KILLED proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 52 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxRelTRS (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) typed CpxTrs (11) OrderProof [LOWER BOUND(ID), 0 ms] (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 472 ms] (14) BOUNDS(1, INF) (15) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (16) CpxTRS (17) NonCtorToCtorProof [UPPER BOUND(ID), 0 ms] (18) CpxRelTRS (19) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (20) CpxRelTRS (21) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (22) CpxWeightedTrs (23) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (24) CpxTypedWeightedTrs (25) CompletionProof [UPPER BOUND(ID), 0 ms] (26) CpxTypedWeightedCompleteTrs (27) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (28) CpxTypedWeightedCompleteTrs (29) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (30) CpxRNTS (31) InliningProof [UPPER BOUND(ID), 191 ms] (32) CpxRNTS (33) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (34) CpxRNTS (35) CompletionProof [UPPER BOUND(ID), 0 ms] (36) CpxTypedWeightedCompleteTrs (37) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (38) CpxRNTS (39) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (40) CdtProblem (41) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (42) CdtProblem (43) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (44) CdtProblem (45) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (46) CdtProblem (47) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (48) CdtProblem (49) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (50) CdtProblem (51) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (52) CdtProblem (53) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (54) CdtProblem (55) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (56) CdtProblem (57) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 2 ms] (58) CdtProblem (59) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (60) CdtProblem (61) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (62) CdtProblem (63) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (64) CdtProblem (65) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (66) CdtProblem (67) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (68) CdtProblem (69) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (70) CdtProblem (71) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 3 ms] (72) CdtProblem (73) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (74) CdtProblem (75) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (76) CdtProblem (77) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (78) CdtProblem (79) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (80) CdtProblem (81) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (82) CdtProblem (83) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (84) CdtProblem (85) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (86) CdtProblem (87) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (88) CdtProblem (89) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (90) CdtProblem (91) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (92) CdtProblem (93) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (94) CdtProblem (95) CdtRewritingProof [BOTH BOUNDS(ID, ID), 11 ms] (96) CdtProblem (97) CdtRewritingProof [BOTH BOUNDS(ID, ID), 12 ms] (98) CdtProblem (99) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (100) CdtProblem (101) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 