WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 197 ms] (4) CpxRelTRS (5) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxWeightedTrs (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedTrs (9) CompletionProof [UPPER BOUND(ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) NarrowingProof [BOTH BOUNDS(ID, ID), 146 ms] (12) CpxTypedWeightedCompleteTrs (13) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (14) CpxRNTS (15) InliningProof [UPPER BOUND(ID), 2 ms] (16) CpxRNTS (17) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxRNTS (19) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (20) CpxRNTS (21) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 152 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 34 ms] (26) CpxRNTS (27) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 8 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 32 ms] (32) CpxRNTS (33) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 95 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 1 ms] (38) CpxRNTS (39) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (40) CpxRNTS (41) IntTrsBoundProof [UPPER BOUND(ID), 352 ms] (42) CpxRNTS (43) IntTrsBoundProof [UPPER BOUND(ID), 77 ms] (44) CpxRNTS (45) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (46) CpxRNTS (47) IntTrsBoundProof [UPPER BOUND(ID), 413 ms] (48) CpxRNTS (49) IntTrsBoundProof [UPPER BOUND(ID), 241 ms] (50) CpxRNTS (51) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (52) CpxRNTS (53) IntTrsBoundProof [UPPER BOUND(ID), 200 ms] (54) CpxRNTS (55) IntTrsBoundProof [UPPER BOUND(ID), 4 ms] (56) CpxRNTS (57) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (58) CpxRNTS (59) IntTrsBoundProof [UPPER BOUND(ID), 167 ms] (60) CpxRNTS (61) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (62) CpxRNTS (63) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (64) CpxRNTS (65) IntTrsBoundProof [UPPER BOUND(ID), 147 ms] (66) CpxRNTS (67) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (68) CpxRNTS (69) FinalProof [FINISHED, 0 ms] (70) BOUNDS(1, n^2) (71) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (72) TRS for Loop Detection (73) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (74) BEST (75) proven lower bound (76) LowerBoundPropagationProof [FINISHED, 0 ms] (77) BOUNDS(n^1, INF) (78) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: g(x, y) -> x g(x, y) -> y f(0, 1, x) -> f(s(x), x, x) f(x, y, s(z)) -> s(f(0, 1, z)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(1) -> 1 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_0 -> 0 encode_1 -> 1 encode_s(x_1) -> s(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: g(x, y) -> x g(x, y) -> y f(0, 1, x) -> f(s(x), x, x) f(x, y, s(z)) -> s(f(0, 1, z)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(1) -> 1 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_0 -> 0 encode_1 -> 1 encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: g(x, y) -> x g(x, y) -> y f(0, 1, x) -> f(s(x), x, x) f(x, y, s(z)) -> s(f(0, 1, z)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(1) -> 1 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_0 -> 0 encode_1 -> 1 encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: g(x, y) -> x [1] g(x, y) -> y [1] f(0, 1, x) -> f(s(x), x, x) [1] f(x, y, s(z)) -> s(f(0, 1, z)) [1] encArg(0) -> 0 [0] encArg(1) -> 1 [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) [0] encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) [0] encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_0 -> 0 [0] encode_1 -> 1 [0] encode_s(x_1) -> s(encArg(x_1)) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: g(x, y) -> x [1] g(x, y) -> y [1] f(0, 1, x) -> f(s(x), x, x) [1] f(x, y, s(z)) -> s(f(0, 1, z)) [1] encArg(0) -> 0 [0] encArg(1) -> 1 [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) [0] encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) [0] encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_0 -> 0 [0] encode_1 -> 1 [0] encode_s(x_1) -> s(encArg(x_1)) [0] The TRS has the following type information: g :: 0:1:s:cons_g:cons_f -> 0:1:s:cons_g:cons_f -> 0:1:s:cons_g:cons_f f :: 0:1:s:cons_g:cons_f -> 0:1:s:cons_g:cons_f -> 0:1:s:cons_g:cons_f -> 0:1:s:cons_g:cons_f 0 :: 0:1:s:cons_g:cons_f 1 :: 0:1:s:cons_g:cons_f s :: 0:1:s:cons_g:cons_f -> 0:1:s:cons_g:cons_f encArg :: 0:1:s:cons_g:cons_f -> 0:1:s:cons_g:cons_f cons_g :: 0:1:s:cons_g:cons_f -> 0:1:s:cons_g:cons_f -> 0:1:s:cons_g:cons_f cons_f :: 0:1:s:cons_g:cons_f -> 0:1:s:cons_g:cons_f -> 0:1:s:cons_g:cons_f -> 0:1:s:cons_g:cons_f encode_g :: 0:1:s:cons_g:cons_f -> 0:1:s:cons_g:cons_f -> 0:1:s:cons_g:cons_f encode_f :: 0:1:s:cons_g:cons_f -> 0:1:s:cons_g:cons_f -> 0:1:s:cons_g:cons_f -> 0:1:s:cons_g:cons_f encode_0 :: 0:1:s:cons_g:cons_f encode_1 :: 0:1:s:cons_g:cons_f encode_s :: 0:1:s:cons_g:cons_f -> 0:1:s:cons_g:cons_f Rewrite Strategy: INNERMOST ---------------------------------------- (9) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: f_3 g_2 encArg_1 encode_g_2 encode_f_3 encode_0 encode_1 encode_s_1 Due to the following rules being added: encArg(v0) -> null_encArg [0] encode_g(v0, v1) -> null_encode_g [0] encode_f(v0, v1, v2) -> null_encode_f [0] encode_0 -> null_encode_0 [0] encode_1 -> null_encode_1 [0] encode_s(v0) -> null_encode_s [0] f(v0, v1, v2) -> null_f [0] And the following fresh constants: null_encArg, null_encode_g, null_encode_f, null_encode_0, null_encode_1, null_encode_s, null_f ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: g(x, y) -> x [1] g(x, y) -> y [1] f(0, 1, x) -> f(s(x), x, x) [1] f(x, y, s(z)) -> s(f(0, 1, z)) [1] encArg(0) -> 0 [0] encArg(1) -> 1 [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) [0] encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) [0] encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_0 -> 0 [0] encode_1 -> 1 [0] encode_s(x_1) -> s(encArg(x_1)) [0] encArg(v0) -> null_encArg [0] encode_g(v0, v1) -> null_encode_g [0] encode_f(v0, v1, v2) -> null_encode_f [0] encode_0 -> null_encode_0 [0] encode_1 -> null_encode_1 [0] encode_s(v0) -> null_encode_s [0] f(v0, v1, v2) -> null_f [0] The TRS has the following type information: g :: 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f -> 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f -> 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f f :: 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f -> 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f -> 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f -> 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f 0 :: 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f 1 :: 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f s :: 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f -> 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f encArg :: 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f -> 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f cons_g :: 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f -> 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f -> 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f cons_f :: 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f -> 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f -> 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f -> 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f encode_g :: 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f -> 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f -> 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f encode_f :: 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f -> 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f -> 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f -> 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f encode_0 :: 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f encode_1 :: 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f encode_s :: 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f -> 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f null_encArg :: 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f null_encode_g :: 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f null_encode_f :: 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f null_encode_0 :: 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f null_encode_1 :: 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f null_encode_s :: 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f null_f :: 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f Rewrite Strategy: INNERMOST ---------------------------------------- (11) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: g(x, y) -> x [1] g(x, y) -> y [1] f(0, 1, x) -> f(s(x), x, x) [1] f(x, y, s(z)) -> s(f(0, 1, z)) [1] encArg(0) -> 0 [0] encArg(1) -> 1 [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) [0] encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) [0] encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_0 -> 0 [0] encode_1 -> 1 [0] encode_s(x_1) -> s(encArg(x_1)) [0] encArg(v0) -> null_encArg [0] encode_g(v0, v1) -> null_encode_g [0] encode_f(v0, v1, v2) -> null_encode_f [0] encode_0 -> null_encode_0 [0] encode_1 -> null_encode_1 [0] encode_s(v0) -> null_encode_s [0] f(v0, v1, v2) -> null_f [0] The TRS has the following type information: g :: 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f -> 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f -> 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f f :: 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f -> 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f -> 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f -> 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f 0 :: 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f 1 :: 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f s :: 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f -> 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f encArg :: 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f -> 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f cons_g :: 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f -> 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f -> 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f cons_f :: 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f -> 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f -> 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f -> 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f encode_g :: 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f -> 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f -> 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f encode_f :: 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f -> 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f -> 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f -> 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f encode_0 :: 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f encode_1 :: 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f encode_s :: 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f -> 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f null_encArg :: 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f null_encode_g :: 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f null_encode_f :: 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f null_encode_0 :: 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f