WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 624 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: length(nil) -> 0 length(cons(x, l)) -> s(length(l)) lt(x, 0) -> false lt(0, s(y)) -> true lt(s(x), s(y)) -> lt(x, y) head(cons(x, l)) -> x head(nil) -> undefined tail(nil) -> nil tail(cons(x, l)) -> l reverse(l) -> rev(0, l, nil, l) rev(x, l, accu, orig) -> if(lt(x, length(orig)), x, l, accu, orig) if(true, x, l, accu, orig) -> rev(s(x), tail(l), cons(head(l), accu), orig) if(false, x, l, accu, orig) -> accu S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(nil) -> nil encArg(0) -> 0 encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(false) -> false encArg(true) -> true encArg(undefined) -> undefined encArg(cons_length(x_1)) -> length(encArg(x_1)) encArg(cons_lt(x_1, x_2)) -> lt(encArg(x_1), encArg(x_2)) encArg(cons_head(x_1)) -> head(encArg(x_1)) encArg(cons_tail(x_1)) -> tail(encArg(x_1)) encArg(cons_reverse(x_1)) -> reverse(encArg(x_1)) encArg(cons_rev(x_1, x_2, x_3, x_4)) -> rev(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encArg(cons_if(x_1, x_2, x_3, x_4, x_5)) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) encode_length(x_1) -> length(encArg(x_1)) encode_nil -> nil encode_0 -> 0 encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_lt(x_1, x_2) -> lt(encArg(x_1), encArg(x_2)) encode_false -> false encode_true -> true encode_head(x_1) -> head(encArg(x_1)) encode_undefined -> undefined encode_tail(x_1) -> tail(encArg(x_1)) encode_reverse(x_1) -> reverse(encArg(x_1)) encode_rev(x_1, x_2, x_3, x_4) -> rev(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_if(x_1, x_2, x_3, x_4, x_5) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: length(nil) -> 0 length(cons(x, l)) -> s(length(l)) lt(x, 0) -> false lt(0, s(y)) -> true lt(s(x), s(y)) -> lt(x, y) head(cons(x, l)) -> x head(nil) -> undefined tail(nil) -> nil tail(cons(x, l)) -> l reverse(l) -> rev(0, l, nil, l) rev(x, l, accu, orig) -> if(lt(x, length(orig)), x, l, accu, orig) if(true, x, l, accu, orig) -> rev(s(x), tail(l), cons(head(l), accu), orig) if(false, x, l, accu, orig) -> accu The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(0) -> 0 encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(false) -> false encArg(true) -> true encArg(undefined) -> undefined encArg(cons_length(x_1)) -> length(encArg(x_1)) encArg(cons_lt(x_1, x_2)) -> lt(encArg(x_1), encArg(x_2)) encArg(cons_head(x_1)) -> head(encArg(x_1)) encArg(cons_tail(x_1)) -> tail(encArg(x_1)) encArg(cons_reverse(x_1)) -> reverse(encArg(x_1)) encArg(cons_rev(x_1, x_2, x_3, x_4)) -> rev(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encArg(cons_if(x_1, x_2, x_3, x_4, x_5)) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) encode_length(x_1) -> length(encArg(x_1)) encode_nil -> nil encode_0 -> 0 encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_lt(x_1, x_2) -> lt(encArg(x_1), encArg(x_2)) encode_false -> false encode_true -> true encode_head(x_1) -> head(encArg(x_1)) encode_undefined -> undefined encode_tail(x_1) -> tail(encArg(x_1)) encode_reverse(x_1) -> reverse(encArg(x_1)) encode_rev(x_1, x_2, x_3, x_4) -> rev(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_if(x_1, x_2, x_3, x_4, x_5) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: length(nil) -> 0 length(cons(x, l)) -> s(length(l)) lt(x, 0) -> false lt(0, s(y)) -> true lt(s(x), s(y)) -> lt(x, y) head(cons(x, l)) -> x head(nil) -> undefined tail(nil) -> nil tail(cons(x, l)) -> l reverse(l) -> rev(0, l, nil, l) rev(x, l, accu, orig) -> if(lt(x, length(orig)), x, l, accu, orig) if(true, x, l, accu, orig) -> rev(s(x), tail(l), cons(head(l), accu), orig) if(false, x, l, accu, orig) -> accu The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(0) -> 0 encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(false) -> false encArg(true) -> true encArg(undefined) -> undefined encArg(cons_length(x_1)) -> length(encArg(x_1)) encArg(cons_lt(x_1, x_2)) -> lt(encArg(x_1), encArg(x_2)) encArg(cons_head(x_1)) -> head(encArg(x_1)) encArg(cons_tail(x_1)) -> tail(encArg(x_1)) encArg(cons_reverse(x_1)) -> reverse(encArg(x_1)) encArg(cons_rev(x_1, x_2, x_3, x_4)) -> rev(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encArg(cons_if(x_1, x_2, x_3, x_4, x_5)) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) encode_length(x_1) -> length(encArg(x_1)) encode_nil -> nil encode_0 -> 0 encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_lt(x_1, x_2) -> lt(encArg(x_1), encArg(x_2)) encode_false -> false encode_true -> true encode_head(x_1) -> head(encArg(x_1)) encode_undefined -> undefined encode_tail(x_1) -> tail(encArg(x_1)) encode_reverse(x_1) -> reverse(encArg(x_1)) encode_rev(x_1, x_2, x_3, x_4) -> rev(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_if(x_1, x_2, x_3, x_4, x_5) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: length(nil) -> 0 length(cons(x, l)) -> s(length(l)) lt(x, 0) -> false lt(0, s(y)) -> true