 >= 0, s8 <= 0, z - 1 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -5 + 23*z + -24*z^2 + 10*z^3 }-> 1 + s10 :|: s10 >= 0, s10 <= z - 1, z - 1 >= 0 encode_b(z) -{ 6 + 9*s36 + 2*s36^2 + 23*z + -24*z^2 + 10*z^3 }-> s37 :|: s36 >= 0, s36 <= z - 1, s37 >= 0, s37 <= 1 + s36, z - 1 >= 0 encode_b(z) -{ -1 + s38 + 5*s39 + 2*s39^2 + 23*z + -24*z^2 + 10*z^3 }-> s40 :|: s38 >= 0, s38 <= z - 1, s39 >= 0, s39 <= s38 + 1, s40 >= 0, s40 <= s39, z - 1 >= 0 encode_b(z) -{ 3 + 5*s41 + 2*s41^2 + 5*s42 + 2*s42^2 + 23*z + -24*z^2 + 10*z^3 }-> s43 :|: s41 >= 0, s41 <= z - 1, s42 >= 0, s42 <= s41, s43 >= 0, s43 <= s42, z - 1 >= 0 encode_b(z) -{ 4 }-> s9 :|: s9 >= 0, s9 <= 0, z >= 0 encode_b(z) -{ 0 }-> 0 :|: z >= 0 encode_r(z) -{ 0 }-> 0 :|: z >= 0 encode_r(z) -{ 4 + 5*z + 6*z^2 + 10*z^3 }-> 1 + s35 :|: s35 >= 0, s35 <= z, z >= 0 encode_w(z) -{ 0 }-> s1 :|: s1 >= 0, s1 <= 0 + 1, z >= 0 encode_w(z) -{ -4 + s27 + 23*z + -24*z^2 + 10*z^3 }-> s28 :|: s27 >= 0, s27 <= z - 1, s28 >= 0, s28 <= 1 + s27 + 1, z - 1 >= 0 encode_w(z) -{ -5 + s29 + s30 + 23*z + -24*z^2 + 10*z^3 }-> s31 :|: s29 >= 0, s29 <= z - 1, s30 >= 0, s30 <= s29 + 1, s31 >= 0, s31 <= s30 + 1, z - 1 >= 0 encode_w(z) -{ -1 + 5*s32 + 2*s32^2 + s33 + 23*z + -24*z^2 + 10*z^3 }-> s34 :|: s32 >= 0, s32 <= z - 1, s33 >= 0, s33 <= s32, s34 >= 0, s34 <= s33 + 1, z - 1 >= 0 encode_w(z) -{ 0 }-> 0 :|: z >= 0 w(z) -{ 0 }-> 0 :|: z >= 0 w(z) -{ z }-> 1 + s :|: s >= 0, s <= z - 1 + 1, z - 1 >= 0 w(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encode_b}, {encode_r}, {encode_w} Previous analysis results are: w: runtime: O(n^1) [z], size: O(n^1) [1 + z] b: runtime: O(n^2) [4 + 5*z + 2*z^2], size: O(n^1) [z] encArg: runtime: O(n^3) [4 + 5*z + 6*z^2 + 10*z^3], size: O(n^1) [z] ---------------------------------------- (43) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_b after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: b(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0 + 1, z - 1 >= 0 b(z) -{ 5 + s3 + -3*z + 2*z^2 }-> s4 :|: s3 >= 0, s3 <= z - 2, s4 >= 0, s4 <= 1 + s3 + 1, z - 2 >= 0 b(z) -{ 4 + s5 + s6 + -3*z + 2*z^2 }-> s7 :|: s5 >= 0, s5 <= z - 2, s6 >= 0, s6 <= s5 + 1, s7 >= 0, s7 <= s6 + 1, z - 2 >= 0 b(z) -{ 0 }-> 0 :|: z >= 0 b(z) -{ 2 + z + 2*z^2 }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1, z - 1 >= 0 encArg(z) -{ 0 }-> s'' :|: s'' >= 0, s'' <= 0 + 1, z - 1 >= 0 encArg(z) -{ -61 + s11 + 101*z + -54*z^2 + 10*z^3 }-> s12 :|: s11 >= 0, s11 <= z - 2, s12 >= 0, s12 <= 1 + s11 + 1, z - 2 >= 0 encArg(z) -{ -62 + s13 + s14 + 101*z + -54*z^2 + 10*z^3 }-> s15 :|: s13 >= 0, s13 <= z - 2, s14 >= 0, s14 <= s13 + 1, s15 >= 0, s15 <= s14 + 1, z - 2 >= 0 encArg(z) -{ -58 + 5*s16 + 2*s16^2 + s17 + 101*z + -54*z^2 + 10*z^3 }-> s18 :|: s16 >= 0, s16 <= z - 2, s17 >= 0, s17 <= s16, s18 >= 0, s18 <= s17 + 1, z - 2 >= 0 encArg(z) -{ -51 + 9*s19 + 2*s19^2 + 101*z + -54*z^2 + 10*z^3 }-> s20 :|: s19 >= 0, s19 <= z - 2, s20 >= 0, s20 <= 1 + s19, z - 2 >= 0 encArg(z) -{ -58 + s21 + 5*s22 + 2*s22^2 + 101*z + -54*z^2 + 10*z^3 }-> s23 :|: s21 >= 0, s21 <= z - 2, s22 >= 0, s22 <= s21 + 1, s23 >= 0, s23 <= s22, z - 2 >= 0 encArg(z) -{ -54 + 5*s24 + 2*s24^2 + 5*s25 + 2*s25^2 + 101*z + -54*z^2 + 10*z^3 }-> s26 :|: s24 >= 0, s24 <= z - 2, s25 >= 0, s25 <= s24, s26 >= 0, s26 <= s25, z - 2 >= 0 encArg(z) -{ 4 }-> s8 :|: s8 >= 0, s8 <= 0, z - 1 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -5 + 23*z + -24*z^2 + 10*z^3 }-> 1 + s10 :|: s10 >= 0, s10 <= z - 1, z - 1 >= 0 encode_b(z) -{ 6 + 9*s36 + 2*s36^2 + 23*z + -24*z^2 + 10*z^3 }-> s37 :|: s36 >= 0, s36 <= z - 1, s37 >= 0, s37 <= 1 + s36, z - 1 >= 0 encode_b(z) -{ -1 + s38 + 5*s39 + 2*s39^2 + 23*z + -24*z^2 + 10*z^3 }-> s40 :|: s38 >= 0, s38 <= z - 1, s39 >= 0, s39 <= s38 + 1, s40 >= 0, s40 <= s39, z - 1 >= 0 encode_b(z) -{ 3 + 5*s41 + 2*s41^2 + 5*s42 + 2*s42^2 + 23*z + -24*z^2 + 10*z^3 }-> s43 :|: s41 >= 0, s41 <= z - 