WORST_CASE(?, O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^2). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 181 ms] (4) CpxRelTRS (5) NonCtorToCtorProof [UPPER BOUND(ID), 0 ms] (6) CpxRelTRS (7) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxWeightedTrs (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxTypedWeightedTrs (11) CompletionProof [UPPER BOUND(ID), 0 ms] (12) CpxTypedWeightedCompleteTrs (13) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxTypedWeightedCompleteTrs (15) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (16) CpxRNTS (17) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxRNTS (19) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (20) CpxRNTS (21) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 250 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 5 ms] (26) CpxRNTS (27) ResultPropagationProof [UPPER BOUND(ID), 1 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 445 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 125 ms] (32) CpxRNTS (33) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 275 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 337 ms] (38) CpxRNTS (39) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (40) CpxRNTS (41) IntTrsBoundProof [UPPER BOUND(ID), 211 ms] (42) CpxRNTS (43) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (44) CpxRNTS (45) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (46) CpxRNTS (47) IntTrsBoundProof [UPPER BOUND(ID), 232 ms] (48) CpxRNTS (49) IntTrsBoundProof [UPPER BOUND(ID), 5 ms] (50) CpxRNTS (51) FinalProof [FINISHED, 0 ms] (52) BOUNDS(1, n^2) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(g(x), x, y) -> f(y, y, g(y)) g(g(x)) -> g(x) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1) -> g(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(g(x), x, y) -> f(y, y, g(y)) g(g(x)) -> g(x) The (relative) TRS S consists of the following rules: encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1) -> g(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(g(x), x, y) -> f(y, y, g(y)) g(g(x)) -> g(x) The (relative) TRS S consists of the following rules: encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1) -> g(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) NonCtorToCtorProof (UPPER BOUND(ID)) transformed non-ctor to ctor-system ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(c_g(x), x, y) -> f(y, y, g(y)) g(c_g(x)) -> g(x) The (relative) TRS S consists of the following rules: encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1) -> g(encArg(x_1)) g(x0) -> c_g(x0) Rewrite Strategy: INNERMOST ---------------------------------------- (7) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(c_g(x), x, y) -> f(y, y, g(y)) [1] g(c_g(x)) -> g(x) [1] encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encArg(cons_g(x_1)) -> g(encArg(x_1)) [0] encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_g(x_1) -> g(encArg(x_1)) [0] g(x0) -> c_g(x0) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(c_g(x), x, y) -> f(y, y, g(y)) [1] g(c_g(x)) -> g(x) [1] encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encArg(cons_g(x_1)) -> g(encArg(x_1)) [0] encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_g(x_1) -> g(encArg(x_1)) [0] g(x0) -> c_g(x0) [0] The TRS has the following type information: f :: c_g -> c_g -> c_g -> c_g c_g :: c_g -> c_g g :: c_g -> c_g encArg :: cons_f:cons_g -> c_g cons_f :: cons_f:cons_g -> cons_f:cons_g -> cons_f:cons_g -> cons_f:cons_g cons_g :: cons_f:cons_g -> cons_f:cons_g encode_f :: cons_f:cons_g -> cons_f:cons_g -> cons_f:cons_g -> c_g encode_g :: cons_f:cons_g -> c_g Rewrite Strategy: INNERMOST ---------------------------------------- (11) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: f_3 encArg_1 encode_f_3 encode_g_1 g_1 Due to the following rules being added: encArg(v0) -> const [0] encode_f(v0, v1, v2) -> const [0] encode_g(v0) -> const [0] g(v0) -> const [0] f(v0, v1, v2) -> const [0] And the following fresh constants: const, const1 ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(c_g(x), x, y) -> f(y, y, g(y)) [1] g(c_g(x)) -> g(x) [1] encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encArg(cons_g(x_1)) -> g(encArg(x_1)) [0] encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_g(x_1) -> g(encArg(x_1)) [0] g(x0) -> c_g(x0) [0] encArg(v0) -> const [0] encode_f(v0, v1, v2) -> const [0] encode_g(v0) -> const [0] g(v0) -> const [0] f(v0, v1, v2) -> const [0] The TRS has the following type information: f :: c_g:const -> c_g:const -> c_g:const -> c_g:const c_g :: c_g:const -> c_g:const g :: c_g:const -> c_g:const encArg :: cons_f:cons_g -> c_g:const cons_f :: cons_f:cons_g -> cons_f:cons_g -> cons_f:cons_g -> cons_f:cons_g cons_g :: cons_f:cons_g -> cons_f:cons_g encode_f :: cons_f:cons_g -> cons_f:cons_g -> cons_f:cons_g -> c_g:const encode_g :: cons_f:cons_g -> c_g:const const :: c_g:const const1 :: cons_f:cons_g Rewrite Strategy: INNERMOST ---------------------------------------- (13) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (14) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(c_g(x), x, c_g(x')) -> f(c_g(x'), c_g(x'), g(x')) [2] f(c_g(x), x, y) -> f(y, y, c_g(y)) [1] f(c_g(x), x, y) -> f(y, y, const) [1] g(c_g(x)) -> g(x) [1] encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encArg(cons_g(cons_f(x_125, x_212, x_312))) -> g(f(encArg(x_125), encArg(x_212), encArg(x_312))) [0] encArg(cons_g(cons_g(x_126))) -> g(g(encArg(x_126))) [0] encArg(cons_g(x_1)) -> g(const) [0] encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_g(cons_f(x_153, x_226, x_326)) -> g(f(encArg(x_153), encArg(x_226), encArg(x_326))) [0] encode_g(cons_g(x_154)) -> g(g(encArg(x_154))) [0] encode_g(x_1) -> g(const) [0] g(x0) -> c_g(x0) [0] encArg(v0) -> const [0] encode_f(v0, v1, v2) -> const [0] encode_g(v0) -> const [0] g(v0) -> const [0] f(v0, v1, v2) -> const [0] The TRS has the following type information: f :: c_g:const -> c_g:const -> c_g:const -> c_g:const c_g :: c_g:const -> c_g:const g :: c_g:const -> c_g:const encArg :: cons_f:cons_g -> c_g:const cons_f :: cons_f:cons_g -> cons_f:cons_g -> cons_f:cons_g -> cons_f:cons_g cons_g :: cons_f:cons_g -> cons_f:cons_g encode_f :: cons_f:cons_g -> cons_f:cons_g -> cons_f:cons_g -> c_g:const encode_g :: cons_f:cons_g -> c_g:const const :: c_g:const const1 :: cons_f:cons_g Rewrite Strategy: INNERMOST ---------------------------------------- (15) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: const => 0 const1 => 0 ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> g(g(encArg(x_126))) :|: z = 1 + (1 + x_126), x_126 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_125), encArg(x_212), encArg(x_312))) :|: x_212 >= 0, x_312 >= 0, x_125 >= 0, z = 1 + (1 + x_125 + x_212 + x_312) encArg(z) -{ 0 }-> g(0) :|: z = 1 + x_1, x_1 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_f(z, z', z'') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, x_3 >= 0, x_2 >= 0, z = x_1, z' = x_2, z'' = x_3 encode_f(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 encode_g(z) -{ 0 }-> g(g(encArg(x_154))) :|: x_154 >= 0, z = 1 + x_154 encode_g(z) -{ 0 }-> g(f(encArg(x_153), encArg(x_226), encArg(x_326))) :|: x_226 >= 0, z = 1 + x_153 + x_226 + x_326, x_153 >= 0, x_326 >= 0 encode_g(z) -{ 0 }-> g(0) :|: x_1 >= 0, z = x_1 encode_g(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 f(z, z', z'') -{ 