WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 170 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 3451 ms] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 0 ms] (18) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: p(s(x)) -> x fac(0) -> s(0) fac(s(x)) -> times(s(x), fac(p(s(x)))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encArg(cons_fac(x_1)) -> fac(encArg(x_1)) encode_p(x_1) -> p(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_fac(x_1) -> fac(encArg(x_1)) encode_0 -> 0 encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: p(s(x)) -> x fac(0) -> s(0) fac(s(x)) -> times(s(x), fac(p(s(x)))) The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encArg(cons_fac(x_1)) -> fac(encArg(x_1)) encode_p(x_1) -> p(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_fac(x_1) -> fac(encArg(x_1)) encode_0 -> 0 encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: p(s(x)) -> x fac(0) -> s(0) fac(s(x)) -> times(s(x), fac(p(s(x)))) The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encArg(cons_fac(x_1)) -> fac(encArg(x_1)) encode_p(x_1) -> p(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_fac(x_1) -> fac(encArg(x_1)) encode_0 -> 0 encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: p(s(x)) -> x fac(0') -> s(0') fac(s(x)) -> times(s(x), fac(p(s(x)))) The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0') -> 0' encArg(times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encArg(cons_fac(x_1)) -> fac(encArg(x_1)) encode_p(x_1) -> p(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_fac(x_1) -> fac(encArg(x_1)) encode_0 -> 0' encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Innermost TRS: Rules: p(s(x)) -> x fac(0') -> s(0') fac(s(x)) -> times(s(x), fac(p(s(x)))) encArg(s(x_1)) -> s(encArg(x_1)) encArg(0') -> 0' encArg(times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encArg(cons_fac(x_1)) -> fac(encArg(x_1)) encode_p(x_1) -> p(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_fac(x_1) -> fac(encArg(x_1)) encode_0 -> 0' encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) Types: p :: s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac s :: s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac fac :: s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac 0' :: s:0':times:cons_p:cons_fac times :: s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac encArg :: s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac cons_p :: s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac cons_fac :: s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac encode_p :: s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac encode_s :: s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac encode_fac :: s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac encode_0 :: s:0':times:cons_p:cons_fac encode_times :: s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac hole_s:0':times:cons_p:cons_fac1_3 :: s:0':times:cons_p:cons_fac gen_s:0':times:cons_p:cons_fac2_3 :: Nat -> s:0':times:cons_p:cons_fac ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: fac, encArg They will be analysed ascendingly in the following order: fac < encArg ---------------------------------------- (10) Obligation: Innermost TRS: Rules: p(s(x)) -> x fac(0') -> s(0') fac(s(x)) -> times(s(x), fac(p(s(x)))) encArg(s(x_1)) -> s(encArg(x_1)) encArg(0') -> 0' encArg(times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encArg(cons_fac(x_1)) -> fac(encArg(x_1)) encode_p(x_1) -> p(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_fac(x_1) -> fac(encArg(x_1)) encode_0 -> 0' encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) Types: p :: s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac s :: s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac fac :: s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac 0' :: s:0':times:cons_p:cons_fac times :: s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac encArg :: s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac cons_p :: s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac cons_fac :: s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac encode_p :: s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac encode_s :: s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac encode_fac :: s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac encode_0 :: s:0':times:cons_p:cons_fac encode_times :: s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac hole_s:0':times:cons_p:cons_fac1_3 :: s:0':times:cons_p:cons_fac gen_s:0':times:cons_p:cons_fac2_3 :: Nat -> s:0':times:cons_p:cons_fac Generator Equations: gen_s:0':times:cons_p:cons_fac2_3(0) <=> 