1, s42 >= 0, s42 <= s41, s43 >= 0, s43 <= s42, z - 1 >= 0 encode_b(z) -{ 4 }-> s9 :|: s9 >= 0, s9 <= 0, z >= 0 encode_b(z) -{ 0 }-> 0 :|: z >= 0 encode_r(z) -{ 0 }-> 0 :|: z >= 0 encode_r(z) -{ 4 + 5*z + 6*z^2 + 10*z^3 }-> 1 + s35 :|: s35 >= 0, s35 <= z, z >= 0 encode_w(z) -{ 0 }-> s1 :|: s1 >= 0, s1 <= 0 + 1, z >= 0 encode_w(z) -{ -4 + s27 + 23*z + -24*z^2 + 10*z^3 }-> s28 :|: s27 >= 0, s27 <= z - 1, s28 >= 0, s28 <= 1 + s27 + 1, z - 1 >= 0 encode_w(z) -{ -5 + s29 + s30 + 23*z + -24*z^2 + 10*z^3 }-> s31 :|: s29 >= 0, s29 <= z - 1, s30 >= 0, s30 <= s29 + 1, s31 >= 0, s31 <= s30 + 1, z - 1 >= 0 encode_w(z) -{ -1 + 5*s32 + 2*s32^2 + s33 + 23*z + -24*z^2 + 10*z^3 }-> s34 :|: s32 >= 0, s32 <= z - 1, s33 >= 0, s33 <= s32, s34 >= 0, s34 <= s33 + 1, z - 1 >= 0 encode_w(z) -{ 0 }-> 0 :|: z >= 0 w(z) -{ 0 }-> 0 :|: z >= 0 w(z) -{ z }-> 1 + s :|: s >= 0, s <= z - 1 + 1, z - 1 >= 0 w(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encode_b}, {encode_r}, {encode_w} Previous analysis results are: w: runtime: O(n^1) [z], size: O(n^1) [1 + z] b: runtime: O(n^2) [4 + 5*z + 2*z^2], size: O(n^1) [z] encArg: runtime: O(n^3) [4 + 5*z + 6*z^2 + 10*z^3], size: O(n^1) [z] encode_b: runtime: ?, size: O(n^1) [z] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_b after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 13 + 94*z + 30*z^3 ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: b(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0 + 1, z - 1 >= 0 b(z) -{ 5 + s3 + -3*z + 2*z^2 }-> s4 :|: s3 >= 0, s3 <= z - 2, s4 >= 0, s4 <= 1 + s3 + 1, z - 2 >= 0 b(z) -{ 4 + s5 + s6 + -3*z + 2*z^2 }-> s7 :|: s5 >= 0, s5 <= z - 2, s6 >= 0, s6 <= s5 + 1, s7 >= 0, s7 <= s6 + 1, z - 2 >= 0 b(z) -{ 0 }-> 0 :|: z >= 0 b(z) -{ 2 + z + 2*z^2 }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1, z - 1 >= 0 encArg(z) -{ 0 }-> s'' :|: s'' >= 0, s'' <= 0 + 1, z - 1 >= 0 encArg(z) -{ -61 + s11 + 101*z + -54*z^2 + 10*z^3 }-> s12 :|: s11 >= 0, s11 <= z - 2, s12 >= 0, s12 <= 1 + s11 + 1, z - 2 >= 0 encArg(z) -{ -62 + s13 + s14 + 101*z + -54*z^2 + 10*z^3 }-> s15 :|: s13 >= 0, s13 <= z - 2, s14 >= 0, s14 <= s13 + 1, s15 >= 0, s15 <= s14 + 1, z - 2 >= 0 encArg(z) -{ -58 + 5*s16 + 2*s16^2 + s17 + 101*z + -54*z^2 + 10*z^3 }-> s18 :|: s16 >= 0, s16 <= z - 2, s17 >= 0, s17 <= s16, s18 >= 0, s18 <= s17 + 1, z - 2 >= 0 encArg(z) -{ -51 + 9*s19 + 2*s19^2 + 101*z + -54*z^2 + 10*z^3 }-> s20 :|: s19 >= 0, s19 <= z - 2, s20 >= 0, s20 <= 1 + s19, z - 2 >= 0 encArg(z) -{ -58 + s21 + 5*s22 + 2*s22^2 + 101*z + -54*z^2 + 10*z^3 }-> s23 :|: s21 >= 0, s21 <= z - 2, s22 >= 0, s22 <= s21 + 1, s23 >= 0, s23 <= s22, z - 2 >= 0 encArg(z) -{ -54 + 5*s24 + 2*s24^2 + 5*s25 + 2*s25^2 + 101*z + -54*z^2 + 10*z^3 }-> s26 :|: s24 >= 0, s24 <= z - 2, s25 >= 0, s25 <= s24, s26 >= 0, s26 <= s25, z - 2 >= 0 encArg(z) -{ 4 }-> s8 :|: s8 >= 0, s8 <= 0, z - 1 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -5 + 23*z + -24*z^2 + 10*z^3 }-> 1 + s10 :|: s10 >= 0, s10 <= z - 1, z - 1 >= 0 encode_b(z) -{ 6 + 9*s36 + 2*s36^2 + 23*z + -24*z^2 + 10*z^3 }-> s37 :|: s36 >= 0, s36 <= z - 1, s37 >= 0, s37 <= 1 + s36, z - 1 >= 0 encode_b(z) -{ -1 + s38 + 5*s39 + 2*s39^2 + 23*z + -24*z^2 + 10*z^3 }-> s40 :|: s38 >= 0, s38 <= z - 1, s39 >= 0, s39 <= s38 + 1, s40 >= 0, s40 <= s39, z - 1 >= 0 encode_b(z) -{ 3 + 5*s41 + 2*s41^2 + 5*s42 + 2*s42^2 + 23*z + -24*z^2 + 10*z^3 }-> s43 :|: s41 >= 0, s41 <= z - 1, s42 >= 0, s42 <= s41, s43 >= 0, s43 <= s42, z - 1 >= 0 encode_b(z) -{ 4 }-> s9 :|: s9 >= 0, s9 <= 0, z >= 0 encode_b(z) -{ 0 }-> 0 :|: z >= 0 encode_r(z) -{ 0 }-> 0 :|: z >= 0 encode_r(z) -{ 4 + 5*z + 6*z^2 + 10*z^3 }-> 1 + s35 :|: s35 >= 0, s35 <= z, z >= 0 encode_w(z) -{ 0 }-> s1 :|: s1 >= 0, s1 <= 0 + 1, z >= 0 encode_w(z) -{ -4 + s27 + 23*z + -24*z^2 + 10*z^3 }-> s28 :|: s27 >= 0, s27 <= z - 1, s28 >= 0, s28 <= 1 + s27 + 1, z - 1 >= 0 encode_w(z) -{ -5 + s29 + s30 + 23*z + -24*z^2 + 10*z^3 }-> s31 :|: s29 >= 0, s29 <= z - 1, s30 >= 0, s30 <= s29 + 1, s31 >= 0, s31 <= s30 + 1, z - 1 >= 0 encode_w(z) -{ -1 + 5*s32 + 2*s32^2 + s33 + 23*z + -24*z^2 + 10*z^3 }-> s34 :|: s32 >= 0, s32 <= z - 1, s33 >= 0, s33 <= s32, s34 >= 0, s34 <= s33 + 1, z - 1 >= 0 encode_w(z) -{ 0 }-> 0 :|: z >= 0 w(z) -{ 0 }-> 0 :|: z >= 0 w(z) -{ z }-> 1 + s :|: s >= 0, s <= z - 1 + 1, z - 1 >= 0 w(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encode_r}, {encode_w} Previous analysis results are: w: runtime: O(n^1) [z], size: O(n^1) [1 + z] b: runtime: O(n^2) [4 + 5*z + 2*z^2], size: O(n^1) [z] encArg: runtime: O(n^3) [4 + 5*z + 6*z^2 + 10*z^3], size: O(n^1) [z] encode_b: runtime: O(n^3) [13 + 94*z + 30*z^3], size: O(n^1) [z] ---------------------------------------- (47) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: b(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0 + 1, z - 1 >= 0 b(z) -{ 5 + s3 + -3*z + 2*z^2 }-> s4 :|: s3 >= 0, s3 <= z - 2, s4 >= 0, s4 <= 1 + s3 + 1, z - 2 >= 0 b(z) -{ 4 + s5 + s6 + -3*z + 2*z^2 }-> s7 :|: s5 >= 0, s5 <= z - 2, s6 >= 0, s6 <= s5 + 1, s7 >= 0, s7 <= s6 + 1, z - 2 >= 0 b(z) -{ 0 }-> 0 :|: z >= 0 b(z) -{ 2 + z + 2*z^2 }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1, z - 1 >= 0 encArg(z) -{ 0 }-> s'' :|: s'' >= 0, s'' <= 0 + 1, z - 1 >= 0 encArg(z) -{ -61 + s11 + 101*z + -54*z^2 + 10*z^3 }-> s12 :|: s11 >= 0, s11 <= z - 2, s12 >= 0, s12 <= 1 + s11 + 1, z - 2 >= 0 encArg(z) -{ -62 + s13 + s14 + 101*z + -54*z^2 + 10*z^3 }-> s15 :|: s13 >= 0, s13 <= z - 2, s14 >= 0, s14 <= s13 + 1, s15 >= 0, s15 <= s14 + 1, z - 2 >= 0 encArg(z) -{ -58 + 5*s16 + 2*s16^2 + s17 + 101*z + -54*z^2 + 10*z^3 }-> s18 :|: s16 >= 0, s16 <= z - 2, s17 >= 0, s17 <= s16, s18 >= 0, s18 <= s17 + 1, z - 2 >= 0 encArg(z) -{ -51 + 9*s19 + 2*s19^2 + 101*z + -54*z^2 + 10*z^3 }-> s20 :|: s19 >= 0, s19 <= z - 2, s20 >= 0, s20 <= 1 + s19, z - 2 >= 0 encArg(z) -{ -58 + s21 + 5*s22 + 2*s22^2 + 101*z + -54*z^2 + 10*z^3 }-> s23 :|: s21 >= 0, s21 <= z - 2, s22 >= 0, s22 <= s21 + 1, s23 >= 0, s23 <= s22, z - 2 >= 0 encArg(z) -{ -54 + 5*s24 + 2*s24^2 + 5*s25 + 2*s25^2 + 101*z + -54*z^2 + 10*z^3 }-> s26 :|: s24 >= 0, s24 <= z - 2, s25 >= 0, s25 <= s24, s26 >= 0, s26 <= s25, z - 2 >= 0 encArg(z) -{ 4 }-> s8 :|: s8 >= 0, s8 <= 0, z - 1 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -5 + 23*z + -24*z^2 + 10*z^3 }-> 1 + s10 :|: s10 >= 0, s10 <= z - 1, z - 1 >= 0 encode_b(z) -{ 6 + 9*s36 + 2*s36^2 + 23*z + -24*z^2 + 10*z^3 }-> s37 :|: s36 >= 0, s36 <= z - 1, s37 >= 0, s37 <= 1 + s36, z - 1 >= 0 encode_b(z) -{ -1 + s38 + 5*s39 + 2*s39^2 + 23*z + -24*z^2 + 10*z^3 }-> s40 :|: s38 >= 0, s38 <= z - 1, s39 >= 0, s39 <= s38 + 1, s40 >= 0, s40 <= s39, z - 1 >= 0 encode_b(z) -{ 3 + 5*s41 + 2*s41^2 + 5*s42 + 2*s42^2 + 23*z + -24*z^2 + 10*z^3 }-> s43 :|: s41 >= 0, s41 <= z - 1, s42 >= 0, s42 <= s41, s43 >= 0, s43 <= s42, z - 1 >= 0 encode_b(z) -{ 4 }-> s9 :|: s9 >= 0, s9 <= 0, z >= 0 encode_b(z) -{ 0 }-> 0 :|: z >= 0 encode_r(z) -{ 0 }-> 0 :|: z >= 0 encode_r(z) -{ 4 + 5*z + 6*z^2 + 10*z^3 }-> 1 + s35 :|: s35 >= 0, s35 <= z, z >= 0 encode_w(z) -{ 0 }-> s1 :|: s1 >= 0, s1 <= 0 + 1, z >= 0 encode_w(z) -{ -4 + s27 + 23*z + -24*z^2 + 10*z^3 }-> s28 :|: s27 >= 0, s27 <= z - 1, s28 >= 0, s28 <= 1 + s27 + 1, z - 1 >= 0 encode_w(z) -{ -5 + s29 + s30 + 23*z + -24*z^2 + 10*z^3 }-> s31 :|: s29 >= 0, s29 <= z - 1, s30 >= 0, s30 <= s29 + 1, s31 >= 0, s31 <= s30 + 1, z - 1 >= 0 encode_w(z) -{ -1 + 5*s32 + 2*s32^2 + s33 + 23*z + -24*z^2 + 10*z^3 }-> s34 :|: s32 >= 0, s32 <= z - 1, s33 >= 0, s33 <= s32, s34 >= 0, s34 <= s33 + 1, z - 1 >= 0 encode_w(z) -{ 0 }-> 0 :|: z >= 0 w(z) -{ 0 }-> 0 :|: z >= 0 w(z) -{ z }-> 1 + s :|: s >= 0, s <= z - 1 + 1, z - 1 >= 0 w(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encode_r}, {encode_w} Previous analysis results are: w: runtime: O(n^1) [z], size: O(n^1) [1 + z] b: runtime: O(n^2) [4 + 5*z + 2*z^2], size: O(n^1) [z] encArg: runtime: O(n^3) [4 + 5*z + 6*z^2 + 10*z^3], size: O(n^1) [z] encode_b: runtime: O(n^3) [13 + 94*z + 30*z^3], size: O(n^1) [z] ---------------------------------------- (49) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_r after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: b(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0 + 1, z - 1 >= 0 b(z) -{ 5 + s3 + -3*z + 2*z^2 }-> s4 :|: s3 >= 0, s3 <= z - 2, s4 >= 0, s4 <= 1 + s3 + 1, z - 2 >= 0 b(z) -{ 4 + s5 + s6 + -3*z + 2*z^2 }-> s7 :|: s5 >= 0, s5 <= z - 2, s6 >= 0, s6 <= s5 + 1, s7 >= 0, s7 <= s6 + 1, z - 2 >= 0 b(z) -{ 0 }-> 0 :|: z >= 0 b(z) -{ 2 + z + 2*z^2 }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1, z - 1 >= 0 encArg(z) -{ 0 }-> s'' :|: s'' >= 0, s'' <= 0 + 1, z - 1 >= 0 encArg(z) -{ -61 + s11 + 101*z + -54*z^2 + 10*z^3 }-> s12 :|: s11 >= 0, s11 <= z - 2, s12 >= 0, s12 <= 1 + s11 + 1, z - 2 >= 0 encArg(z) -{ -62 + s13 + s14 + 101*z + -54*z^2 + 10*z^3 }-> s15 :|: s13 >= 0, s13 <= z - 2, s14 >= 0, s14 <= s13 + 1, s15 >= 0, s15 <= s14 + 1, z - 2 >= 0 encArg(z) -{ -58 + 5*s16 + 2*s16^2 + s17 + 101*z + -54*z^2 + 10*z^3 }-> s18 :|: s16 >= 0, s16 <= z - 2, s17 >= 0, s17 <= s16, s18 >= 0, s18 <= s17 + 1, z - 2 >= 0 encArg(z) -{ -51 + 9*s19 + 2*s19^2 + 101*z + -54*z^2 + 10*z^3 }-> s20 :|: s19 >= 0, s19 <= z - 2, s20 >= 0, s20 <= 1 + s19, z - 2 >= 0 encArg(z) -{ -58 + s21 + 5*s22 + 2*s22^2 + 101*z + -54*z^2 + 10*z^3 }-> s23 :|: s21 >= 0, s21 <= z - 2, s22 >= 0, s22 <= s21 + 1, s23 >= 0, s23 <= s22, z - 2 >= 0 encArg(z) -{ -54 + 5*s24 + 2*s24^2 + 5*s25 + 2*s25^2 + 101*z + -54*z^2 + 10*z^3 }-> s26 :|: s24 >= 0, s24 <= z - 2, s25 >= 0, s25 <= s24, s26 >= 0, s26 <= s25, z - 2 >= 0 encArg(z) -{ 4 }-> s8 :|: s8 >= 0, s8 <= 0, z - 1 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -5 + 23*z + -24*z^2 + 10*z^3 }-> 1 + s10 :|: s10 >= 0, s10 <= z - 1, z - 1 >= 0 encode_b(z) -{ 6 + 9*s36 + 2*s36^2 + 23*z + -24*z^2 + 10*z^3 }-> s37 :|: s36 >= 0, s36 <= z - 1, s37 >= 0, s37 <= 1 + s36, z - 1 >= 0 encode_b(z) -{ -1 + s38 + 5*s39 + 2*s39^2 + 23*z + -24*z^2 + 10*z^3 }-> s40 :|: s38 >= 0, s38 <= z - 1, s39 >= 0, s39 <= s38 + 1, s40 >= 0, s40 <= s39, z - 1 >= 0 encode_b(z) -{ 3 + 5*s41 + 2*s41^2 + 5*s42 + 2*s42^2 + 23*z + -24*z^2 + 10*z^3 }-> s43 :|: s41 >= 0, s41 <= z - 1, s42 >= 0, s42 <= s41, s43 >= 0, s43 <= s42, z - 1 >= 0 encode_b(z) -{ 4 }-> s9 :|: s9 >= 0, s9 <= 0, z >= 0 encode_b(z) -{ 0 }-> 0 :|: z >= 0 encode_r(z) -{ 0 }-> 0 :|: z >= 0 encode_r(z) -{ 4 + 5*z + 6*z^2 + 10*z^3 }-> 1 + s35 :|: s35 >= 0, s35 <= z, z >= 0 encode_w(z) -{ 0 }-> s1 :|: s1 >= 0, s1 <= 0 + 1, z >= 0 encode_w(z) -{ -4 + s27 + 23*z + -24*z^2 + 10*z^3 }-> s28 :|: s27 >= 0, s27 <= z - 1, s28 >= 0, s28 <= 1 + s27 + 1, z - 1 >= 0 encode_w(z) -{ -5 + s29 + s30 + 23*z + -24*z^2 + 10*z^3 }-> s31 :|: s29 >= 0, s29 <= z - 1, s30 >= 0, s30 <= s29 + 1, s31 >= 0, s31 <= s30 + 1, z - 1 >= 0 encode_w(z) -{ -1 + 5*s32 + 2*s32^2 + s33 + 23*z + -24*z^2 + 10*z^3 }-> s34 :|: s32 >= 0, s32 <= z - 1, s33 >= 0, s33 <= s32, s34 >= 0, s34 <= s33 + 1, z - 1 >= 0 encode_w(z) -{ 0 }-> 0 :|: z >= 0 w(z) -{ 0 }-> 0 :|: z >= 0 w(z) -{ z }-> 1 + s :|: s >= 0, s <= z - 1 + 1, z - 1 >= 0 w(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encode_r}, {encode_w} Previous analysis results are: w: runtime: O(n^1) [z], size: O(n^1) [1 + z] b: runtime: O(n^2) [4 + 5*z + 2*z^2], size: O(n^1) [z] encArg: runtime: O(n^3) [4 + 5*z + 6*z^2 + 10*z^3], size: O(n^1) [z] encode_b: runtime: O(n^3) [13 + 94*z + 30*z^3], size: O(n^1) [z] encode_r: runtime: ?, size: O(n^1) [1 + z] ---------------------------------------- (51) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_r after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 4 + 5*z + 6*z^2 + 10*z^3 ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: b(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0 + 1, z - 1 >= 0 b(z) -{ 