1 }-> f(y, y, 0) :|: z' = x, z'' = y, x >= 0, y >= 0, z = 1 + x f(z, z', z'') -{ 1 }-> f(y, y, 1 + y) :|: z' = x, z'' = y, x >= 0, y >= 0, z = 1 + x f(z, z', z'') -{ 2 }-> f(1 + x', 1 + x', g(x')) :|: z' = x, z'' = 1 + x', x >= 0, x' >= 0, z = 1 + x f(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 g(z) -{ 1 }-> g(x) :|: x >= 0, z = 1 + x g(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 g(z) -{ 0 }-> 1 + x0 :|: z = x0, x0 >= 0 ---------------------------------------- (17) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_125), encArg(x_212), encArg(x_312))) :|: x_212 >= 0, x_312 >= 0, x_125 >= 0, z = 1 + (1 + x_125 + x_212 + x_312) encArg(z) -{ 0 }-> g(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_153), encArg(x_226), encArg(x_326))) :|: x_226 >= 0, z = 1 + x_153 + x_226 + x_326, x_153 >= 0, x_326 >= 0 encode_g(z) -{ 0 }-> g(0) :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 f(z, z', z'') -{ 1 }-> f(z'', z'', 0) :|: z' >= 0, z'' >= 0, z = 1 + z' f(z, z', z'') -{ 1 }-> f(z'', z'', 1 + z'') :|: z' >= 0, z'' >= 0, z = 1 + z' f(z, z', z'') -{ 2 }-> f(1 + (z'' - 1), 1 + (z'' - 1), g(z'' - 1)) :|: z' >= 0, z'' - 1 >= 0, z = 1 + z' f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z) -{ 1 }-> g(z - 1) :|: z - 1 >= 0 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 ---------------------------------------- (19) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { g } { f } { encArg } { encode_f } { encode_g } ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_125), encArg(x_212), encArg(x_312))) :|: x_212 >= 0, x_312 >= 0, x_125 >= 0, z = 1 + (1 + x_125 + x_212 + x_312) encArg(z) -{ 0 }-> g(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_153), encArg(x_226), encArg(x_326))) :|: x_226 >= 0, z = 1 + x_153 + x_226 + x_326, x_153 >= 0, x_326 >= 0 encode_g(z) -{ 0 }-> g(0) :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 f(z, z', z'') -{ 1 }-> f(z'', z'', 0) :|: z' >= 0, z'' >= 0, z = 1 + z' f(z, z', z'') -{ 1 }-> f(z'', z'', 1 + z'') :|: z' >= 0, z'' >= 0, z = 1 + z' f(z, z', z'') -{ 2 }-> f(1 + (z'' - 1), 1 + (z'' - 1), g(z'' - 1)) :|: z' >= 0, z'' - 1 >= 0, z = 1 + z' f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z) -{ 1 }-> g(z - 1) :|: z - 1 >= 0 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {g}, {f}, {encArg}, {encode_f}, {encode_g} ---------------------------------------- (21) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_125), encArg(x_212), encArg(x_312))) :|: x_212 >= 0, x_312 >= 0, x_125 >= 0, z = 1 + (1 + x_125 + x_212 + x_312) encArg(z) -{ 0 }-> g(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_153), encArg(x_226), encArg(x_326))) :|: x_226 >= 0, z = 1 + x_153 + x_226 + x_326, x_153 >= 0, x_326 >= 0 encode_g(z) -{ 0 }-> g(0) :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 f(z, z', z'') -{ 1 }-> f(z'', z'', 0) :|: z' >= 0, z'' >= 0, z = 1 + z' f(z, z', z'') -{ 1 }-> f(z'', z'', 1 + z'') :|: z' >= 0, z'' >= 0, z = 1 + z' f(z, z', z'') -{ 2 }-> f(1 + (z'' - 1), 1 + (z'' - 1), g(z'' - 1)) :|: z' >= 0, z'' - 1 >= 0, z = 1 + z' f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z) -{ 1 }-> g(z - 1) :|: z - 1 >= 0 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {g}, {f}, {encArg}, {encode_f}, {encode_g} ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: g after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_125), encArg(x_212), encArg(x_312))) :|: x_212 >= 0, x_312 >= 0, x_125 >= 0, z = 1 + (1 + x_125 + x_212 + x_312) encArg(z) -{ 0 }-> g(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_153), encArg(x_226), encArg(x_326))) :|: x_226 >= 0, z = 1 + x_153 + x_226 + x_326, x_153 >= 0, x_326 >= 0 encode_g(z) -{ 0 }-> g(0) :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 f(z, z', z'') -{ 1 }-> f(z'', z'', 0) :|: z' >= 0, z'' >= 0, z = 1 + z' f(z, z', z'') -{ 1 }-> f(z'', z'', 1 + z'') :|: z' >= 0, z'' >= 0, z = 1 + z' f(z, z', z'') -{ 2 }-> f(1 + (z'' - 1), 1 + (z'' - 1), g(z'' - 1)) :|: z' >= 0, z'' - 1 >= 0, z = 1 + z' f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z) -{ 1 }-> g(z - 1) :|: z - 1 >= 0 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {g}, {f}, {encArg}, {encode_f}, {encode_g} Previous analysis results are: g: runtime: ?, size: O(n^1) [1 + z] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: g after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_125), encArg(x_212), encArg(x_312))) :|: x_212 >= 0, x_312 >= 0, x_125 >= 0, z = 1 + (1 + x_125 + x_212 + x_312) encArg(z) -{ 0 }-> g(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_153), encArg(x_226), encArg(x_326))) :|: x_226 >= 0, z = 1 + x_153 + x_226 + x_326, x_153 >= 0, x_326 >= 0 encode_g(z) -{ 0 }-> g(0) :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 f(z, z', z'') -{ 1 }-> f(z'', z'', 0) :|: z' >= 0, z'' >= 0, z = 1 + z' f(z, z', z'') -{ 1 }-> f(z'', z'', 1 + z'') :|: z' >= 0, z'' >= 0, z = 1 + z' f(z, z', z'') -{ 2 }-> f(1 + (z'' - 1), 1 + (z'' - 1), g(z'' - 1)) :|: z' >= 0, z'' - 1 >= 0, z = 1 + z' f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z) -{ 1 }-> g(z - 1) :|: z - 1 >= 0 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {f}, {encArg}, {encode_f}, {encode_g} Previous analysis results are: g: runtime: O(n^1) [z], size: O(n^1) [1 + z] ---------------------------------------- (27) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> s'' :|: s'' >= 0, s'' <= 0 + 1, z - 1 >= 0 encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_125), encArg(x_212), encArg(x_312))) :|: x_212 >= 0, x_312 >= 0, x_125 >= 0, z = 1 + (1 + x_125 + x_212 + x_312) encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> s1 :|: s1 >= 0, s1 <= 0 + 1, z >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_153), encArg(x_226), encArg(x_326))) :|: x_226 >= 0, z = 1 + x_153 + x_226 + x_326, x_153 >= 0, x_326 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 f(z, z', z'') -{ 1 }-> f(z'', z'', 0) :|: z' >= 0, z'' >= 0, z = 1 + z' f(z, z', z'') -{ 1 }-> f(z'', z'', 1 + z'') :|: z' >= 0, z'' >= 0, z = 1 + z' f(z, z', z'') -{ 1 + z'' }-> f(1 + (z'' - 1), 1 + (z'' - 1), s) :|: s >= 0, s <= z'' - 1 + 1, z' >= 0, z'' - 1 >= 0, z = 1 + z' f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z) -{ z }-> s' :|: s' >= 0, s' <= z - 1 + 1, z - 1 >= 0 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {f}, {encArg}, {encode_f}, {encode_g} Previous analysis results are: g: runtime: O(n^1) [z], size: O(n^1) [1 + z] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> s'' :|: s'' >= 0, s'' <= 0 + 1, z - 1 >= 0 encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_125), encArg(x_212), encArg(x_312))) :|: x_212 >= 0, x_312 >= 0, x_125 >= 0, z = 1 + (1 + x_125 + x_212 + x_312) encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> s1 :|: s1 >= 0, s1 <= 0 + 1, z >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_153), encArg(x_226), encArg(x_326))) :|: x_226 >= 0, z = 1 + x_153 + x_226 + x_326, x_153 >= 0, x_326 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 f(z, z', z'') -{ 1 }-> f(z'', z'', 0) :|: z' >= 0, z'' >= 0, z = 1 + z' f(z, z', z'') -{ 1 }-> f(z'', z'', 1 + z'') :|: z' >= 0, z'' >= 0, z = 1 + z' f(z, z', z'') -{ 1 + z'' }-> f(1 + (z'' - 1), 1 + (z'' - 1), s) :|: s >= 0, s <= z'' - 1 + 1, z' >= 0, z'' - 1 >= 0, z = 1 + z' f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z) -{ z }-> s' :|: s' >= 0, s' <= z - 1 + 1, z - 1 >= 0 