0' gen_s:0':times:cons_p:cons_fac2_3(+(x, 1)) <=> s(gen_s:0':times:cons_p:cons_fac2_3(x)) The following defined symbols remain to be analysed: fac, encArg They will be analysed ascendingly in the following order: fac < encArg ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: fac(gen_s:0':times:cons_p:cons_fac2_3(n4_3)) -> *3_3, rt in Omega(n4_3) Induction Base: fac(gen_s:0':times:cons_p:cons_fac2_3(0)) Induction Step: fac(gen_s:0':times:cons_p:cons_fac2_3(+(n4_3, 1))) ->_R^Omega(1) times(s(gen_s:0':times:cons_p:cons_fac2_3(n4_3)), fac(p(s(gen_s:0':times:cons_p:cons_fac2_3(n4_3))))) ->_R^Omega(1) times(s(gen_s:0':times:cons_p:cons_fac2_3(n4_3)), fac(gen_s:0':times:cons_p:cons_fac2_3(n4_3))) ->_IH times(s(gen_s:0':times:cons_p:cons_fac2_3(n4_3)), *3_3) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: p(s(x)) -> x fac(0') -> s(0') fac(s(x)) -> times(s(x), fac(p(s(x)))) encArg(s(x_1)) -> s(encArg(x_1)) encArg(0') -> 0' encArg(times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encArg(cons_fac(x_1)) -> fac(encArg(x_1)) encode_p(x_1) -> p(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_fac(x_1) -> fac(encArg(x_1)) encode_0 -> 0' encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) Types: p :: s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac s :: s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac fac :: s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac 0' :: s:0':times:cons_p:cons_fac times :: s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac encArg :: s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac cons_p :: s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac cons_fac :: s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac encode_p :: s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac encode_s :: s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac encode_fac :: s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac encode_0 :: s:0':times:cons_p:cons_fac encode_times :: s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac hole_s:0':times:cons_p:cons_fac1_3 :: s:0':times:cons_p:cons_fac gen_s:0':times:cons_p:cons_fac2_3 :: Nat -> s:0':times:cons_p:cons_fac Generator Equations: gen_s:0':times:cons_p:cons_fac2_3(0) <=> 0' gen_s:0':times:cons_p:cons_fac2_3(+(x, 1)) <=> s(gen_s:0':times:cons_p:cons_fac2_3(x)) The following defined symbols remain to be analysed: fac, encArg They will be analysed ascendingly in the following order: fac < encArg ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: Innermost TRS: Rules: p(s(x)) -> x fac(0') -> s(0') fac(s(x)) -> times(s(x), fac(p(s(x)))) encArg(s(x_1)) -> s(encArg(x_1)) encArg(0') -> 0' encArg(times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encArg(cons_fac(x_1)) -> fac(encArg(x_1)) encode_p(x_1) -> p(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_fac(x_1) -> fac(encArg(x_1)) encode_0 -> 0' encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) Types: p :: s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac s :: s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac fac :: s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac 0' :: s:0':times:cons_p:cons_fac times :: s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac encArg :: s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac cons_p :: s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac cons_fac :: s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac encode_p :: s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac encode_s :: s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac encode_fac :: s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac encode_0 :: s:0':times:cons_p:cons_fac encode_times :: s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac -> s:0':times:cons_p:cons_fac hole_s:0':times:cons_p:cons_fac1_3 :: s:0':times:cons_p:cons_fac gen_s:0':times:cons_p:cons_fac2_3 :: Nat -> s:0':times:cons_p:cons_fac Lemmas: fac(gen_s:0':times:cons_p:cons_fac2_3(n4_3)) -> *3_3, rt in Omega(n4_3) Generator Equations: gen_s:0':times:cons_p:cons_fac2_3(0) <=> 0' gen_s:0':times:cons_p:cons_fac2_3(+(x, 1)) <=> s(gen_s:0':times:cons_p:cons_fac2_3(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_s:0':times:cons_p:cons_fac2_3(n21996_3)) -> gen_s:0':times:cons_p:cons_fac2_3(n21996_3), rt in Omega(0) Induction Base: encArg(gen_s:0':times:cons_p:cons_fac2_3(0)) ->_R^Omega(0) 0' Induction Step: encArg(gen_s:0':times:cons_p:cons_fac2_3(+(n21996_3, 1))) ->_R^Omega(0) s(encArg(gen_s:0':times:cons_p:cons_fac2_3(n21996_3))) ->_IH s(gen_s:0':times:cons_p:cons_fac2_3(c21997_3)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (18) BOUNDS(1, INF)