null_encode_1 :: 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f null_encode_s :: 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f null_f :: 0:1:s:cons_g:cons_f:null_encArg:null_encode_g:null_encode_f:null_encode_0:null_encode_1:null_encode_s:null_f Rewrite Strategy: INNERMOST ---------------------------------------- (13) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 1 => 1 null_encArg => 0 null_encode_g => 0 null_encode_f => 0 null_encode_0 => 0 null_encode_1 => 0 null_encode_s => 0 null_f => 0 ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: v0 >= 0, z' = v0 encArg(z') -{ 0 }-> 1 + encArg(x_1) :|: x_1 >= 0, z' = 1 + x_1 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z1 = x_3, z' = x_1, x_3 >= 0, x_2 >= 0, z'' = x_2 encode_f(z', z'', z1) -{ 0 }-> 0 :|: v0 >= 0, z1 = v2, v1 >= 0, z'' = v1, v2 >= 0, z' = v0 encode_g(z', z'') -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z' = x_1, x_2 >= 0, z'' = x_2 encode_g(z', z'') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z'' = v1, z' = v0 encode_s(z') -{ 0 }-> 0 :|: v0 >= 0, z' = v0 encode_s(z') -{ 0 }-> 1 + encArg(x_1) :|: x_1 >= 0, z' = x_1 f(z', z'', z1) -{ 1 }-> f(1 + x, x, x) :|: x >= 0, z'' = 1, z1 = x, z' = 0 f(z', z'', z1) -{ 0 }-> 0 :|: v0 >= 0, z1 = v2, v1 >= 0, z'' = v1, v2 >= 0, z' = v0 f(z', z'', z1) -{ 1 }-> 1 + f(0, 1, z) :|: z >= 0, z' = x, z'' = y, x >= 0, y >= 0, z1 = 1 + z g(z', z'') -{ 1 }-> x :|: z' = x, z'' = y, x >= 0, y >= 0 g(z', z'') -{ 1 }-> y :|: z' = x, z'' = y, x >= 0, y >= 0 ---------------------------------------- (15) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: g(z', z'') -{ 1 }-> y :|: z' = x, z'' = y, x >= 0, y >= 0 g(z', z'') -{ 1 }-> x :|: z' = x, z'' = y, x >= 0, y >= 0 ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: v0 >= 0, z' = v0 encArg(z') -{ 0 }-> 1 + encArg(x_1) :|: x_1 >= 0, z' = 1 + x_1 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z1 = x_3, z' = x_1, x_3 >= 0, x_2 >= 0, z'' = x_2 encode_f(z', z'', z1) -{ 0 }-> 0 :|: v0 >= 0, z1 = v2, v1 >= 0, z'' = v1, v2 >= 0, z' = v0 encode_g(z', z'') -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z' = x_1, x_2 >= 0, z'' = x_2 encode_g(z', z'') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z'' = v1, z' = v0 encode_s(z') -{ 0 }-> 0 :|: v0 >= 0, z' = v0 encode_s(z') -{ 0 }-> 1 + encArg(x_1) :|: x_1 >= 0, z' = x_1 f(z', z'', z1) -{ 1 }-> f(1 + x, x, x) :|: x >= 0, z'' = 1, z1 = x, z' = 0 f(z', z'', z1) -{ 0 }-> 0 :|: v0 >= 0, z1 = v2, v1 >= 0, z'' = v1, v2 >= 0, z' = v0 f(z', z'', z1) -{ 1 }-> 1 + f(0, 1, z) :|: z >= 0, z' = x, z'' = y, x >= 0, y >= 0, z1 = 1 + z g(z', z'') -{ 1 }-> x :|: z' = x, z'' = y, x >= 0, y >= 0 g(z', z'') -{ 1 }-> y :|: z' = x, z'' = y, x >= 0, y >= 0 ---------------------------------------- (17) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 0 }-> f(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'') -{ 0 }-> g(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 f(z', z'', z1) -{ 1 }-> f(1 + z1, z1, z1) :|: z1 >= 0, z'' = 1, z' = 0 f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 1 }-> 1 + f(0, 1, z1 - 1) :|: z1 - 1 >= 0, z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z' :|: z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0 ---------------------------------------- (19) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { g } { encode_0 } { encode_1 } { f } { encArg } { encode_f } { encode_g } { encode_s } ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 0 }-> f(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'') -{ 0 }-> g(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 f(z', z'', z1) -{ 1 }-> f(1 + z1, z1, z1) :|: z1 >= 0, z'' = 1, z' = 0 f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 1 }-> 1 + f(0, 1, z1 - 1) :|: z1 - 1 >= 0, z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z' :|: z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0 Function symbols to be analyzed: {g}, {encode_0}, {encode_1}, {f}, {encArg}, {encode_f}, {encode_g}, {encode_s} ---------------------------------------- (21) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 0 }-> f(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'') -{ 0 }-> g(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 f(z', z'', z1) -{ 1 }-> f(1 + z1, z1, z1) :|: z1 >= 0, z'' = 1, z' = 0 f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 1 }-> 1 + f(0, 1, z1 - 1) :|: z1 - 1 >= 0, z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z' :|: z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0 Function symbols to be analyzed: {g}, {encode_0}, {encode_1}, {f}, {encArg}, {encode_f}, {encode_g}, {encode_s} ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: g after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' + z'' ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 0 }-> f(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'') -{ 0 }-> g(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 f(z', z'', z1) -{ 1 }-> f(1 + z1, z1, z1) :|: z1 >= 0, z'' = 1, z' = 0 f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 1 }-> 1 + f(0, 1, z1 - 1) :|: z1 - 1 >= 0, z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z' :|: z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0 Function symbols to be analyzed: {g}, {encode_0}, {encode_1}, {f}, {encArg}, {encode_f}, {encode_g}, {encode_s} Previous analysis results are: g: runtime: ?, size: O(n^1) [z' + z''] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: g after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 0 }-> f(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'') -{ 0 }-> g(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 f(z', z'', z1) -{ 1 }-> f(1 + z1, z1, z1) :|: z1 >= 0, z'' = 1, z' = 