WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 58 ms] (4) CpxRelTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (6) CdtProblem (7) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (8) CdtProblem (9) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (12) CdtProblem (13) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CdtProblem (15) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 86 ms] (16) CdtProblem (17) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (18) BOUNDS(1, 1) (19) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (20) TRS for Loop Detection (21) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (22) BEST (23) proven lower bound (24) LowerBoundPropagationProof [FINISHED, 0 ms] (25) BOUNDS(n^1, INF) (26) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: a(x1) -> x1 a(a(b(x1))) -> c(c(b(a(x1)))) b(c(x1)) -> a(b(x1)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: a(x1) -> x1 a(a(b(x1))) -> c(c(b(a(x1)))) b(c(x1)) -> a(b(x1)) The (relative) TRS S consists of the following rules: encArg(c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: a(x1) -> x1 a(a(b(x1))) -> c(c(b(a(x1)))) b(c(x1)) -> a(b(x1)) The (relative) TRS S consists of the following rules: encArg(c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0)) -> c(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_b(z0)) -> b(encArg(z0)) encode_a(z0) -> a(encArg(z0)) encode_b(z0) -> b(encArg(z0)) encode_c(z0) -> c(encArg(z0)) a(z0) -> z0 a(a(b(z0))) -> c(c(b(a(z0)))) b(c(z0)) -> a(b(z0)) Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0)) -> c3(B(encArg(z0)), ENCARG(z0)) ENCODE_A(z0) -> c4(A(encArg(z0)), ENCARG(z0)) ENCODE_B(z0) -> c5(B(encArg(z0)), ENCARG(z0)) ENCODE_C(z0) -> c6(ENCARG(z0)) A(z0) -> c7 A(a(b(z0))) -> c8(B(a(z0)), A(z0)) B(c(z0)) -> c9(A(b(z0)), B(z0)) S tuples: A(z0) -> c7 A(a(b(z0))) -> c8(B(a(z0)), A(z0)) B(c(z0)) -> c9(A(b(z0)), B(z0)) K tuples:none Defined Rule Symbols: a_1, b_1, encArg_1, encode_a_1, encode_b_1, encode_c_1 Defined Pair Symbols: ENCARG_1, ENCODE_A_1, ENCODE_B_1, ENCODE_C_1, A_1, B_1 Compound Symbols: c1_1, c2_2, c3_2, c4_2, c5_2, c6_1, c7, c8_2, c9_2 ---------------------------------------- (7) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 2 leading nodes: ENCODE_C(z0) -> c6(ENCARG(z0)) A(a(b(z0))) -> c8(B(a(z0)), A(z0)) ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0)) -> c(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_b(z0)) -> b(encArg(z0)) encode_a(z0) -> a(encArg(z0)) encode_b(z0) -> b(encArg(z0)) encode_c(z0) -> c(encArg(z0)) a(z0) -> z0 a(a(b(z0))) -> c(c(b(a(z0)))) b(c(z0)) -> a(b(z0)) Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0)) -> c3(B(encArg(z0)), ENCARG(z0)) ENCODE_A(z0) -> c4(A(encArg(z0)), ENCARG(z0)) ENCODE_B(z0) -> c5(B(encArg(z0)), ENCARG(z0)) A(z0) -> c7 B(c(z0)) -> c9(A(b(z0)), B(z0)) S tuples: A(z0) -> c7 B(c(z0)) -> c9(A(b(z0)), B(z0)) K tuples:none Defined Rule Symbols: a_1, b_1, encArg_1, encode_a_1, encode_b_1, encode_c_1 Defined Pair Symbols: ENCARG_1, ENCODE_A_1, ENCODE_B_1, A_1, B_1 Compound Symbols: c1_1, c2_2, c3_2, c4_2, c5_2, c7, c9_2 ---------------------------------------- (9) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0)) -> c(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_b(z0)) -> b(encArg(z0)) encode_a(z0) -> a(encArg(z0)) encode_b(z0) -> b(encArg(z0)) encode_c(z0) -> c(encArg(z0)) a(z0) -> z0 a(a(b(z0))) -> c(c(b(a(z0)))) b(c(z0)) -> a(b(z0)) Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0)) -> c3(B(encArg(z0)), ENCARG(z0)) A(z0) -> c7 B(c(z0)) -> c9(A(b(z0)), B(z0)) ENCODE_A(z0) -> c6(A(encArg(z0))) ENCODE_A(z0) -> c6(ENCARG(z0)) ENCODE_B(z0) -> c6(B(encArg(z0))) ENCODE_B(z0) -> c6(ENCARG(z0)) S tuples: A(z0) -> c7 B(c(z0)) -> c9(A(b(z0)), B(z0)) K tuples:none Defined Rule Symbols: a_1, b_1, encArg_1, encode_a_1, encode_b_1, encode_c_1 Defined Pair Symbols: ENCARG_1, A_1, B_1, ENCODE_A_1, ENCODE_B_1 Compound Symbols: c1_1, c2_2, c3_2, c7, c9_2, c6_1 ---------------------------------------- (11) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 2 leading nodes: ENCODE_A(z0) -> c6(ENCARG(z0)) ENCODE_B(z0) -> c6(ENCARG(z0)) ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0)) -> c(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_b(z0)) -> b(encArg(z0)) encode_a(z0) -> a(encArg(z0)) encode_b(z0) -> b(encArg(z0)) encode_c(z0) -> c(encArg(z0)) a(z0) -> z0 