5 + s3 + -3*z + 2*z^2 }-> s4 :|: s3 >= 0, s3 <= z - 2, s4 >= 0, s4 <= 1 + s3 + 1, z - 2 >= 0 b(z) -{ 4 + s5 + s6 + -3*z + 2*z^2 }-> s7 :|: s5 >= 0, s5 <= z - 2, s6 >= 0, s6 <= s5 + 1, s7 >= 0, s7 <= s6 + 1, z - 2 >= 0 b(z) -{ 0 }-> 0 :|: z >= 0 b(z) -{ 2 + z + 2*z^2 }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1, z - 1 >= 0 encArg(z) -{ 0 }-> s'' :|: s'' >= 0, s'' <= 0 + 1, z - 1 >= 0 encArg(z) -{ -61 + s11 + 101*z + -54*z^2 + 10*z^3 }-> s12 :|: s11 >= 0, s11 <= z - 2, s12 >= 0, s12 <= 1 + s11 + 1, z - 2 >= 0 encArg(z) -{ -62 + s13 + s14 + 101*z + -54*z^2 + 10*z^3 }-> s15 :|: s13 >= 0, s13 <= z - 2, s14 >= 0, s14 <= s13 + 1, s15 >= 0, s15 <= s14 + 1, z - 2 >= 0 encArg(z) -{ -58 + 5*s16 + 2*s16^2 + s17 + 101*z + -54*z^2 + 10*z^3 }-> s18 :|: s16 >= 0, s16 <= z - 2, s17 >= 0, s17 <= s16, s18 >= 0, s18 <= s17 + 1, z - 2 >= 0 encArg(z) -{ -51 + 9*s19 + 2*s19^2 + 101*z + -54*z^2 + 10*z^3 }-> s20 :|: s19 >= 0, s19 <= z - 2, s20 >= 0, s20 <= 1 + s19, z - 2 >= 0 encArg(z) -{ -58 + s21 + 5*s22 + 2*s22^2 + 101*z + -54*z^2 + 10*z^3 }-> s23 :|: s21 >= 0, s21 <= z - 2, s22 >= 0, s22 <= s21 + 1, s23 >= 0, s23 <= s22, z - 2 >= 0 encArg(z) -{ -54 + 5*s24 + 2*s24^2 + 5*s25 + 2*s25^2 + 101*z + -54*z^2 + 10*z^3 }-> s26 :|: s24 >= 0, s24 <= z - 2, s25 >= 0, s25 <= s24, s26 >= 0, s26 <= s25, z - 2 >= 0 encArg(z) -{ 4 }-> s8 :|: s8 >= 0, s8 <= 0, z - 1 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -5 + 23*z + -24*z^2 + 10*z^3 }-> 1 + s10 :|: s10 >= 0, s10 <= z - 1, z - 1 >= 0 encode_b(z) -{ 6 + 9*s36 + 2*s36^2 + 23*z + -24*z^2 + 10*z^3 }-> s37 :|: s36 >= 0, s36 <= z - 1, s37 >= 0, s37 <= 1 + s36, z - 1 >= 0 encode_b(z) -{ -1 + s38 + 5*s39 + 2*s39^2 + 23*z + -24*z^2 + 10*z^3 }-> s40 :|: s38 >= 0, s38 <= z - 1, s39 >= 0, s39 <= s38 + 1, s40 >= 0, s40 <= s39, z - 1 >= 0 encode_b(z) -{ 3 + 5*s41 + 2*s41^2 + 5*s42 + 2*s42^2 + 23*z + -24*z^2 + 10*z^3 }-> s43 :|: s41 >= 0, s41 <= z - 1, s42 >= 0, s42 <= s41, s43 >= 0, s43 <= s42, z - 1 >= 0 encode_b(z) -{ 4 }-> s9 :|: s9 >= 0, s9 <= 0, z >= 0 encode_b(z) -{ 0 }-> 0 :|: z >= 0 encode_r(z) -{ 0 }-> 0 :|: z >= 0 encode_r(z) -{ 4 + 5*z + 6*z^2 + 10*z^3 }-> 1 + s35 :|: s35 >= 0, s35 <= z, z >= 0 encode_w(z) -{ 0 }-> s1 :|: s1 >= 0, s1 <= 0 + 1, z >= 0 encode_w(z) -{ -4 + s27 + 23*z + -24*z^2 + 10*z^3 }-> s28 :|: s27 >= 0, s27 <= z - 1, s28 >= 0, s28 <= 1 + s27 + 1, z - 1 >= 0 encode_w(z) -{ -5 + s29 + s30 + 23*z + -24*z^2 + 10*z^3 }-> s31 :|: s29 >= 0, s29 <= z - 1, s30 >= 0, s30 <= s29 + 1, s31 >= 0, s31 <= s30 + 1, z - 1 >= 0 encode_w(z) -{ -1 + 5*s32 + 2*s32^2 + s33 + 23*z + -24*z^2 + 10*z^3 }-> s34 :|: s32 >= 0, s32 <= z - 1, s33 >= 0, s33 <= s32, s34 >= 0, s34 <= s33 + 1, z - 1 >= 0 encode_w(z) -{ 0 }-> 0 :|: z >= 0 w(z) -{ 0 }-> 0 :|: z >= 0 w(z) -{ z }-> 1 + s :|: s >= 0, s <= z - 1 + 1, z - 1 >= 0 w(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encode_w} Previous analysis results are: w: runtime: O(n^1) [z], size: O(n^1) [1 + z] b: runtime: O(n^2) [4 + 5*z + 2*z^2], size: O(n^1) [z] encArg: runtime: O(n^3) [4 + 5*z + 6*z^2 + 10*z^3], size: O(n^1) [z] encode_b: runtime: O(n^3) [13 + 94*z + 30*z^3], size: O(n^1) [z] encode_r: runtime: O(n^3) [4 + 5*z + 6*z^2 + 10*z^3], size: O(n^1) [1 + z] ---------------------------------------- (53) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (54) Obligation: Complexity RNTS consisting of the following rules: b(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0 + 1, z - 1 >= 0 b(z) -{ 5 + s3 + -3*z + 2*z^2 }-> s4 :|: s3 >= 0, s3 <= z - 2, s4 >= 0, s4 <= 1 + s3 + 1, z - 2 >= 0 b(z) -{ 4 + s5 + s6 + -3*z + 2*z^2 }-> s7 :|: s5 >= 0, s5 <= z - 2, s6 >= 0, s6 <= s5 + 1, s7 >= 0, s7 <= s6 + 1, z - 2 >= 0 b(z) -{ 0 }-> 0 :|: z >= 0 b(z) -{ 2 + z + 2*z^2 }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1, z - 1 >= 0 encArg(z) -{ 0 }-> s'' :|: s'' >= 0, s'' <= 0 + 1, z - 1 >= 0 encArg(z) -{ -61 + s11 + 101*z + -54*z^2 + 10*z^3 }-> s12 :|: s11 >= 0, s11 <= z - 2, s12 >= 0, s12 <= 1 + s11 + 1, z - 2 >= 0 encArg(z) -{ -62 + s13 + s14 + 101*z + -54*z^2 + 10*z^3 }-> s15 :|: s13 >= 0, s13 <= z - 2, s14 >= 0, s14 <= s13 + 1, s15 >= 0, s15 <= s14 + 1, z - 2 >= 0 encArg(z) -{ -58 + 5*s16 + 2*s16^2 + s17 + 101*z + -54*z^2 + 10*z^3 }-> s18 :|: s16 >= 0, s16 <= z - 2, s17 >= 0, s17 <= s16, s18 >= 0, s18 <= s17 + 1, z - 2 >= 0 encArg(z) -{ -51 + 9*s19 + 2*s19^2 + 101*z + -54*z^2 + 10*z^3 }-> s20 :|: s19 >= 0, s19 <= z - 2, s20 >= 0, s20 <= 1 + s19, z - 2 >= 0 encArg(z) -{ -58 + s21 + 5*s22 + 2*s22^2 + 101*z + -54*z^2 + 10*z^3 }-> s23 :|: s21 >= 0, s21 <= z - 2, s22 >= 0, s22 <= s21 + 1, s23 >= 0, s23 <= s22, z - 2 >= 0 encArg(z) -{ -54 + 5*s24 + 2*s24^2 + 5*s25 + 2*s25^2 + 101*z + -54*z^2 + 10*z^3 }-> s26 :|: s24 >= 0, s24 <= z - 2, s25 >= 0, s25 <= s24, s26 >= 0, s26 <= s25, z - 2 >= 0 encArg(z) -{ 4 }-> s8 :|: s8 >= 0, s8 <= 0, z - 1 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -5 + 23*z + -24*z^2 + 10*z^3 }-> 1 + s10 :|: s10 >= 0, s10 <= z - 1, z - 1 >= 0 encode_b(z) -{ 6 + 9*s36 + 2*s36^2 + 23*z + -24*z^2 + 10*z^3 }-> s37 :|: s36 >= 0, s36 <= z - 1, s37 >= 0, s37 <= 1 + s36, z - 1 >= 0 encode_b(z) -{ -1 + s38 + 5*s39 + 2*s39^2 + 23*z + -24*z^2 + 10*z^3 }-> s40 :|: s38 >= 0, s38 <= z - 1, s39 >= 0, s39 <= s38 + 1, s40 >= 0, s40 <= s39, z - 1 >= 0 encode_b(z) -{ 3 + 5*s41 + 2*s41^2 + 5*s42 + 2*s42^2 + 23*z + -24*z^2 + 10*z^3 }-> s43 :|: s41 >= 0, s41 <= z - 1, s42 >= 0, s42 <= s41, s43 >= 0, s43 <= s42, z - 1 >= 0 encode_b(z) -{ 4 }-> s9 :|: s9 >= 0, s9 <= 0, z >= 0 encode_b(z) -{ 0 }-> 0 :|: z >= 0 encode_r(z) -{ 0 }-> 0 :|: z >= 0 encode_r(z) -{ 4 + 5*z + 6*z^2 + 10*z^3 }-> 1 + s35 :|: s35 >= 0, s35 <= z, z >= 0 encode_w(z) -{ 0 }-> s1 :|: s1 >= 0, s1 <= 0 + 1, z >= 0 encode_w(z) -{ -4 + s27 + 23*z + -24*z^2 + 10*z^3 }-> s28 :|: s27 >= 0, s27 <= z - 1, s28 >= 0, s28 <= 1 + s27 + 1, z - 1 >= 0 encode_w(z) -{ -5 + s29 + s30 + 23*z + -24*z^2 + 10*z^3 }-> s31 :|: s29 >= 0, s29 <= z - 1, s30 >= 0, s30 <= s29 + 1, s31 >= 0, s31 <= s30 + 1, z - 1 >= 0 encode_w(z) -{ -1 + 5*s32 + 2*s32^2 + s33 + 23*z + -24*z^2 + 10*z^3 }-> s34 :|: s32 >= 0, s32 <= z - 1, s33 >= 0, s33 <= s32, s34 >= 0, s34 <= s33 + 1, z - 1 >= 0 encode_w(z) -{ 0 }-> 0 :|: z >= 0 w(z) -{ 0 }-> 0 :|: z >= 0 w(z) -{ z }-> 1 + s :|: s >= 0, s <= z - 1 + 1, z - 1 >= 0 w(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encode_w} Previous analysis results are: w: runtime: O(n^1) [z], size: O(n^1) [1 + z] b: runtime: O(n^2) [4 + 5*z + 2*z^2], size: O(n^1) [z] encArg: runtime: O(n^3) [4 + 5*z + 6*z^2 + 10*z^3], size: O(n^1) [z] encode_b: runtime: O(n^3) [13 + 94*z + 30*z^3], size: O(n^1) [z] encode_r: runtime: O(n^3) [4 + 5*z + 6*z^2 + 10*z^3], size: O(n^1) [1 + z] ---------------------------------------- (55) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_w after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (56) Obligation: Complexity RNTS consisting of the following rules: b(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0 + 1, z - 1 >= 0 b(z) -{ 5 + s3 + -3*z + 2*z^2 }-> s4 :|: s3 >= 0, s3 <= z - 2, s4 >= 0, s4 <= 1 + s3 + 1, z - 2 >= 0 b(z) -{ 4 + s5 + s6 + -3*z + 2*z^2 }-> s7 :|: s5 >= 0, s5 <= z - 2, s6 >= 0, s6 <= s5 + 1, s7 >= 0, s7 <= s6 + 1, z - 2 >= 0 b(z) -{ 0 }-> 0 :|: z >= 0 b(z) -{ 2 + z + 2*z^2 }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1, z - 1 >= 0 encArg(z) -{ 0 }-> s'' :|: s'' >= 0, s'' <= 0 + 1, z - 1 >= 0 encArg(z) -{ -61 + s11 + 101*z + -54*z^2 + 10*z^3 }-> s12 :|: s11 >= 0, s11 <= z - 2, s12 >= 0, s12 <= 1 + s11 + 1, z - 2 >= 0 encArg(z) -{ -62 + s13 + s14 + 101*z + -54*z^2 + 10*z^3 }-> s15 :|: s13 >= 0, s13 <= z - 2, s14 >= 0, s14 <= s13 + 1, s15 >= 0, s15 <= s14 + 1, z - 2 >= 0 encArg(z) -{ -58 + 5*s16 + 2*s16^2 + s17 + 101*z + -54*z^2 + 10*z^3 }-> s18 :|: s16 >= 0, s16 <= z - 2, s17 >= 0, s17 <= s16, s18 >= 0, s18 <= s17 + 