0 f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 1 }-> 1 + f(0, 1, z1 - 1) :|: z1 - 1 >= 0, z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z' :|: z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0 Function symbols to be analyzed: {encode_0}, {encode_1}, {f}, {encArg}, {encode_f}, {encode_g}, {encode_s} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z' + z''] ---------------------------------------- (27) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 0 }-> f(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'') -{ 0 }-> g(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 f(z', z'', z1) -{ 1 }-> f(1 + z1, z1, z1) :|: z1 >= 0, z'' = 1, z' = 0 f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 1 }-> 1 + f(0, 1, z1 - 1) :|: z1 - 1 >= 0, z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z' :|: z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0 Function symbols to be analyzed: {encode_0}, {encode_1}, {f}, {encArg}, {encode_f}, {encode_g}, {encode_s} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z' + z''] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_0 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 0 }-> f(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'') -{ 0 }-> g(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 f(z', z'', z1) -{ 1 }-> f(1 + z1, z1, z1) :|: z1 >= 0, z'' = 1, z' = 0 f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 1 }-> 1 + f(0, 1, z1 - 1) :|: z1 - 1 >= 0, z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z' :|: z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0 Function symbols to be analyzed: {encode_0}, {encode_1}, {f}, {encArg}, {encode_f}, {encode_g}, {encode_s} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z' + z''] encode_0: runtime: ?, size: O(1) [0] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_0 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 0 }-> f(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'') -{ 0 }-> g(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 f(z', z'', z1) -{ 1 }-> f(1 + z1, z1, z1) :|: z1 >= 0, z'' = 1, z' = 0 f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 1 }-> 1 + f(0, 1, z1 - 1) :|: z1 - 1 >= 0, z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z' :|: z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0 Function symbols to be analyzed: {encode_1}, {f}, {encArg}, {encode_f}, {encode_g}, {encode_s} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z' + z''] encode_0: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (33) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 0 }-> f(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'') -{ 0 }-> g(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 f(z', z'', z1) -{ 1 }-> f(1 + z1, z1, z1) :|: z1 >= 0, z'' = 1, z' = 0 f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 1 }-> 1 + f(0, 1, z1 - 1) :|: z1 - 1 >= 0, z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z' :|: z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0 Function symbols to be analyzed: {encode_1}, {f}, {encArg}, {encode_f}, {encode_g}, {encode_s} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z' + z''] encode_0: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_1 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 0 }-> f(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'') -{ 0 }-> g(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 f(z', z'', z1) -{ 1 }-> f(1 + z1, z1, z1) :|: z1 >= 0, z'' = 1, z' = 0 f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 1 }-> 1 + f(0, 1, z1 - 1) :|: z1 - 1 >= 0, z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z' :|: z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0 Function symbols to be analyzed: {encode_1}, {f}, {encArg}, {encode_f}, {encode_g}, {encode_s} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z' + z''] encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: ?, size: O(1) [1] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_1 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 0 }-> f(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'') -{ 0 }-> g(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 f(z', z'', z1) -{ 1 }-> f(1 + z1, z1, z1) :|: z1 >= 0, z'' = 1, z' = 0 f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 1 }-> 1 + f(0, 1, z1 - 1) :|: z1 - 1 >= 0, z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z' :|: z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0 Function symbols to be analyzed: {f}, {encArg}, {encode_f}, {encode_g}, {encode_s} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z' + z''] encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] ---------------------------------------- (39) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 0 }-> f(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'') -{ 0 }-> g(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 f(z', z'', z1) -{ 1 }-> f(1 + z1, z1, z1) :|: z1 >= 0, z'' = 1, z' = 0 f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 1 }-> 1 + f(0, 1, z1 - 1) :|: z1 - 1 >= 0, z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z' :|: z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0 Function symbols to be analyzed: {f}, {encArg}, {encode_f}, {encode_g}, {encode_s} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z' + z''] encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] ---------------------------------------- (41) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z1 ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 0 }-> f(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'') -{ 0 }-> g(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 f(z', z'', z1) -{ 1 }-> f(1 + z1, z1, z1) :|: z1 >= 0, z'' = 