a(a(b(z0))) -> c(c(b(a(z0)))) b(c(z0)) -> a(b(z0)) Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0)) -> c3(B(encArg(z0)), ENCARG(z0)) A(z0) -> c7 B(c(z0)) -> c9(A(b(z0)), B(z0)) ENCODE_A(z0) -> c6(A(encArg(z0))) ENCODE_B(z0) -> c6(B(encArg(z0))) S tuples: A(z0) -> c7 B(c(z0)) -> c9(A(b(z0)), B(z0)) K tuples:none Defined Rule Symbols: a_1, b_1, encArg_1, encode_a_1, encode_b_1, encode_c_1 Defined Pair Symbols: ENCARG_1, A_1, B_1, ENCODE_A_1, ENCODE_B_1 Compound Symbols: c1_1, c2_2, c3_2, c7, c9_2, c6_1 ---------------------------------------- (13) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_a(z0) -> a(encArg(z0)) encode_b(z0) -> b(encArg(z0)) encode_c(z0) -> c(encArg(z0)) a(a(b(z0))) -> c(c(b(a(z0)))) ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0)) -> c(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_b(z0)) -> b(encArg(z0)) a(z0) -> z0 b(c(z0)) -> a(b(z0)) Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0)) -> c3(B(encArg(z0)), ENCARG(z0)) A(z0) -> c7 B(c(z0)) -> c9(A(b(z0)), B(z0)) ENCODE_A(z0) -> c6(A(encArg(z0))) ENCODE_B(z0) -> c6(B(encArg(z0))) S tuples: A(z0) -> c7 B(c(z0)) -> c9(A(b(z0)), B(z0)) K tuples:none Defined Rule Symbols: encArg_1, a_1, b_1 Defined Pair Symbols: ENCARG_1, A_1, B_1, ENCODE_A_1, ENCODE_B_1 Compound Symbols: c1_1, c2_2, c3_2, c7, c9_2, c6_1 ---------------------------------------- (15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. A(z0) -> c7 B(c(z0)) -> c9(A(b(z0)), B(z0)) We considered the (Usable) Rules: a(z0) -> z0 encArg(c(z0)) -> c(encArg(z0)) b(c(z0)) -> a(b(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_b(z0)) -> b(encArg(z0)) And the Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0)) -> c3(B(encArg(z0)), ENCARG(z0)) A(z0) -> c7 B(c(z0)) -> c9(A(b(z0)), B(z0)) ENCODE_A(z0) -> c6(A(encArg(z0))) ENCODE_B(z0) -> c6(B(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(A(x_1)) = [1] POL(B(x_1)) = [2]x_1 POL(ENCARG(x_1)) = x_1^2 POL(ENCODE_A(x_1)) = [1] + [2]x_1 + x_1^2 POL(ENCODE_B(x_1)) = [1] + [2]x_1 + [2]x_1^2 POL(a(x_1)) = x_1 POL(b(x_1)) = [2] + x_1 POL(c(x_1)) = [2] + x_1 POL(c1(x_1)) = x_1 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c6(x_1)) = x_1 POL(c7) = 0 POL(c9(x_1, x_2)) = x_1 + x_2 POL(cons_a(x_1)) = [2] + x_1 POL(cons_b(x_1)) = [2] + x_1 POL(encArg(x_1)) = x_1 ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0)) -> c(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_b(z0)) -> b(encArg(z0)) a(z0) -> z0 b(c(z0)) -> a(b(z0)) Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0)) -> c3(B(encArg(z0)), ENCARG(z0)) A(z0) -> c7 B(c(z0)) -> c9(A(b(z0)), B(z0)) ENCODE_A(z0) -> c6(A(encArg(z0))) ENCODE_B(z0) -> c6(B(encArg(z0))) S tuples:none K tuples: A(z0) -> c7 B(c(z0)) -> c9(A(b(z0)), B(z0)) Defined Rule Symbols: encArg_1, a_1, b_1 Defined Pair Symbols: ENCARG_1, A_1, B_1, ENCODE_A_1, ENCODE_B_1 Compound Symbols: c1_1, c2_2, c3_2, c7, c9_2, c6_1 ---------------------------------------- (17) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (18) BOUNDS(1, 1) ---------------------------------------- (19) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (20) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: a(x1) -> x1 a(a(b(x1))) -> c(c(b(a(x1)))) b(c(x1)) -> a(b(x1)) The (relative) TRS S consists of the following rules: encArg(c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (21) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence b(c(x1)) ->^+ a(b(x1)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [x1 / c(x1)]. The result substitution is [ ]. ---------------------------------------- (22) Complex Obligation (BEST) ---------------------------------------- (23) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: a(x1) -> x1 a(a(b(x1))) -> c(c(b(a(x1)))) b(c(x1)) -> a(b(x1)) The (relative) TRS S consists of the following rules: encArg(c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (24) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (25) BOUNDS(n^1, INF) ---------------------------------------- (26) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: a(x1) -> x1 a(a(b(x1))) -> c(c(b(a(x1)))) b(c(x1)) -> a(b(x1)) The (relative) TRS S consists of the following rules: encArg(c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) Rewrite Strategy: INNERMOST