WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 329 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 1 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: g(A) -> A g(B) -> A g(B) -> B g(C) -> A g(C) -> B g(C) -> C foldB(t, 0) -> t foldB(t, s(n)) -> f(foldB(t, n), B) foldC(t, 0) -> t foldC(t, s(n)) -> f(foldC(t, n), C) f(t, x) -> f'(t, g(x)) f'(triple(a, b, c), C) -> triple(a, b, s(c)) f'(triple(a, b, c), B) -> f(triple(a, b, c), A) f'(triple(a, b, c), A) -> f''(foldB(triple(s(a), 0, c), b)) f''(triple(a, b, c)) -> foldC(triple(a, b, 0), c) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(A) -> A encArg(B) -> B encArg(C) -> C encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(triple(x_1, x_2, x_3)) -> triple(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_foldB(x_1, x_2)) -> foldB(encArg(x_1), encArg(x_2)) encArg(cons_foldC(x_1, x_2)) -> foldC(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_f'(x_1, x_2)) -> f'(encArg(x_1), encArg(x_2)) encArg(cons_f''(x_1)) -> f''(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_A -> A encode_B -> B encode_C -> C encode_foldB(x_1, x_2) -> foldB(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_foldC(x_1, x_2) -> foldC(encArg(x_1), encArg(x_2)) encode_f'(x_1, x_2) -> f'(encArg(x_1), encArg(x_2)) encode_triple(x_1, x_2, x_3) -> triple(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f''(x_1) -> f''(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: g(A) -> A g(B) -> A g(B) -> B g(C) -> A g(C) -> B g(C) -> C foldB(t, 0) -> t foldB(t, s(n)) -> f(foldB(t, n), B) foldC(t, 0) -> t foldC(t, s(n)) -> f(foldC(t, n), C) f(t, x) -> f'(t, g(x)) f'(triple(a, b, c), C) -> triple(a, b, s(c)) f'(triple(a, b, c), B) -> f(triple(a, b, c), A) f'(triple(a, b, c), A) -> f''(foldB(triple(s(a), 0, c), b)) f''(triple(a, b, c)) -> foldC(triple(a, b, 0), c) The (relative) TRS S consists of the following rules: encArg(A) -> A encArg(B) -> B encArg(C) -> C encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(triple(x_1, x_2, x_3)) -> triple(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_foldB(x_1, x_2)) -> foldB(encArg(x_1), encArg(x_2)) encArg(cons_foldC(x_1, x_2)) -> foldC(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_f'(x_1, x_2)) -> f'(encArg(x_1), encArg(x_2)) encArg(cons_f''(x_1)) -> f''(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_A -> A encode_B -> B encode_C -> C encode_foldB(x_1, x_2) -> foldB(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_foldC(x_1, x_2) -> foldC(encArg(x_1), encArg(x_2)) encode_f'(x_1, x_2) -> f'(encArg(x_1), encArg(x_2)) encode_triple(x_1, x_2, x_3) -> triple(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f''(x_1) -> f''(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: g(A) -> A g(B) -> A g(B) -> B g(C) -> A g(C) -> B g(C) -> C foldB(t, 0) -> t foldB(t, s(n)) -> f(foldB(t, n), B) foldC(t, 0) -> t foldC(t, s(n)) -> f(foldC(t, n), C) f(t, x) -> f'(t, g(x)) f'(triple(a, b, c), C) -> triple(a, b, s(c)) f'(triple(a, b, c), B) -> f(triple(a, b, c), A) f'(triple(a, b, c), A) -> f''(foldB(triple(s(a), 0, c), b)) f''(triple(a, b, c)) -> foldC(triple(a, b, 0), c) The (relative) TRS S consists of the following rules: encArg(A) -> A encArg(B) -> B encArg(C) -> C encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(triple(x_1, x_2, x_3)) -> triple(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_foldB(x_1, x_2)) -> foldB(encArg(x_1), encArg(x_2)) encArg(cons_foldC(x_1, x_2)) -> foldC(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_f'(x_1, x_2)) -> f'(encArg(x_1), encArg(x_2)) encArg(cons_f''(x_1)) -> f''(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_A -> A encode_B -> B encode_C -> C encode_foldB(x_1, x_2) -> foldB(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_foldC(x_1, x_2) -> foldC(encArg(x_1), encArg(x_2)) encode_f'(x_1, x_2) -> f'(encArg(x_1), encArg(x_2)) encode_triple(x_1, x_2, x_3) -> triple(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f''(x_1) -> f''(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: g(A) -> A g(B) -> A g(B) -> B g(C) -> A g(C) -> B g(C) -> C foldB(t, 0) -> t foldB(t, s(n)) -> f(foldB(t, n), B) foldC(t, 0) -> t foldC(t, s(n)) -> f(foldC(t, n), C) f(t, x) -> f'(t, g(x)) f'(triple(a, b, c), C) -> triple(a, b, s(c)) f'(triple(a, b, c), B) -> f(triple(a, b, c), A) f'(triple(a, b, c), A) -> f''(foldB(triple(s(a), 0, c), b)) f''(triple(a, b, c)) -> foldC(triple(a, b, 0), c) The (relative) TRS S consists of the following rules: encArg(A) -> A encArg(B) -> B encArg(C) -> C encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(triple(x_1, x_2, x_3)) -> triple(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_foldB(x_1, x_2)) -> foldB(encArg(x_1), encArg(x_2)) encArg(cons_foldC(x_1, x_2)) -> foldC(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_f'(x_1, x_2)) -> f'(encArg(x_1), encArg(x_2)) encArg(cons_f''(x_1)) -> f''(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_A -> A encode_B -> B encode_C -> C encode_foldB(x_1, x_2) -> foldB(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_foldC(x_1, x_2) -> foldC(encArg(x_1), encArg(x_2)) encode_f'(x_1, x_2) -> f'(encArg(x_1), encArg(x_2)) encode_triple(x_1, x_2, x_3) -> triple(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f''(x_1) -> f''(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence foldC(t, s(n)) ->^+ f(foldC(t, n), C) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [n / s(n)]. The result substitution is [ ]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: g(A) -> A g(B) -> A g(B) -> B g(C) -> A g(C) -> B g(C) -> C foldB(t, 0) -> t foldB(t, s(n)) -> f(foldB(t, n), B) foldC(t, 0) -> t foldC(t, s(n)) -> f(foldC(t, n), C) f(t, x) -> f'(t, g(x)) f'(triple(a, b, c), C) -> triple(a, b, s(c)) f'(triple(a, b, c), B) -> f(triple(a, b, c), A) f'(triple(a, b, c), A) -> f''(foldB(triple(s(a), 0, c), b)) f''(triple(a, b, c)) -> foldC(triple(a, b, 0), c) The (relative) TRS S consists of the following rules: encArg(A) -> A encArg(B) -> B encArg(C) -> C encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(triple(x_1, x_2, x_3)) -> triple(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_foldB(x_1, x_2)) -> foldB(encArg(x_1), encArg(x_2)) encArg(cons_foldC(x_1, x_2)) -> foldC(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_f'(x_1, x_2)) -> f'(encArg(x_1), encArg(x_2)) encArg(cons_f''(x_1)) -> f''(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_A -> A encode_B -> B encode_C -> C encode_foldB(x_1, x_2) -> foldB(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_foldC(x_1, x_2) -> foldC(encArg(x_1), encArg(x_2)) encode_f'(x_1, x_2) -> f'(encArg(x_1), encArg(x_2)) encode_triple(x_1, x_2, x_3) -> triple(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f''(x_1) -> f''(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: g(A) -> A g(B) -> A g(B) -> B g(C) -> A g(C) -> B g(C) -> C foldB(t, 0) -> t foldB(t, s(n)) -> f(foldB(t, n), B) foldC(t, 0) -> t foldC(t, s(n)) -> f(foldC(t, n), C) f(t, x) -> f'(t, g(x)) f'(triple(a, b, c), C) -> triple(a, b, s(c)) f'(triple(a, b, c), B) -> f(triple(a, b, c), A) f'(triple(a, b, c), A) -> f''(foldB(triple(s(a), 0, c), b)) f''(triple(a, b, c)) -> foldC(triple(a, b, 0), c) The (relative) TRS S consists of the following rules: encArg(A) -> A encArg(B) -> B encArg(C) -> C encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(triple(x_1, x_2, x_3)) -> triple(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_foldB(x_1, x_2)) -> foldB(encArg(x_1), encArg(x_2)) encArg(cons_foldC(x_1, x_2)) -> foldC(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_f'(x_1, x_2)) -> f'(encArg(x_1), encArg(x_2)) encArg(cons_f''(x_1)) -> f''(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_A -> A encode_B -> B encode_C -> C encode_foldB(x_1, x_2) -> foldB(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_foldC(x_1, x_2) -> foldC(encArg(x_1), encArg(x_2)) encode_f'(x_1, x_2) -> f'(encArg(x_1), encArg(x_2)) encode_triple(x_1, x_2, x_3) -> triple(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f''(x_1) -> f''(encArg(x_1)) Rewrite Strategy: FULL