1, z' = 0 f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 1 }-> 1 + f(0, 1, z1 - 1) :|: z1 - 1 >= 0, z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z' :|: z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0 Function symbols to be analyzed: {f}, {encArg}, {encode_f}, {encode_g}, {encode_s} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z' + z''] encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] f: runtime: ?, size: O(n^1) [z1] ---------------------------------------- (43) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + 2*z1 ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 0 }-> f(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'') -{ 0 }-> g(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 f(z', z'', z1) -{ 1 }-> f(1 + z1, z1, z1) :|: z1 >= 0, z'' = 1, z' = 0 f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 1 }-> 1 + f(0, 1, z1 - 1) :|: z1 - 1 >= 0, z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z' :|: z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0 Function symbols to be analyzed: {encArg}, {encode_f}, {encode_g}, {encode_s} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z' + z''] encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] f: runtime: O(n^1) [1 + 2*z1], size: O(n^1) [z1] ---------------------------------------- (45) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 0 }-> f(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'') -{ 0 }-> g(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 f(z', z'', z1) -{ 2 + 2*z1 }-> s :|: s >= 0, s <= z1, z1 >= 0, z'' = 1, z' = 0 f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 2*z1 }-> 1 + s' :|: s' >= 0, s' <= z1 - 1, z1 - 1 >= 0, z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z' :|: z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0 Function symbols to be analyzed: {encArg}, {encode_f}, {encode_g}, {encode_s} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z' + z''] encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] f: runtime: O(n^1) [1 + 2*z1], size: O(n^1) [z1] ---------------------------------------- (47) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 0 }-> f(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'') -{ 0 }-> g(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 f(z', z'', z1) -{ 2 + 2*z1 }-> s :|: s >= 0, s <= z1, z1 >= 0, z'' = 1, z' = 0 f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 2*z1 }-> 1 + s' :|: s' >= 0, s' <= z1 - 1, z1 - 1 >= 0, z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z' :|: z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0 Function symbols to be analyzed: {encArg}, {encode_f}, {encode_g}, {encode_s} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z' + z''] encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] f: runtime: O(n^1) [1 + 2*z1], size: O(n^1) [z1] encArg: runtime: ?, size: O(n^1) [1 + z'] ---------------------------------------- (49) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: z' + 2*z'^2 ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 0 }-> 1 + encArg(z' - 1) :|: z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 0 }-> f(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'') -{ 0 }-> g(encArg(z'), encArg(z'')) :|: z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ 0 }-> 1 + encArg(z') :|: z' >= 0 f(z', z'', z1) -{ 2 + 2*z1 }-> s :|: s >= 0, s <= z1, z1 >= 0, z'' = 1, z' = 0 f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 2*z1 }-> 1 + s' :|: s' >= 0, s' <= z1 - 1, z1 - 1 >= 0, z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z' :|: z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0 Function symbols to be analyzed: {encode_f}, {encode_g}, {encode_s} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z' + z''] encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] f: runtime: O(n^1) [1 + 2*z1], size: O(n^1) [z1] encArg: runtime: O(n^2) [z' + 2*z'^2], size: O(n^1) [1 + z'] ---------------------------------------- (51) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 1 + x_1 + 2*x_1^2 + x_2 + 2*x_2^2 }-> s12 :|: s10 >= 0, s10 <= x_1 + 1, s11 >= 0, s11 <= x_2 + 1, s12 >= 0, s12 <= s11 + s10, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 1 + 2*s3 + x_1 + 2*x_1^2 + x_2 + 2*x_2^2 + x_3 + 2*x_3^2 }-> s4 :|: s1 >= 0, s1 <= x_1 + 1, s2 >= 0, s2 <= x_2 + 1, s3 >= 0, s3 <= x_3 + 1, s4 >= 0, s4 <= s3, x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 1 + -3*z' + 2*z'^2 }-> 1 + s'' :|: s'' >= 0, s'' <= z' - 1 + 1, z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 1 + 2*s7 + z' + 2*z'^2 + z'' + 2*z''^2 + z1 + 2*z1^2 }-> s8 :|: s5 >= 0, s5 <= z' + 1, s6 >= 0, s6 <= z'' + 1, s7 >= 0, s7 <= z1 + 1, s8 >= 0, s8 <= s7, z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'') -{ 1 + z' + 2*z'^2 + z'' + 2*z''^2 }-> s15 :|: s13 >= 0, s13 <= z' + 1, s14 >= 0, s14 <= z'' + 1, s15 >= 0, s15 <= s14 + s13, z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ z' + 2*z'^2 }-> 1 + s9 :|: s9 >= 0, s9 <= z' + 1, z' >= 0 f(z', z'', z1) -{ 2 + 2*z1 }-> s :|: s >= 0, s <= z1, z1 >= 0, z'' = 1, z' = 0 f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 2*z1 }-> 1 + s' :|: s' >= 0, s' <= z1 - 1, z1 - 1 >= 0, z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z' :|: z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0 Function symbols to be analyzed: {encode_f}, {encode_g}, {encode_s} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z' + z''] encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] f: runtime: O(n^1) [1 + 2*z1], size: O(n^1) [z1] encArg: runtime: O(n^2) [z' + 2*z'^2], size: O(n^1) [1 + z'] ---------------------------------------- (53) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z1 ---------------------------------------- (54) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 1 + x_1 + 2*x_1^2 + x_2 + 2*x_2^2 }-> s12 :|: s10 >= 0, s10 <= x_1 + 1, s11 >= 0, s11 <= x_2 + 1, s12 >= 0, s12 <= s11 + s10, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 1 + 2*s3 + x_1 + 2*x_1^2 + x_2 + 2*x_2^2 + x_3 + 2*x_3^2 }-> s4 :|: s1 >= 0, s1 <= x_1 + 1, s2 >= 0, s2 <= x_2 + 1, s3 >= 0, s3 <= x_3 + 1, s4 >= 0, s4 <= s3, x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 1 + -3*z' + 2*z'^2 }-> 1 + s'' :|: s'' >= 0, s'' <= z' - 1 + 1, z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 1 + 2*s7 + z' + 2*z'^2 + z'' + 2*z''^2 + z1 + 2*z1^2 }-> s8 :|: s5 >= 0, s5 <= z' + 1, s6 >= 0, s6 <= z'' + 1, s7 >= 0, s7 <= z1 + 1, s8 >= 0, s8 <= s7, z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'') -{ 1 + z' + 2*z'^2 + z'' + 2*z''^2 }-> s15 :|: s13 >= 0, s13 <= z' + 1, s14 >= 0, s14 <= z'' + 1, s15 >= 0, s15 <= s14 + s13, z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ z' + 2*z'^2 }-> 1 + s9 :|: s9 >= 0, s9 <= z' + 1, z' >= 0 f(z', z'', z1) -{ 2 + 2*z1 }-> s :|: s >= 0, s <= z1, z1 >= 0, z'' = 1, z' = 0 f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 2*z1 }-> 1 + s' :|: s' >= 0, s' <= z1 - 1, z1 - 1 >= 0, z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z' :|: z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0 Function symbols to be analyzed: {encode_f}, {encode_g}, {encode_s} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z' + z''] encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] f: runtime: O(n^1) [1 + 2*z1], size: O(n^1) [z1] encArg: runtime: O(n^2) [z' + 2*z'^2], size: O(n^1) [1 + z'] encode_f: runtime: ?, size: O(n^1) [1 + z1] ---------------------------------------- (55) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_f after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 3 + z' + 2*z'^2 + z'' + 2*z''^2 + 3*z1 + 2*z1^2 ---------------------------------------- (56) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 1 + x_1 + 2*x_1^2 + x_2 + 2*x_2^2 }-> s12 :|: s10 >= 0, s10 <= x_1 + 1, s11 >= 0, s11 <= x_2 + 1, s12 >= 0, s12 <= s11 + s10, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 1 + 2*s3 + x_1 + 2*x_1^2 + x_2 + 2*x_2^2 + x_3 + 2*x_3^2 }-> s4 :|: s1 >= 0, s1 <= x_1 + 1, s2 >= 0, s2 <= x_2 + 1, s3 >= 0, s3 <= x_3 + 1, s4 >= 0, s4 <= s3, x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 1 + -3*z' + 2*z'^2 }-> 1 + s'' :|: s'' >= 0, s'' <= z' - 1 + 1, z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 1 + 2*s7 + z' + 2*z'^2 + z'' + 2*z''^2 + z1 + 2*z1^2 }-> s8 :|: s5 >= 0, s5 <= z' + 1, s6 >= 0, s6 <= z'' + 1, s7 >= 0, s7 <= z1 + 1, s8 >= 0, s8 <= s7, z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'') -{ 1 + z' + 2*z'^2 + z'' + 2*z''^2 }-> s15 :|: s13 >= 0, s13 <= z' + 1, s14 >= 0, s14 <= z'' + 1, s15 >= 0, s15 <= s14 + s13, z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ z' + 2*z'^2 }-> 1 + s9 :|: s9 >= 0, s9 <= z' + 1, z' >= 0 f(z', z'', z1) -{ 2 + 2*z1 }-> s :|: s >= 0, s <= z1, z1 >= 0, z'' = 1, z' = 0 f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 2*z1 }-> 1 + s' :|: s' >= 0, s' <= z1 - 1, z1 - 1 >= 0, z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z' :|: z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0 Function symbols to be analyzed: {encode_g}, {encode_s} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z' + z''] encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] f: runtime: O(n^1) [1 + 2*z1], size: O(n^1) [z1] encArg: runtime: O(n^2) [z' + 2*z'^2], size: O(n^1) [1 + z'] encode_f: runtime: O(n^2) [3 + z' + 2*z'^2 + z'' + 2*z''^2 + 3*z1 + 2*z1^2], size: O(n^1) [1 + z1] ---------------------------------------- (57) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (58) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 1 + x_1 + 2*x_1^2 + x_2 + 2*x_2^2 }-> s12 :|: s10 >= 0, s10 <= x_1 + 1, s11 >= 0, s11 <= x_2 + 1, s12 >= 0, s12 <= s11 + s10, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 1 + 2*s3 + x_1 + 2*x_1^2 + x_2 + 2*x_2^2 + x_3 + 2*x_3^2 }-> s4 :|: s1 >= 0, s1 <= x_1 + 1, s2 >= 0, s2 <= x_2 + 1, s3 >= 0, s3 <= x_3 + 1, s4 >= 0, s4 <= s3, x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 1 + -3*z' + 2*z'^2 }-> 1 + s'' :|: s'' >= 0, s'' <= z' - 1 + 1, z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 1 + 2*s7 + z' + 2*z'^2 + z'' + 2*z''^2 + z1 + 2*z1^2 }-> s8 :|: s5 >= 0, s5 <= z' + 1, s6 >= 0, s6 <= z'' + 1, s7 >= 0, s7 <= z1 + 1, s8 >= 0, s8 <= s7, z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'') -{ 1 + z' + 2*z'^2 + z'' + 2*z''^2 }-> s15 :|: s13 >= 0, s13 <= z' + 1, s14 >= 0, s14 <= z'' + 1, s15 >= 0, s15 <= s14 + s13, z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ z' + 2*z'^2 }-> 1 + s9 :|: s9 >= 0, s9 <= z' + 1, z' >= 0 f(z', z'', z1) -{ 2 + 2*z1 }-> s :|: s >= 0, s <= z1, z1 >= 0, z'' = 1, z' = 0 f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 2*z1 }-> 1 + s' :|: s' >= 0, s' <= z1 - 1, z1 - 1 >= 0, z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z' :|: z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0 Function symbols to be analyzed: {encode_g}, {encode_s} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z' + z''] encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] f: runtime: O(n^1) [1 + 2*z1], size: O(n^1) [z1] encArg: runtime: O(n^2) [z' + 2*z'^2], size: O(n^1) [1 + z'] encode_f: runtime: O(n^2) [3 + z' + 2*z'^2 + z'' + 2*z''^2 + 3*z1 + 2*z1^2], size: O(n^1) [1 + z1] ---------------------------------------- (59) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_g after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z' + z'' ---------------------------------------- (60) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 1 + x_1 + 2*x_1^2 + x_2 + 2*x_2^2 }-> s12 :|: s10 >= 0, s10 <= x_1 + 1, s11 >= 0, s11 <= x_2 + 1, s12 >= 0, s12 <= s11 + s10, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 1 + 2*s3 + x_1 + 2*x_1^2 + x_2 + 2*x_2^2 + x_3 + 2*x_3^2 }-> s4 :|: s1 >= 0, s1 <= x_1 + 1, s2 >= 0, s2 <= x_2 + 1, s3 >= 0, s3 <= x_3 + 1, s4 >= 0, s4 <= s3, x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 1 + -3*z' + 2*z'^2 }-> 1 + s'' :|: s'' >= 0, s'' <= z' - 1 + 1, z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 1 + 2*s7 + z' + 2*z'^2 + z'' + 2*z''^2 + z1 + 2*z1^2 }-> s8 :|: s5 >= 0, s5 <= z' + 1, s6 >= 0, s6 <= z'' + 1, s7 >= 0, s7 <= z1 + 1, s8 >= 0, s8 <= s7, z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'') -{ 1 + z' + 2*z'^2 + z'' + 2*z''^2 }-> s15 :|: s13 >= 0, s13 <= z' + 1, s14 >= 0, s14 <= z'' + 1, s15 >= 0, s15 <= s14 + s13, z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ z' + 2*z'^2 }-> 1 + s9 :|: s9 >= 0, s9 <= z' + 1, z' >= 0 f(z', z'', z1) -{ 2 + 2*z1 }-> s :|: s >= 0, s <= z1, z1 >= 0, z'' = 1, z' = 0 f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 2*z1 }-> 1 + s' :|: s' >= 0, s' <= z1 - 1, z1 - 1 >= 0, z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z' :|: z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0 Function symbols to be analyzed: {encode_g}, {encode_s} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z' + z''] encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] f: runtime: O(n^1) [1 + 2*z1], size: O(n^1) [z1] encArg: runtime: O(n^2) [z' + 2*z'^2], size: O(n^1) [1 + z'] encode_f: runtime: O(n^2) [3 + z' + 2*z'^2 + z'' + 2*z''^2 + 3*z1 + 2*z1^2], size: O(n^1) [1 + z1] encode_g: runtime: ?, size: O(n^1) [2 + z' + z''] ---------------------------------------- (61) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_g after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 1 + z' + 2*z'^2 + z'' + 2*z''^2 ---------------------------------------- (62) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 1 + x_1 + 2*x_1^2 + x_2 + 2*x_2^2 }-> s12 :|: s10 >= 0, s10 <= x_1 + 1, s11 >= 0, s11 <= x_2 + 1, s12 >= 0, s12 <= s11 + s10, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 1 + 2*s3 + x_1 + 2*x_1^2 + x_2 + 2*x_2^2 + x_3 + 2*x_3^2 }-> s4 :|: s1 >= 0, s1 <= x_1 + 1, s2 >= 0, s2 <= x_2 + 1, s3 >= 0, s3 <= x_3 + 1, s4 >= 0, s4 <= s3, x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 1 + -3*z' + 2*z'^2 }-> 1 + s'' :|: s'' >= 0, s'' <= z' - 1 + 1, z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 1 + 2*s7 + z' + 2*z'^2 + z'' + 2*z''^2 + z1 + 2*z1^2 }-> s8 :|: s5 >= 0, s5 <= z' + 1, s6 >= 0, s6 <= z'' + 1, s7 >= 0, s7 <= z1 + 1, s8 >= 0, s8 <= s7, z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'') -{ 1 + z' + 2*z'^2 + z'' + 2*z''^2 }-> s15 :|: s13 >= 0, s13 <= z' + 1, s14 >= 0, s14 <= z'' + 1, s15 >= 0, s15 <= s14 + s13, z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ z' + 2*z'^2 }-> 1 + s9 :|: s9 >= 0, s9 <= z' + 1, z' >= 0 f(z', z'', z1) -{ 2 + 2*z1 }-> s :|: s >= 0, s <= z1, z1 >= 0, z'' = 1, z' = 0 f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 2*z1 }-> 1 + s' :|: s' >= 0, s' <= z1 - 1, z1 - 1 >= 0, z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z' :|: z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0 Function symbols to be analyzed: {encode_s} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z' + z''] encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] f: runtime: O(n^1) [1 + 2*z1], size: O(n^1) [z1] encArg: runtime: O(n^2) [z' + 2*z'^2], size: O(n^1) [1 + z'] encode_f: runtime: O(n^2) [3 + z' + 2*z'^2 + z'' + 2*z''^2 + 3*z1 + 2*z1^2], size: O(n^1) [1 + z1] encode_g: runtime: O(n^2) [1 + z' + 2*z'^2 + z'' + 2*z''^2], size: O(n^1) [2 + z' + z''] ---------------------------------------- (63) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (64) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 1 + x_1 + 2*x_1^2 + x_2 + 2*x_2^2 }-> s12 :|: s10 >= 0, s10 <= x_1 + 1, s11 >= 0, s11 <= x_2 + 1, s12 >= 0, s12 <= s11 + s10, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 1 + 2*s3 + x_1 + 2*x_1^2 + x_2 + 2*x_2^2 + x_3 + 2*x_3^2 }-> s4 :|: s1 >= 0, s1 <= x_1 + 1, s2 >= 0, s2 <= x_2 + 1, s3 >= 0, s3 <= x_3 + 1, s4 >= 0, s4 <= s3, x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 1 + -3*z' + 2*z'^2 }-> 1 + s'' :|: s'' >= 0, s'' <= z' - 1 + 1, z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 1 + 2*s7 + z' + 2*z'^2 + z'' + 2*z''^2 + z1 + 2*z1^2 }-> s8 :|: s5 >= 0, s5 <= z' + 1, s6 >= 0, s6 <= z'' + 1, s7 >= 0, s7 <= z1 + 1, s8 >= 0, s8 <= s7, z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'') -{ 1 + z' + 2*z'^2 + z'' + 2*z''^2 }-> s15 :|: s13 >= 0, s13 <= z' + 1, s14 >= 0, s14 <= z'' + 1, s15 >= 0, s15 <= s14 + s13, z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ z' + 2*z'^2 }-> 1 + s9 :|: s9 >= 0, s9 <= z' + 1, z' >= 0 f(z', z'', z1) -{ 2 + 2*z1 }-> s :|: s >= 0, s <= z1, z1 >= 0, z'' = 1, z' = 0 f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 2*z1 }-> 1 + s' :|: s' >= 0, s' <= z1 - 1, z1 - 1 >= 0, z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z' :|: z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0 Function symbols to be analyzed: {encode_s} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z' + z''] encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] f: runtime: O(n^1) [1 + 2*z1], size: O(n^1) [z1] encArg: runtime: O(n^2) [z' + 2*z'^2], size: O(n^1) [1 + z'] encode_f: runtime: O(n^2) [3 + z' + 2*z'^2 + z'' + 2*z''^2 + 3*z1 + 2*z1^2], size: O(n^1) [1 + z1] encode_g: runtime: O(n^2) [1 + z' + 2*z'^2 + z'' + 2*z''^2], size: O(n^1) [2 + z' + z''] ---------------------------------------- (65) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_s