lt(s(x), s(y)) -> lt(x, y) head(cons(x, l)) -> x head(nil) -> undefined tail(nil) -> nil tail(cons(x, l)) -> l reverse(l) -> rev(0, l, nil, l) rev(x, l, accu, orig) -> if(lt(x, length(orig)), x, l, accu, orig) if(true, x, l, accu, orig) -> rev(s(x), tail(l), cons(head(l), accu), orig) if(false, x, l, accu, orig) -> accu The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(0) -> 0 encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(false) -> false encArg(true) -> true encArg(undefined) -> undefined encArg(cons_length(x_1)) -> length(encArg(x_1)) encArg(cons_lt(x_1, x_2)) -> lt(encArg(x_1), encArg(x_2)) encArg(cons_head(x_1)) -> head(encArg(x_1)) encArg(cons_tail(x_1)) -> tail(encArg(x_1)) encArg(cons_reverse(x_1)) -> reverse(encArg(x_1)) encArg(cons_rev(x_1, x_2, x_3, x_4)) -> rev(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encArg(cons_if(x_1, x_2, x_3, x_4, x_5)) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) encode_length(x_1) -> length(encArg(x_1)) encode_nil -> nil encode_0 -> 0 encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_lt(x_1, x_2) -> lt(encArg(x_1), encArg(x_2)) encode_false -> false encode_true -> true encode_head(x_1) -> head(encArg(x_1)) encode_undefined -> undefined encode_tail(x_1) -> tail(encArg(x_1)) encode_reverse(x_1) -> reverse(encArg(x_1)) encode_rev(x_1, x_2, x_3, x_4) -> rev(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_if(x_1, x_2, x_3, x_4, x_5) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence lt(s(x), s(y)) ->^+ lt(x, y) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [x / s(x), y / s(y)]. The result substitution is [ ]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: length(nil) -> 0 length(cons(x, l)) -> s(length(l)) lt(x, 0) -> false lt(0, s(y)) -> true lt(s(x), s(y)) -> lt(x, y) head(cons(x, l)) -> x head(nil) -> undefined tail(nil) -> nil tail(cons(x, l)) -> l reverse(l) -> rev(0, l, nil, l) rev(x, l, accu, orig) -> if(lt(x, length(orig)), x, l, accu, orig) if(true, x, l, accu, orig) -> rev(s(x), tail(l), cons(head(l), accu), orig) if(false, x, l, accu, orig) -> accu The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(0) -> 0 encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(false) -> false encArg(true) -> true encArg(undefined) -> undefined encArg(cons_length(x_1)) -> length(encArg(x_1)) encArg(cons_lt(x_1, x_2)) -> lt(encArg(x_1), encArg(x_2)) encArg(cons_head(x_1)) -> head(encArg(x_1)) encArg(cons_tail(x_1)) -> tail(encArg(x_1)) encArg(cons_reverse(x_1)) -> reverse(encArg(x_1)) encArg(cons_rev(x_1, x_2, x_3, x_4)) -> rev(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encArg(cons_if(x_1, x_2, x_3, x_4, x_5)) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) encode_length(x_1) -> length(encArg(x_1)) encode_nil -> nil encode_0 -> 0 encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_lt(x_1, x_2) -> lt(encArg(x_1), encArg(x_2)) encode_false -> false encode_true -> true encode_head(x_1) -> head(encArg(x_1)) encode_undefined -> undefined encode_tail(x_1) -> tail(encArg(x_1)) encode_reverse(x_1) -> reverse(encArg(x_1)) encode_rev(x_1, x_2, x_3, x_4) -> rev(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_if(x_1, x_2, x_3, x_4, x_5) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) Rewrite Strategy: INNERMOST ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: length(nil) -> 0 length(cons(x, l)) -> s(length(l)) lt(x, 0) -> false lt(0, s(y)) -> true lt(s(x), s(y)) -> lt(x, y) head(cons(x, l)) -> x head(nil) -> undefined tail(nil) -> nil tail(cons(x, l)) -> l reverse(l) -> rev(0, l, nil, l) rev(x, l, accu, orig) -> if(lt(x, length(orig)), x, l, accu, orig) if(true, x, l, accu, orig) -> rev(s(x), tail(l), cons(head(l), accu), orig) if(false, x, l, accu, orig) -> accu The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(0) -> 0 encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(false) -> false encArg(true) -> true encArg(undefined) -> undefined encArg(cons_length(x_1)) -> length(encArg(x_1)) encArg(cons_lt(x_1, x_2)) -> lt(encArg(x_1), encArg(x_2)) encArg(cons_head(x_1)) -> head(encArg(x_1)) encArg(cons_tail(x_1)) -> tail(encArg(x_1)) encArg(cons_reverse(x_1)) -> reverse(encArg(x_1)) encArg(cons_rev(x_1, x_2, x_3, x_4)) -> rev(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encArg(cons_if(x_1, x_2, x_3, x_4, x_5)) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) encode_length(x_1) -> length(encArg(x_1)) encode_nil -> nil encode_0 -> 0 encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_lt(x_1, x_2) -> lt(encArg(x_1), encArg(x_2)) encode_false -> false encode_true -> true encode_head(x_1) -> head(encArg(x_1)) encode_undefined -> undefined encode_tail(x_1) -> tail(encArg(x_1)) encode_reverse(x_1) -> reverse(encArg(x_1)) encode_rev(x_1, x_2, x_3, x_4) -> rev(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_if(x_1, x_2, x_3, x_4, x_5) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) Rewrite Strategy: INNERMOST