26 ms] (102) CdtProblem (103) CdtRewritingProof [BOTH BOUNDS(ID, ID), 0 ms] (104) CdtProblem (105) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (106) CdtProblem (107) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 14 ms] (108) CdtProblem (109) CdtRewritingProof [BOTH BOUNDS(ID, ID), 50 ms] (110) CdtProblem (111) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (112) CdtProblem ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: a(x1) -> x1 a(b(b(x1))) -> b(b(a(b(c(a(x1)))))) b(c(x1)) -> x1 S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: a(x1) -> x1 a(b(b(x1))) -> b(b(a(b(c(a(x1)))))) b(c(x1)) -> x1 The (relative) TRS S consists of the following rules: encArg(c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: a(x1) -> x1 a(b(b(x1))) -> b(b(a(b(c(a(x1)))))) b(c(x1)) -> x1 The (relative) TRS S consists of the following rules: encArg(c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: a(x1) -> x1 a(b(b(x1))) -> b(b(a(b(c(a(x1)))))) b(c(x1)) -> x1 The (relative) TRS S consists of the following rules: encArg(c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (7) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (8) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: a(x1) -> x1 a(b(b(x1))) -> b(b(a(b(c(a(x1)))))) b(c(x1)) -> x1 The (relative) TRS S consists of the following rules: encArg(c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (10) Obligation: TRS: Rules: a(x1) -> x1 a(b(b(x1))) -> b(b(a(b(c(a(x1)))))) b(c(x1)) -> x1 encArg(c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) Types: a :: c:cons_a:cons_b -> c:cons_a:cons_b b :: c:cons_a:cons_b -> c:cons_a:cons_b c :: c:cons_a:cons_b -> c:cons_a:cons_b encArg :: c:cons_a:cons_b -> c:cons_a:cons_b cons_a :: c:cons_a:cons_b -> c:cons_a:cons_b cons_b :: c:cons_a:cons_b -> c:cons_a:cons_b encode_a :: c:cons_a:cons_b -> c:cons_a:cons_b encode_b :: c:cons_a:cons_b -> c:cons_a:cons_b encode_c :: c:cons_a:cons_b -> c:cons_a:cons_b hole_c:cons_a:cons_b1_0 :: c:cons_a:cons_b gen_c:cons_a:cons_b2_0 :: Nat -> c:cons_a:cons_b ---------------------------------------- (11) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: a, encArg They will be analysed ascendingly in the following order: a < encArg ---------------------------------------- (12) Obligation: TRS: Rules: a(x1) -> x1 a(b(b(x1))) -> b(b(a(b(c(a(x1)))))) b(c(x1)) -> x1 encArg(c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) Types: a :: c:cons_a:cons_b -> c:cons_a:cons_b b :: c:cons_a:cons_b -> c:cons_a:cons_b c :: c:cons_a:cons_b -> c:cons_a:cons_b encArg :: c:cons_a:cons_b -> c:cons_a:cons_b cons_a :: c:cons_a:cons_b -> c:cons_a:cons_b cons_b :: c:cons_a:cons_b -> c:cons_a:cons_b encode_a :: c:cons_a:cons_b -> c:cons_a:cons_b encode_b :: c:cons_a:cons_b -> c:cons_a:cons_b encode_c :: c:cons_a:cons_b -> c:cons_a:cons_b hole_c:cons_a:cons_b1_0 :: c:cons_a:cons_b gen_c:cons_a:cons_b2_0 :: Nat -> c:cons_a:cons_b Generator Equations: gen_c:cons_a:cons_b2_0(0) <=> hole_c:cons_a:cons_b1_0 gen_c:cons_a:cons_b2_0(+(x, 1)) <=> c(gen_c:cons_a:cons_b2_0(x)) The following defined symbols remain to be analysed: a, encArg They will be analysed ascendingly in the following order: a < encArg ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_c:cons_a:cons_b2_0(+(1, n10_0))) -> *3_0, rt in Omega(0) Induction Base: encArg(gen_c:cons_a:cons_b2_0(+(1, 0))) Induction Step: encArg(gen_c:cons_a:cons_b2_0(+(1, +(n10_0, 1)))) ->_R^Omega(0) c(encArg(gen_c:cons_a:cons_b2_0(+(1, n10_0)))) ->_IH