after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z' ---------------------------------------- (66) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 1 + x_1 + 2*x_1^2 + x_2 + 2*x_2^2 }-> s12 :|: s10 >= 0, s10 <= x_1 + 1, s11 >= 0, s11 <= x_2 + 1, s12 >= 0, s12 <= s11 + s10, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 1 + 2*s3 + x_1 + 2*x_1^2 + x_2 + 2*x_2^2 + x_3 + 2*x_3^2 }-> s4 :|: s1 >= 0, s1 <= x_1 + 1, s2 >= 0, s2 <= x_2 + 1, s3 >= 0, s3 <= x_3 + 1, s4 >= 0, s4 <= s3, x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 1 + -3*z' + 2*z'^2 }-> 1 + s'' :|: s'' >= 0, s'' <= z' - 1 + 1, z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 1 + 2*s7 + z' + 2*z'^2 + z'' + 2*z''^2 + z1 + 2*z1^2 }-> s8 :|: s5 >= 0, s5 <= z' + 1, s6 >= 0, s6 <= z'' + 1, s7 >= 0, s7 <= z1 + 1, s8 >= 0, s8 <= s7, z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'') -{ 1 + z' + 2*z'^2 + z'' + 2*z''^2 }-> s15 :|: s13 >= 0, s13 <= z' + 1, s14 >= 0, s14 <= z'' + 1, s15 >= 0, s15 <= s14 + s13, z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ z' + 2*z'^2 }-> 1 + s9 :|: s9 >= 0, s9 <= z' + 1, z' >= 0 f(z', z'', z1) -{ 2 + 2*z1 }-> s :|: s >= 0, s <= z1, z1 >= 0, z'' = 1, z' = 0 f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 2*z1 }-> 1 + s' :|: s' >= 0, s' <= z1 - 1, z1 - 1 >= 0, z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z' :|: z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0 Function symbols to be analyzed: {encode_s} Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z' + z''] encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] f: runtime: O(n^1) [1 + 2*z1], size: O(n^1) [z1] encArg: runtime: O(n^2) [z' + 2*z'^2], size: O(n^1) [1 + z'] encode_f: runtime: O(n^2) [3 + z' + 2*z'^2 + z'' + 2*z''^2 + 3*z1 + 2*z1^2], size: O(n^1) [1 + z1] encode_g: runtime: O(n^2) [1 + z' + 2*z'^2 + z'' + 2*z''^2], size: O(n^1) [2 + z' + z''] encode_s: runtime: ?, size: O(n^1) [2 + z'] ---------------------------------------- (67) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_s after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: z' + 2*z'^2 ---------------------------------------- (68) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 1 + x_1 + 2*x_1^2 + x_2 + 2*x_2^2 }-> s12 :|: s10 >= 0, s10 <= x_1 + 1, s11 >= 0, s11 <= x_2 + 1, s12 >= 0, s12 <= s11 + s10, x_1 >= 0, x_2 >= 0, z' = 1 + x_1 + x_2 encArg(z') -{ 1 + 2*s3 + x_1 + 2*x_1^2 + x_2 + 2*x_2^2 + x_3 + 2*x_3^2 }-> s4 :|: s1 >= 0, s1 <= x_1 + 1, s2 >= 0, s2 <= x_2 + 1, s3 >= 0, s3 <= x_3 + 1, s4 >= 0, s4 <= s3, x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encArg(z') -{ 1 + -3*z' + 2*z'^2 }-> 1 + s'' :|: s'' >= 0, s'' <= z' - 1 + 1, z' - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 1 + 2*s7 + z' + 2*z'^2 + z'' + 2*z''^2 + z1 + 2*z1^2 }-> s8 :|: s5 >= 0, s5 <= z' + 1, s6 >= 0, s6 <= z'' + 1, s7 >= 0, s7 <= z1 + 1, s8 >= 0, s8 <= s7, z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'') -{ 1 + z' + 2*z'^2 + z'' + 2*z''^2 }-> s15 :|: s13 >= 0, s13 <= z' + 1, s14 >= 0, s14 <= z'' + 1, s15 >= 0, s15 <= s14 + s13, z' >= 0, z'' >= 0 encode_g(z', z'') -{ 0 }-> 0 :|: z' >= 0, z'' >= 0 encode_s(z') -{ 0 }-> 0 :|: z' >= 0 encode_s(z') -{ z' + 2*z'^2 }-> 1 + s9 :|: s9 >= 0, s9 <= z' + 1, z' >= 0 f(z', z'', z1) -{ 2 + 2*z1 }-> s :|: s >= 0, s <= z1, z1 >= 0, z'' = 1, z' = 0 f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 2*z1 }-> 1 + s' :|: s' >= 0, s' <= z1 - 1, z1 - 1 >= 0, z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z' :|: z' >= 0, z'' >= 0 g(z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0 Function symbols to be analyzed: Previous analysis results are: g: runtime: O(1) [1], size: O(n^1) [z' + z''] encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] f: runtime: O(n^1) [1 + 2*z1], size: O(n^1) [z1] encArg: runtime: O(n^2) [z' + 2*z'^2], size: O(n^1) [1 + z'] encode_f: runtime: O(n^2) [3 + z' + 2*z'^2 + z'' + 2*z''^2 + 3*z1 + 2*z1^2], size: O(n^1) [1 + z1] encode_g: runtime: O(n^2) [1 + z' + 2*z'^2 + z'' + 2*z''^2], size: O(n^1) [2 + z' + z''] encode_s: runtime: O(n^2) [z' + 2*z'^2], size: O(n^1) [2 + z'] ---------------------------------------- (69) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (70) BOUNDS(1, n^2) ---------------------------------------- (71) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (72) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: g(x, y) -> x g(x, y) -> y f(0, 1, x) -> f(s(x), x, x) f(x, y, s(z)) -> s(f(0, 1, z)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(1) -> 1 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_0 -> 0 encode_1 -> 1 encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (73) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence f(x, y, s(z)) ->^+ s(f(0, 1, z)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [z / s(z)]. The result substitution is [x / 0, y / 1]. ---------------------------------------- (74) Complex Obligation (BEST) ---------------------------------------- (75) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: g(x, y) -> x g(x, y) -> y f(0, 1, x) -> f(s(x), x, x) f(x, y, s(z)) -> s(f(0, 1, z)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(1) -> 1 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_0 -> 0 encode_1 -> 1 encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (76) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (77) BOUNDS(n^1, INF) ---------------------------------------- (78) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: g(x, y) -> x g(x, y) -> y f(0, 1, x) -> f(s(x), x, x) f(x, y, s(z)) -> s(f(0, 1, z)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(1) -> 1 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_0 -> 0 encode_1 -> 1 encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: INNERMOST