1, z - 2 >= 0 encArg(z) -{ -51 + 9*s19 + 2*s19^2 + 101*z + -54*z^2 + 10*z^3 }-> s20 :|: s19 >= 0, s19 <= z - 2, s20 >= 0, s20 <= 1 + s19, z - 2 >= 0 encArg(z) -{ -58 + s21 + 5*s22 + 2*s22^2 + 101*z + -54*z^2 + 10*z^3 }-> s23 :|: s21 >= 0, s21 <= z - 2, s22 >= 0, s22 <= s21 + 1, s23 >= 0, s23 <= s22, z - 2 >= 0 encArg(z) -{ -54 + 5*s24 + 2*s24^2 + 5*s25 + 2*s25^2 + 101*z + -54*z^2 + 10*z^3 }-> s26 :|: s24 >= 0, s24 <= z - 2, s25 >= 0, s25 <= s24, s26 >= 0, s26 <= s25, z - 2 >= 0 encArg(z) -{ 4 }-> s8 :|: s8 >= 0, s8 <= 0, z - 1 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -5 + 23*z + -24*z^2 + 10*z^3 }-> 1 + s10 :|: s10 >= 0, s10 <= z - 1, z - 1 >= 0 encode_b(z) -{ 6 + 9*s36 + 2*s36^2 + 23*z + -24*z^2 + 10*z^3 }-> s37 :|: s36 >= 0, s36 <= z - 1, s37 >= 0, s37 <= 1 + s36, z - 1 >= 0 encode_b(z) -{ -1 + s38 + 5*s39 + 2*s39^2 + 23*z + -24*z^2 + 10*z^3 }-> s40 :|: s38 >= 0, s38 <= z - 1, s39 >= 0, s39 <= s38 + 1, s40 >= 0, s40 <= s39, z - 1 >= 0 encode_b(z) -{ 3 + 5*s41 + 2*s41^2 + 5*s42 + 2*s42^2 + 23*z + -24*z^2 + 10*z^3 }-> s43 :|: s41 >= 0, s41 <= z - 1, s42 >= 0, s42 <= s41, s43 >= 0, s43 <= s42, z - 1 >= 0 encode_b(z) -{ 4 }-> s9 :|: s9 >= 0, s9 <= 0, z >= 0 encode_b(z) -{ 0 }-> 0 :|: z >= 0 encode_r(z) -{ 0 }-> 0 :|: z >= 0 encode_r(z) -{ 4 + 5*z + 6*z^2 + 10*z^3 }-> 1 + s35 :|: s35 >= 0, s35 <= z, z >= 0 encode_w(z) -{ 0 }-> s1 :|: s1 >= 0, s1 <= 0 + 1, z >= 0 encode_w(z) -{ -4 + s27 + 23*z + -24*z^2 + 10*z^3 }-> s28 :|: s27 >= 0, s27 <= z - 1, s28 >= 0, s28 <= 1 + s27 + 1, z - 1 >= 0 encode_w(z) -{ -5 + s29 + s30 + 23*z + -24*z^2 + 10*z^3 }-> s31 :|: s29 >= 0, s29 <= z - 1, s30 >= 0, s30 <= s29 + 1, s31 >= 0, s31 <= s30 + 1, z - 1 >= 0 encode_w(z) -{ -1 + 5*s32 + 2*s32^2 + s33 + 23*z + -24*z^2 + 10*z^3 }-> s34 :|: s32 >= 0, s32 <= z - 1, s33 >= 0, s33 <= s32, s34 >= 0, s34 <= s33 + 1, z - 1 >= 0 encode_w(z) -{ 0 }-> 0 :|: z >= 0 w(z) -{ 0 }-> 0 :|: z >= 0 w(z) -{ z }-> 1 + s :|: s >= 0, s <= z - 1 + 1, z - 1 >= 0 w(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encode_w} Previous analysis results are: w: runtime: O(n^1) [z], size: O(n^1) [1 + z] b: runtime: O(n^2) [4 + 5*z + 2*z^2], size: O(n^1) [z] encArg: runtime: O(n^3) [4 + 5*z + 6*z^2 + 10*z^3], size: O(n^1) [z] encode_b: runtime: O(n^3) [13 + 94*z + 30*z^3], size: O(n^1) [z] encode_r: runtime: O(n^3) [4 + 5*z + 6*z^2 + 10*z^3], size: O(n^1) [1 + z] encode_w: runtime: ?, size: O(n^1) [1 + z] ---------------------------------------- (57) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_w after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 78*z + 30*z^3 ---------------------------------------- (58) Obligation: Complexity RNTS consisting of the following rules: b(z) -{ 1 }-> s' :|: s' >= 0, s' <= 0 + 1, z - 1 >= 0 b(z) -{ 5 + s3 + -3*z + 2*z^2 }-> s4 :|: s3 >= 0, s3 <= z - 2, s4 >= 0, s4 <= 1 + s3 + 1, z - 2 >= 0 b(z) -{ 4 + s5 + s6 + -3*z + 2*z^2 }-> s7 :|: s5 >= 0, s5 <= z - 2, s6 >= 0, s6 <= s5 + 1, s7 >= 0, s7 <= s6 + 1, z - 2 >= 0 b(z) -{ 0 }-> 0 :|: z >= 0 b(z) -{ 2 + z + 2*z^2 }-> 1 + s2 :|: s2 >= 0, s2 <= z - 1, z - 1 >= 0 encArg(z) -{ 0 }-> s'' :|: s'' >= 0, s'' <= 0 + 1, z - 1 >= 0 encArg(z) -{ -61 + s11 + 101*z + -54*z^2 + 10*z^3 }-> s12 :|: s11 >= 0, s11 <= z - 2, s12 >= 0, s12 <= 1 + s11 + 1, z - 2 >= 0 encArg(z) -{ -62 + s13 + s14 + 101*z + -54*z^2 + 10*z^3 }-> s15 :|: s13 >= 0, s13 <= z - 2, s14 >= 0, s14 <= s13 + 1, s15 >= 0, s15 <= s14 + 1, z - 2 >= 0 encArg(z) -{ -58 + 5*s16 + 2*s16^2 + s17 + 101*z + -54*z^2 + 10*z^3 }-> s18 :|: s16 >= 0, s16 <= z - 2, s17 >= 0, s17 <= s16, s18 >= 0, s18 <= s17 + 1, z - 2 >= 0 encArg(z) -{ -51 + 9*s19 + 2*s19^2 + 101*z + -54*z^2 + 10*z^3 }-> s20 :|: s19 >= 0, s19 <= z - 2, s20 >= 0, s20 <= 1 + s19, z - 2 >= 0 encArg(z) -{ -58 + s21 + 5*s22 + 2*s22^2 + 101*z + -54*z^2 + 10*z^3 }-> s23 :|: s21 >= 0, s21 <= z - 2, s22 >= 0, s22 <= s21 + 1, s23 >= 0, s23 <= s22, z - 2 >= 0 encArg(z) -{ -54 + 5*s24 + 2*s24^2 + 5*s25 + 2*s25^2 + 101*z + -54*z^2 + 10*z^3 }-> s26 :|: s24 >= 0, s24 <= z - 2, s25 >= 0, s25 <= s24, s26 >= 0, s26 <= s25, z - 2 >= 0 encArg(z) -{ 4 }-> s8 :|: s8 >= 0, s8 <= 0, z - 1 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -5 + 23*z + -24*z^2 + 10*z^3 }-> 1 + s10 :|: s10 >= 0, s10 <= z - 1, z - 1 >= 0 encode_b(z) -{ 6 + 9*s36 + 2*s36^2 + 23*z + -24*z^2 + 10*z^3 }-> s37 :|: s36 >= 0, s36 <= z - 1, s37 >= 0, s37 <= 1 + s36, z - 1 >= 0 encode_b(z) -{ -1 + s38 + 5*s39 + 2*s39^2 + 23*z + -24*z^2 + 10*z^3 }-> s40 :|: s38 >= 0, s38 <= z - 1, s39 >= 0, s39 <= s38 + 1, s40 >= 0, s40 <= s39, z - 1 >= 0 encode_b(z) -{ 3 + 5*s41 + 2*s41^2 + 5*s42 + 2*s42^2 + 23*z + -24*z^2 + 10*z^3 }-> s43 :|: s41 >= 0, s41 <= z - 1, s42 >= 0, s42 <= s41, s43 >= 0, s43 <= s42, z - 1 >= 0 encode_b(z) -{ 4 }-> s9 :|: s9 >= 0, s9 <= 0, z >= 0 encode_b(z) -{ 0 }-> 0 :|: z >= 0 encode_r(z) -{ 0 }-> 0 :|: z >= 0 encode_r(z) -{ 4 + 5*z + 6*z^2 + 10*z^3 }-> 1 + s35 :|: s35 >= 0, s35 <= z, z >= 0 encode_w(z) -{ 0 }-> s1 :|: s1 >= 0, s1 <= 0 + 1, z >= 0 encode_w(z) -{ -4 + s27 + 23*z + -24*z^2 + 10*z^3 }-> s28 :|: s27 >= 0, s27 <= z - 1, s28 >= 0, s28 <= 1 + s27 + 1, z - 1 >= 0 encode_w(z) -{ -5 + s29 + s30 + 23*z + -24*z^2 + 10*z^3 }-> s31 :|: s29 >= 0, s29 <= z - 1, s30 >= 0, s30 <= s29 + 1, s31 >= 0, s31 <= s30 + 1, z - 1 >= 0 encode_w(z) -{ -1 + 5*s32 + 2*s32^2 + s33 + 23*z + -24*z^2 + 10*z^3 }-> s34 :|: s32 >= 0, s32 <= z - 1, s33 >= 0, s33 <= s32, s34 >= 0, s34 <= s33 + 1, z - 1 >= 0 encode_w(z) -{ 0 }-> 0 :|: z >= 0 w(z) -{ 0 }-> 0 :|: z >= 0 w(z) -{ z }-> 1 + s :|: s >= 0, s <= z - 1 + 1, z - 1 >= 0 w(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: Previous analysis results are: w: runtime: O(n^1) [z], size: O(n^1) [1 + z] b: runtime: O(n^2) [4 + 5*z + 2*z^2], size: O(n^1) [z] encArg: runtime: O(n^3) [4 + 5*z + 6*z^2 + 10*z^3], size: O(n^1) [z] encode_b: runtime: O(n^3) [13 + 94*z + 30*z^3], size: O(n^1) [z] encode_r: runtime: O(n^3) [4 + 5*z + 6*z^2 + 10*z^3], size: O(n^1) [1 + z] encode_w: runtime: O(n^3) [78*z + 30*z^3], size: O(n^1) [1 + z] ---------------------------------------- (59) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (60) BOUNDS(1, n^3) ---------------------------------------- (61) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (62) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: w(r(x)) -> r(w(x)) b(r(x)) -> r(b(x)) b(w(x)) -> w(b(x)) The (relative) TRS S consists of the following rules: encArg(r(x_1)) -> r(encArg(x_1)) encArg(cons_w(x_1)) -> w(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_w(x_1) -> w(encArg(x_1)) encode_r(x_1) -> r(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (63) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence b(r(x)) ->^+ r(b(x)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [x / r(x)]. The result substitution is [ ]. ---------------------------------------- (64) Complex Obligation (BEST) ---------------------------------------- (65) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: w(r(x)) -> r(w(x)) b(r(x)) -> r(b(x)) b(w(x)) -> w(b(x)) The (relative) TRS S consists of the following rules: encArg(r(x_1)) -> r(encArg(x_1)) encArg(cons_w(x_1)) -> w(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_w(x_1) -> w(encArg(x_1)) encode_r(x_1) -> r(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (66) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (67) BOUNDS(n^1, INF) ---------------------------------------- (68) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: w(r(x)) -> r(w(x)) b(r(x)) -> r(b(x)) b(w(x)) -> w(b(x)) The (relative) TRS S consists of the following rules: encArg(r(x_1)) -> r(encArg(x_1)) encArg(cons_w(x_1)) -> w(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_w(x_1) -> w(encArg(x_1)) encode_r(x_1) -> r(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) Rewrite Strategy: FULL