c(*3_0) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (14) BOUNDS(1, INF) ---------------------------------------- (15) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (16) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: a(x1) -> x1 a(b(b(x1))) -> b(b(a(b(c(a(x1)))))) b(c(x1)) -> x1 encArg(c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (17) NonCtorToCtorProof (UPPER BOUND(ID)) transformed non-ctor to ctor-system ---------------------------------------- (18) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: a(x1) -> x1 b(c(x1)) -> x1 a(c_b(c_b(x1))) -> b(b(a(b(c(a(x1)))))) The (relative) TRS S consists of the following rules: encArg(c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) b(x0) -> c_b(x0) Rewrite Strategy: FULL ---------------------------------------- (19) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS is a non-duplicating overlay system, we have rc = irc. ---------------------------------------- (20) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: a(x1) -> x1 b(c(x1)) -> x1 a(c_b(c_b(x1))) -> b(b(a(b(c(a(x1)))))) The (relative) TRS S consists of the following rules: encArg(c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) b(x0) -> c_b(x0) Rewrite Strategy: INNERMOST ---------------------------------------- (21) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (22) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: a(x1) -> x1 [1] b(c(x1)) -> x1 [1] a(c_b(c_b(x1))) -> b(b(a(b(c(a(x1)))))) [1] encArg(c(x_1)) -> c(encArg(x_1)) [0] encArg(cons_a(x_1)) -> a(encArg(x_1)) [0] encArg(cons_b(x_1)) -> b(encArg(x_1)) [0] encode_a(x_1) -> a(encArg(x_1)) [0] encode_b(x_1) -> b(encArg(x_1)) [0] encode_c(x_1) -> c(encArg(x_1)) [0] b(x0) -> c_b(x0) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (23) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (24) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: a(x1) -> x1 [1] b(c(x1)) -> x1 [1] a(c_b(c_b(x1))) -> b(b(a(b(c(a(x1)))))) [1] encArg(c(x_1)) -> c(encArg(x_1)) [0] encArg(cons_a(x_1)) -> a(encArg(x_1)) [0] encArg(cons_b(x_1)) -> b(encArg(x_1)) [0] encode_a(x_1) -> a(encArg(x_1)) [0] encode_b(x_1) -> b(encArg(x_1)) [0] encode_c(x_1) -> c(encArg(x_1)) [0] b(x0) -> c_b(x0) [0] The TRS has the following type information: a :: c:c_b:cons_a:cons_b -> c:c_b:cons_a:cons_b b :: c:c_b:cons_a:cons_b -> c:c_b:cons_a:cons_b c :: c:c_b:cons_a:cons_b -> c:c_b:cons_a:cons_b c_b :: c:c_b:cons_a:cons_b -> c:c_b:cons_a:cons_b encArg :: c:c_b:cons_a:cons_b -> c:c_b:cons_a:cons_b cons_a :: c:c_b:cons_a:cons_b -> c:c_b:cons_a:cons_b cons_b :: c:c_b:cons_a:cons_b -> c:c_b:cons_a:cons_b encode_a :: c:c_b:cons_a:cons_b -> c:c_b:cons_a:cons_b encode_b :: c:c_b:cons_a:cons_b -> c:c_b:cons_a:cons_b encode_c :: c:c_b:cons_a:cons_b -> c:c_b:cons_a:cons_b Rewrite Strategy: INNERMOST ---------------------------------------- (25) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: a_1 encArg_1 encode_a_1 encode_b_1 encode_c_1 b_1 Due to the following rules being added: encArg(v0) -> const [0] encode_a(v0) -> const [0] encode_b(v0) -> const [0] encode_c(v0) -> const [0] b(v0) -> const [0] And the following fresh constants: const ---------------------------------------- (26) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: a(x1) -> x1 [1] b(c(x1)) -> x1 [1] a(c_b(c_b(x1))) -> b(b(a(b(c(a(x1)))))) [1] encArg(c(x_1)) -> c(encArg(x_1)) [0] encArg(cons_a(x_1)) -> a(encArg(x_1)) [0] encArg(cons_b(x_1)) -> b(encArg(x_1)) [0] encode_a(x_1) -> a(encArg(x_1)) [0] encode_b(x_1) -> b(encArg(x_1)) [0] encode_c(x_1) -> c(encArg(x_1)) [0] b(x0) -> c_b(x0) [0] encArg(v0) -> const [0] encode_a(v0) -> const [0] encode_b(v0) -> const [0] encode_c(v0) -> const [0] b(v0) -> const [0] The TRS has the following type information: a :: c:c_b:cons_a:cons_b:const -> c:c_b:cons_a:cons_b:const b :: c:c_b:cons_a:cons_b:const -> c:c_b:cons_a:cons_b:const c :: c:c_b:cons_a:cons_b:const -> c:c_b:cons_a:cons_b:const c_b :: c:c_b:cons_a:cons_b:const -> c:c_b:cons_a:cons_b:const encArg :: c:c_b:cons_a:cons_b:const -> c:c_b:cons_a:cons_b:const cons_a :: c:c_b:cons_a:cons_b:const -> c:c_b:cons_a:cons_b:const cons_b :: c:c_b:cons_a:cons_b:const -> c:c_b:cons_a:cons_b:const encode_a :: c:c_b:cons_a:cons_b:const -> c:c_b:cons_a:cons_b:const encode_b :: c:c_b:cons_a:cons_b:const -> c:c_b:cons_a:cons_b:const encode_c :: c:c_b:cons_a:cons_b:const -> c:c_b:cons_a:cons_b:const const :: c:c_b:cons_a:cons_b:const Rewrite Strategy: INNERMOST ---------------------------------------- (27) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (28) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: a(x1) -> x1 [1] b(c(x1)) -> x1 [1] a(c_b(c_b(x1))) -> b(b(a(b(c(x1))))) [2] a(c_b(c_b(c_b(c_b(x1'))))) -> b(b(a(b(c(b(b(a(b(c(a(x1'))))))))))) [2] encArg(c(x_1)) -> c(encArg(x_1)) [0] encArg(cons_a(c(x_1'))) -> a(c(encArg(x_1'))) [0] encArg(cons_a(cons_a(x_1''))) -> a(a(encArg(x_1''))) [0] encArg(cons_a(cons_b(x_11))) -> a(b(encArg(x_11))) [0] encArg(cons_a(x_1)) -> a(const) [0] encArg(cons_b(c(x_12))) -> b(c(encArg(x_12))) [0] encArg(cons_b(cons_a(x_13))) -> b(a(encArg(x_13))) [0] encArg(cons_b(cons_b(x_14))) -> b(b(encArg(x_14))) [0] encArg(cons_b(x_1)) -> b(const) [0] encode_a(c(x_15)) -> a(c(encArg(x_15))) [0] encode_a(cons_a(x_16)) -> a(a(encArg(x_16))) [0] encode_a(cons_b(x_17)) -> a(b(encArg(x_17))) [0] encode_a(x_1) -> a(const) [0] encode_b(c(x_18)) -> b(c(encArg(x_18))) [0] encode_b(cons_a(x_19)) -> b(a(encArg(x_19))) [0] encode_b(cons_b(x_110)) -> b(b(encArg(x_110))) [0] encode_b(x_1) -> b(const) [0] encode_c(x_1) -> c(encArg(x_1)) [0] b(x0) -> c_b(x0) [0] encArg(v0) -> const [0] encode_a(v0) -> const [0] encode_b(v0) -> const [0] encode_c(v0) -> const [0] b(v0) -> const [0] The TRS has the following type information: a :: c:c_b:cons_a:cons_b:const -> c:c_b:cons_a:cons_b:const b :: c:c_b:cons_a:cons_b:const -> c:c_b:cons_a:cons_b:const c :: c:c_b:cons_a:cons_b:const -> c:c_b:cons_a:cons_b:const c_b :: c:c_b:cons_a:cons_b:const -> c:c_b:cons_a:cons_b:const encArg :: c:c_b:cons_a:cons_b:const -> c:c_b:cons_a:cons_b:const cons_a :: c:c_b:cons_a:cons_b:const -> c:c_b:cons_a:cons_b:const cons_b :: c:c_b:cons_a:cons_b:const -> c:c_b:cons_a:cons_b:const encode_a :: c:c_b:cons_a:cons_b:const -> c:c_b:cons_a:cons_b:const encode_b :: c:c_b:cons_a:cons_b:const -> c:c_b:cons_a:cons_b:const encode_c :: c:c_b:cons_a:cons_b:const -> c:c_b:cons_a:cons_b:const const :: c:c_b:cons_a:cons_b:const Rewrite Strategy: INNERMOST ---------------------------------------- (29) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: const => 0 ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: a(z) -{ 1 }-> x1 :|: x1 >= 0, z = x1 a(z) -{ 2 }-> b(b(a(b(1 + x1)))) :|: z = 1 + (1 + x1), x1 >= 0 a(z) -{ 2 }-> b(b(a(b(1 + b(b(a(b(1 + a(x1'))))))))) :|: x1' >= 0, z = 1 + (1 + (1 + (1 + x1'))) b(z) -{ 1 }-> x1 :|: x1 >= 0, z = 1 + x1 b(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 b(z) -{ 0 }-> 1 + x0 :|: z = x0, x0 >= 0 encArg(z) -{ 0 }-> b(b(encArg(x_14))) :|: x_14 >= 0, z = 1 + (1 + x_14) encArg(z) -{ 0 }-> b(a(encArg(x_13))) :|: z = 1 + (1 + x_13), x_13 >= 0 encArg(z) -{ 0 }-> b(0) :|: z = 1 + x_1, x_1 >= 0 encArg(z) -{ 0 }-> b(1 + encArg(x_12)) :|: z = 1 + (1 + x_12), x_12 >= 0 encArg(z) -{ 0 }-> a(b(encArg(x_11))) :|: x_11 >= 0, z = 1 + (1 + x_11) encArg(z) -{ 0 }-> a(a(encArg(x_1''))) :|: z = 1 + (1 + x_1''), x_1'' >= 0 encArg(z) -{ 0 }-> a(0) :|: z = 1 + x_1, x_1 >= 0 encArg(z) -{ 0 }-> a(1 + encArg(x_1')) :|: z = 1 + (1 + x_1'), x_1' >= 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encArg(z) -{ 0 }-> 1 + encArg(x_1) :|: z = 1 + x_1, x_1 >= 0 encode_a(z) -{ 0 }-> a(b(encArg(x_17))) :|: x_17 >= 0, z = 1 + x_17 encode_a(z) -{ 0 }-> a(a(encArg(x_16))) :|: z = 1 + x_16, x_16 >= 0 encode_a(z) -{ 0 }-> a(0) :|: x_1 >= 0, z = x_1 encode_a(z) -{ 0 }-> a(1 + encArg(x_15)) :|: x_15 >= 0, z = 1 + x_15 encode_a(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_b(z) -{ 0 }-> b(b(encArg(x_110))) :|: z = 1 + x_110, x_110 >= 0 encode_b(z) -{ 0 }-> b(a(encArg(x_19))) :|: z = 1 + x_19, x_19 >= 0 encode_b(z) -{ 0 }-> b(0) :|: x_1 >= 0, z = x_1 encode_b(z) -{ 0 }-> b(1 + encArg(x_18)) :|: z = 1 + x_18, x_18 >= 0 encode_b(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_c(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_c(z) -{ 0 }-> 1 + encArg(x_1) :|: x_1 >= 0, z = x_1 ---------------------------------------- (31) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: b(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 b(z) -{ 1 }-> x1 :|: x1 >= 0, z = 1 + x1 b(z) -{ 0 }-> 1 + x0 :|: z = x0, x0 >= 0 ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: a(z) -{ 1 }-> x1 :|: x1 >= 0, z = x1 a(z) -{ 3 }-> b(b(a(x1'))) :|: z = 1 + (1 + x1), x1 >= 0, x1' >= 0, 1 + x1 = 1 + x1' a(z) -{ 2 }-> b(b(a(b(1 + b(b(a(b(1 + a(x1'))))))))) :|: x1' >= 0, z = 1 + (1 + (1 + (1 + x1'))) a(z) -{ 2 }-> b(b(a(0))) :|: z = 1 + (1 + x1), x1 >= 0, v0 >= 0, 1 + x1 = v0 a(z) -{ 2 }-> b(b(a(1 + x0))) :|: z = 1 + (1 + x1), x1 >= 0, 1 + x1 = x0, x0 >= 0 b(z) -{ 1 }-> x1 :|: x1 >= 0, z = 1 + x1 b(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 b(z) -{ 0 }-> 1 + x0 :|: z = x0, x0 >= 0 encArg(z) -{ 0 }-> b(b(encArg(x_14))) :|: x_14 >= 0, z = 1 + (1 + x_14) encArg(z) -{ 0 }-> b(a(encArg(x_13))) :|: z = 1 + (1 + x_13), x_13 >= 0 encArg(z) -{ 0 }-> b(1 + encArg(x_12)) :|: z = 1 + (1 + x_12), x_12 >= 0 encArg(z) -{ 0 }-> a(b(encArg(x_11))) :|: x_11 >= 0, z = 1 + (1 + x_11) encArg(z) -{ 0 }-> a(a(encArg(x_1''))) :|: z = 1 + (1 + x_1''), x_1'' >= 0 encArg(z) -{ 0 }-> a(0) :|: z = 1 + x_1, x_1 >= 0 encArg(z) -{ 0 }-> a(1 + encArg(x_1')) :|: z = 1 + (1 + x_1'), x_1' >= 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + x_1, x_1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + x_1, x_1 >= 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) :|: z = 1 + x_1, x_1 >= 0 encode_a(z) -{ 0 }-> a(b(encArg(x_17))) :|: x_17 >= 0, z = 1 + x_17 encode_a(z) -{ 0 }-> a(a(encArg(x_16))) :|: z = 1 + x_16, x_16 >= 0 encode_a(z) -{ 0 }-> a(0) :|: x_1 >= 0, z = x_1 encode_a(z) -{ 0 }-> a(1 + encArg(x_15)) :|: x_15 >= 0, z = 1 + x_15 encode_a(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_b(z) -{ 0 }-> b(b(encArg(x_110))) :|: z = 1 + x_110, x_110 >= 0 encode_b(z) -{ 0 }-> b(a(encArg(x_19))) :|: z = 1 + x_19, x_19 >= 0 encode_b(z) -{ 0 }-> b(1 + encArg(x_18)) :|: z = 1 + x_18, x_18 >= 0 encode_b(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_b(z) -{ 0 }-> 0 :|: x_1 >= 0, z = x_1, v0 >= 0, 0 = v0 encode_b(z) -{ 0 }-> 1 + x0 :|