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {f}, {encArg}, {encode_f}, {encode_g} Previous analysis results are: g: runtime: O(n^1) [z], size: O(n^1) [1 + z] f: runtime: ?, size: O(1) [0] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z'' ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> s'' :|: s'' >= 0, s'' <= 0 + 1, z - 1 >= 0 encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_125), encArg(x_212), encArg(x_312))) :|: x_212 >= 0, x_312 >= 0, x_125 >= 0, z = 1 + (1 + x_125 + x_212 + x_312) encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> s1 :|: s1 >= 0, s1 <= 0 + 1, z >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_153), encArg(x_226), encArg(x_326))) :|: x_226 >= 0, z = 1 + x_153 + x_226 + x_326, x_153 >= 0, x_326 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 f(z, z', z'') -{ 1 }-> f(z'', z'', 0) :|: z' >= 0, z'' >= 0, z = 1 + z' f(z, z', z'') -{ 1 }-> f(z'', z'', 1 + z'') :|: z' >= 0, z'' >= 0, z = 1 + z' f(z, z', z'') -{ 1 + z'' }-> f(1 + (z'' - 1), 1 + (z'' - 1), s) :|: s >= 0, s <= z'' - 1 + 1, z' >= 0, z'' - 1 >= 0, z = 1 + z' f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z) -{ z }-> s' :|: s' >= 0, s' <= z - 1 + 1, z - 1 >= 0 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encArg}, {encode_f}, {encode_g} Previous analysis results are: g: runtime: O(n^1) [z], size: O(n^1) [1 + z] f: runtime: O(n^1) [1 + z''], size: O(1) [0] ---------------------------------------- (33) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> s'' :|: s'' >= 0, s'' <= 0 + 1, z - 1 >= 0 encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_125), encArg(x_212), encArg(x_312))) :|: x_212 >= 0, x_312 >= 0, x_125 >= 0, z = 1 + (1 + x_125 + x_212 + x_312) encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> s1 :|: s1 >= 0, s1 <= 0 + 1, z >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_153), encArg(x_226), encArg(x_326))) :|: x_226 >= 0, z = 1 + x_153 + x_226 + x_326, x_153 >= 0, x_326 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 f(z, z', z'') -{ 2 + s + z'' }-> s2 :|: s2 >= 0, s2 <= 0, s >= 0, s <= z'' - 1 + 1, z' >= 0, z'' - 1 >= 0, z = 1 + z' f(z, z', z'') -{ 3 + z'' }-> s3 :|: s3 >= 0, s3 <= 0, z' >= 0, z'' >= 0, z = 1 + z' f(z, z', z'') -{ 2 }-> s4 :|: s4 >= 0, s4 <= 0, z' >= 0, z'' >= 0, z = 1 + z' f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z) -{ z }-> s' :|: s' >= 0, s' <= z - 1 + 1, z - 1 >= 0 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encArg}, {encode_f}, {encode_g} Previous analysis results are: g: runtime: O(n^1) [z], size: O(n^1) [1 + z] f: runtime: O(n^1) [1 + z''], size: O(1) [0] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> s'' :|: s'' >= 0, s'' <= 0 + 1, z - 1 >= 0 encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_125), encArg(x_212), encArg(x_312))) :|: x_212 >= 0, x_312 >= 0, x_125 >= 0, z = 1 + (1 + x_125 + x_212 + x_312) encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> s1 :|: s1 >= 0, s1 <= 0 + 1, z >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_153), encArg(x_226), encArg(x_326))) :|: x_226 >= 0, z = 1 + x_153 + x_226 + x_326, x_153 >= 0, x_326 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 f(z, z', z'') -{ 2 + s + z'' }-> s2 :|: s2 >= 0, s2 <= 0, s >= 0, s <= z'' - 1 + 1, z' >= 0, z'' - 1 >= 0, z = 1 + z' f(z, z', z'') -{ 3 + z'' }-> s3 :|: s3 >= 0, s3 <= 0, z' >= 0, z'' >= 0, z = 1 + z' f(z, z', z'') -{ 2 }-> s4 :|: s4 >= 0, s4 <= 0, z' >= 0, z'' >= 0, z = 1 + z' f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z) -{ z }-> s' :|: s' >= 0, s' <= z - 1 + 1, z - 1 >= 0 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encArg}, {encode_f}, {encode_g} Previous analysis results are: g: runtime: O(n^1) [z], size: O(n^1) [1 + z] f: runtime: O(n^1) [1 + z''], size: O(1) [0] encArg: runtime: ?, size: O(n^1) [z] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 3*z + 2*z^2 ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> s'' :|: s'' >= 0, s'' <= 0 + 1, z - 1 >= 0 encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_125), encArg(x_212), encArg(x_312))) :|: x_212 >= 0, x_312 >= 0, x_125 >= 0, z = 1 + (1 + x_125 + x_212 + x_312) encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> s1 :|: s1 >= 0, s1 <= 0 + 1, z >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_153), encArg(x_226), encArg(x_326))) :|: x_226 >= 0, z = 1 + x_153 + x_226 + x_326, x_153 >= 0, x_326 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 f(z, z', z'') -{ 2 + s + z'' }-> s2 :|: s2 >= 0, s2 <= 0, s >= 0, s <= z'' - 1 + 1, z' >= 0, z'' - 1 >= 0, z = 1 + z' f(z, z', z'') -{ 3 + z'' }-> s3 :|: s3 >= 0, s3 <= 0, z' >= 0, z'' >= 0, z = 1 + z' f(z, z', z'') -{ 2 }-> s4 :|: s4 >= 0, s4 <= 0, z' >= 0, z'' >= 0, z = 1 + z' f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z) -{ z }-> s' :|: s' >= 0, s' <= z - 1 + 1, z - 1 >= 0 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encode_f}, {encode_g} Previous analysis results are: g: runtime: O(n^1) [z], size: O(n^1) [1 + z] f: runtime: O(n^1) [1 + z''], size: O(1) [0] encArg: runtime: O(n^2) [3*z + 2*z^2], size: O(n^1) [z] ---------------------------------------- (39) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> s'' :|: s'' >= 0, s'' <= 0 + 1, z - 1 >= 0 encArg(z) -{ 1 + s11 + s12 + 3*x_125 + 2*x_125^2 + 3*x_212 + 2*x_212^2 + 3*x_312 + 2*x_312^2 }-> s13 :|: s9 >= 0, s9 <= x_125, s10 >= 0, s10 <= x_212, s11 >= 0, s11 <= x_312, s12 >= 0, s12 <= 0, s13 >= 0, s13 <= s12 + 1, x_212 >= 0, x_312 >= 0, x_125 >= 0, z = 1 + (1 + x_125 + x_212 + x_312) encArg(z) -{ 2 + s14 + s15 + -5*z + 2*z^2 }-> s16 :|: s14 >= 0, s14 <= z - 2, s15 >= 0, s15 <= s14 + 1, s16 >= 0, s16 <= s15 + 1, z - 2 >= 0 encArg(z) -{ 1 + s7 + 3*x_1 + 2*x_1^2 + 3*x_2 + 2*x_2^2 + 3*x_3 + 2*x_3^2 }-> s8 :|: s5 >= 0, s5 <= x_1, s6 >= 0, s6 <= x_2, s7 >= 0, s7 <= x_3, s8 >= 0, s8 <= 0, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z', z'') -{ 1 + s19 + 3*z + 2*z^2 + 3*z' + 2*z'^2 + 3*z'' + 2*z''^2 }-> s20 :|: s17 >= 0, s17 <= z, s18 >= 0, s18 <= z', s19 >= 0, s19 <= z'', s20 >= 0, s20 <= 0, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> s1 :|: s1 >= 0, s1 <= 0 + 1, z >= 0 encode_g(z) -{ 1 + s23 + s24 + 3*x_153 + 2*x_153^2 + 3*x_226 + 2*x_226^2 + 3*x_326 + 2*x_326^2 }-> s25 :|: s21 >= 0, s21 <= x_153, s22 >= 0, s22 <= x_226, s23 >= 0, s23 <= x_326, s24 >= 0, s24 <= 0, s25 >= 0, s25 <= s24 + 1, x_226 >= 0, z = 1 + x_153 + x_226 + x_326, x_153 >= 0, x_326 >= 0 encode_g(z) -{ -1 + s26 + s27 + -1*z + 2*z^2 }-> s28 :|: s26 >= 0, s26 <= z - 1, s27 >= 0, s27 <= s26 + 1, s28 >= 0, s28 <= s27 + 1, z - 1 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 f(z, z', z'') -{ 2 + s + z'' }-> s2 :|: s2 >= 0, s2 <= 0, s >= 0, s <= z'' - 1 + 1, z' >= 0, z'' - 1 >= 0, z = 1 + z' f(z, z', z'') -{ 3 + z'' }-> s3 :|: s3 >= 0, s3 <= 0, z' >= 0, z'' >= 0, z = 1 + z' f(z, z', z'') -{ 2 }-> s4 :|: s4 >= 0, s4 <= 0, z' >= 0, z'' >= 0, z = 1 + z' f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z) -{ z }-> s' :|: s' >= 0, s' <= z - 1 + 1, z - 1 >= 0 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encode_f}, {encode_g} Previous analysis results are: g: runtime: O(n^1) [z], size: O(n^1) [1 + z] f: runtime: O(n^1) [1 + z''], size: O(1) [0] encArg: runtime: O(n^2) [3*z + 2*z^2], size: O(n^1) [z] ---------------------------------------- (41) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_f after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> s'' :|: s'' >= 0, s'' <= 0 + 1, z - 1 >= 0 encArg(z) -{ 1 + s11 + s12 + 3*x_125 + 2*x_125^2 + 3*x_212 + 2*x_212^2 + 3*x_312 + 2*x_312^2 }-> s13 :|: s9 >= 0, s9 <= x_125, s10 >= 0, s10 <= x_212, s11 >= 0, s11 <= x_312, s12 >= 0, s12 <= 0, s13 >= 0, s13 <= s12 + 1, x_212 >= 0, x_312 >= 0, x_125 >= 0, z = 1 + (1 + x_125 + x_212 + x_312) encArg(z) -{ 2 + s14 + s15 + -5*z + 2*z^2 }-> s16 :|: s14 >= 0, s14 <= z - 2, s15 >= 0, s15 <= s14 + 1, s16 >= 0, s16 <= s15 + 1, z - 2 >= 0 encArg(z) -{ 1 + s7 + 3*x_1 + 2*x_1^2 + 3*x_2 + 2*x_2^2 + 3*x_3 + 2*x_3^2 }-> s8 :|: s5 >= 0, s5 <= x_1, s6 >= 0, s6 <= x_2, s7 >= 0, s7 <= x_3, s8 >= 0, s8 <= 0, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z', z'') -{ 1 + s19 + 3*z + 2*z^2 + 3*z' + 2*z'^2 + 3*z'' + 2*z''^2 }-> s20 :|: s17 >= 0, s17 <= z, s18 >= 0, s18 <= z', s19 >= 0, s19 <= z'', s20 >= 0, s20 <= 0, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> s1 :|: s1 >= 0, s1 <= 0 + 1, z >= 0 encode_g(z) -{ 1 + s23 + s24 + 3*x_153 + 2*x_153^2 + 3*x_226 + 2*x_226^2 + 3*x_326 + 2*x_326^2 }-> s25 :|: s21 >= 0, s21 <= x_153, s22 >= 0, s22 <= x_226, s23 >= 0, s23 <= x_326, s24 >= 0, s24 <= 0, s25 >= 0, s25 <= s24 + 1, x_226 >= 0, z = 1 + x_153 + x_226 + x_326, x_153 >= 0, x_326 >= 0 encode_g(z) -{ -1 + s26 + s27 + -1*z + 2*z^2 }-> s28 :|: s26 >= 0, s26 <= z - 1, s27 >= 0, s27 <= s26 + 1, s28 >= 0, s28 <= s27 + 1, z - 1 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 f(z, z', z'') -{ 2 + s + z'' }-> s2 :|: s2 >= 0, s2 <= 0, s >= 0, s <= z'' - 1 + 1, z' >= 0, z'' - 1 >= 0, z = 1 + z' f(z, z', z'') -{ 3 + z'' }-> s3 :|: s3 >= 0, s3 <= 0, z' >= 0, z'' >= 0, z = 1 + z' f(z, z', z'') -{ 2 }-> s4 :|: s4 >= 0, s4 <= 0, z' >= 0, z'' >= 0, z = 1 + z' f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z) -{ z }-> s' :|: s' >= 0, s' <= z - 1 + 1, z - 1 >= 0 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encode_f}, {encode_g} Previous analysis results are: g: runtime: O(n^1) [z], size: O(n^1) [1 + z] f: runtime: O(n^1) [1 + z''], size: O(1) [0] encArg: runtime: O(n^2) [3*z + 2*z^2], size: O(n^1) [z] encode_f: runtime: ?, size: O(1) [0] ---------------------------------------- (43) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_f after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 1 + 3*z + 2*z^2 + 3*z' + 2*z'^2 + 4*z'' + 2*z''^2 ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> s'' :|: s'' >= 0, s'' <= 0 + 1, z - 1 >= 0 encArg(z) -{ 1 + s11 + s12 + 3*x_125 + 2*x_125^2 + 3*x_212 + 2*x_212^2 + 3*x_312 + 2*x_312^2 }-> s13 :|: s9 >= 0, s9 <= x_125, s10 >= 0, s10 <= x_212, s11 >= 0, s11 <= x_312, s12 >= 0, s12 <= 0, s13 >= 0, s13 <= s12 + 1, x_212 >= 0, x_312 >= 0, x_125 >= 0, z = 1 + (1 + x_125 + x_212 + x_312) encArg(z) -{ 2 + s14 + s15 + -5*z + 2*z^2 }-> s16 :|: s14 >= 0, s14 <= z - 2, s15 >= 0, s15 <= s14 + 1, s16 >= 0, s16 <= s15 + 1, z - 2 >= 0 encArg(z) -{ 1 + s7 + 3*x_1 + 2*x_1^2 + 3*x_2 + 2*x_2^2 + 3*x_3 + 2*x_3^2 }-> s8 :|: s5 >= 0, s5 <= x_1, s6 >= 0, s6 <= x_2, s7 >= 0, s7 <= x_3, s8 >= 0, s8 <= 0, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z', z'') -{ 1 + s19 + 3*z + 2*z^2 + 3*z' + 2*z'^2 + 3*z'' + 2*z''^2 }-> s20 :|: s17 >= 0, s17 <= z, s18 >= 0, s18 <= z', s19 >= 0, s19 <= z'', s20 >= 0, s20 <= 0, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> s1 :|: s1 >= 0, s1 <= 0 + 1, z >= 0 encode_g(z) -{ 1 + s23 + s24 + 3*x_153 + 2*x_153^2 + 3*x_226 + 2*x_226^2 + 3*x_326 + 2*x_326^2 }-> s25 :|: s21 >= 0, s21 <= x_153, s22 >= 0, s22 <= x_226, s23 >= 0, s23 <= x_326, s24 >= 0, s24 <= 0, s25 >= 0, s25 <= s24 + 1, x_226 >= 0, z = 1 + x_153 + x_226 + x_326, x_153 >= 0, x_326 >= 0 encode_g(z) -{ -1 + s26 + s27 + -1*z + 2*z^2 }-> s28 :|: s26 >= 0, s26 <= z - 1, s27 >= 0, s27 <= s26 + 1, s28 >= 0, s28 <= s27 + 1, z - 1 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 f(z, z', z'') -{ 2 + s + z'' }-> s2 :|: s2 >= 0, s2 <= 0, s >= 0, s <= z'' - 1 + 1, z' >= 0, z'' - 1 >= 0, z = 1 + z' f(z, z', z'') -{ 3 + z'' }-> s3 :|: s3 >= 0, s3 <= 0, z' >= 0, z'' >= 0, z = 1 + z' f(z, z', z'') -{ 2 }-> s4 :|: s4 >= 0, s4 <= 0, z' >= 0, z'' >= 0, z = 1 + z' f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z) -{ z }-> s' :|: s' >= 0, s' <= z - 1 + 1, z - 1 >= 0 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encode_g} Previous analysis results are: g: runtime: O(n^1) [z], size: O(n^1) [1 + z] f: runtime: O(n^1) [1 + z''], size: O(1) [0] encArg: runtime: O(n^2) [3*z + 2*z^2], size: O(n^1) [z] encode_f: runtime: O(n^2) [1 + 3*z + 2*z^2 + 3*z' + 2*z'^2 + 4*z'' + 2*z''^2], size: O(1) [0] ---------------------------------------- (45) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> s'' :|: s'' >= 0, s'' <= 0 + 1, z - 1 >= 0 encArg(z) -{ 1 + s11 + s12 + 3*x_125 + 2*x_125^2 + 3*x_212 + 2*x_212^2 + 3*x_312 + 2*x_312^2 }-> s13 :|: s9 >= 0, s9 <= x_125, s10 >= 0, s10 <= x_212, s11 >= 0, s11 <= x_312, s12 >= 0, s12 <= 0, s13 >= 0, s13 <= s12 + 1, x_212 >= 0, x_312 >= 0, x_125 >= 0, z = 1 + (1 + x_125 + x_212 + x_312) encArg(z) -{ 2 + s14 + s15 + -5*z + 2*z^2 }-> s16 :|: s14 >= 0, s14 <= z - 2, s15 >= 0, s15 <= s14 + 1, s16 >= 0, s16 <= s15 + 1, z - 2 >= 0 encArg(z) -{ 1 + s7 + 3*x_1 + 2*x_1^2 + 3*x_2 + 2*x_2^2 + 3*x_3 + 2*x_3^2 }-> s8 :|: s5 >= 0, s5 <= x_1, s6 >= 0, s6 <= x_2, s7 >= 0, s7 <= x_3, s8 >= 0, s8 <= 0, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z', z'') -{ 1 + s19 + 3*z + 2*z^2 + 3*z' + 2*z'^2 + 3*z'' + 2*z''^2 }-> s20 :|: s17 >= 0, s17 <= z, s18 >= 0, s18 <= z', s19 >= 0, s19 <= z'', s20 >= 0, s20 <= 0, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> s1 :|: s1 >= 0, s1 <= 0 + 1, z >= 0 encode_g(z) -{ 1 + s23 + s24 + 3*x_153 + 2*x_153^2 + 3*x_226 + 2*x_226^2 + 3*x_326 + 2*x_326^2 }-> s25 :|: s21 >= 0, s21 <= x_153, s22 >= 0, s22 <= x_226, s23 >= 0, s23 <= x_326, s24 >= 0, s24 <= 0, s25 >= 0, s25 <= s24 + 1, x_226 >= 0, z = 1 + x_153 + x_226 + x_326, x_153 >= 0, x_326 >= 0 encode_g(z) -{ -1 + s26 + s27 + -1*z + 2*z^2 }-> s28 :|: s26 >= 0, s26 <= z - 1, s27 >= 0, s27 <= s26 + 1, s28 >= 0, s28 <= s27 + 1, z - 1 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 f(z, z', z'') -{ 2 + s + z'' }-> s2 :|: s2 >= 0, s2 <= 0, s >= 0, s <= z'' - 1 + 1, z' >= 0, z'' - 1 >= 0, z = 1 + z' f(z, z', z'') -{ 3 + z'' }-> s3 :|: s3 >= 0, s3 <= 0, z' >= 0, z'' >= 0, z = 1 + z' f(z, z', z'') -{ 2 }-> s4 :|: s4 >= 0, s4 <= 0, z' >= 0, z'' >= 0, z = 1 + z' f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z) -{ z }-> s' :|: s' >= 0, s' <= z - 1 + 1, z - 1 >= 0 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encode_g} Previous analysis results are: g: runtime: O(n^1) [z], size: O(n^1) [1 + z] f: runtime: O(n^1) [1 + z''], size: O(1) [0] encArg: runtime: O(n^2) [3*z + 2*z^2], size: O(n^1) [z] encode_f: runtime: O(n^2) [1 + 3*z + 2*z^2 + 3*z' + 2*z'^2 + 4*z'' + 2*z''^2], size: O(1) [0] ---------------------------------------- (47) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_g after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> s'' :|: s'' >= 0, s'' <= 0 + 1, z - 1 >= 0 encArg(z) -{ 1 + s11 + s12 + 3*x_125 + 2*x_125^2 + 3*x_212 + 2*x_212^2 + 3*x_312 + 2*x_312^2 }-> s13 :|: s9 >= 0, s9 <= x_125, s10 >= 0, s10 <= x_212, s11 >= 0, s11 <= x_312, s12 >= 0, s12 <= 0, s13 >= 0, s13 <= s12 + 1, x_212 >= 0, x_312 >= 0, x_125 >= 0, z = 1 + (1 + x_125 + x_212 + x_312) encArg(z) -{ 2 + s14 + s15 + -5*z + 2*z^2 }-> s16 :|: s14 >= 0, s14 <= z - 2, s15 >= 0, s15 <= s14 + 1, s16 >= 0, s16 <= s15 + 1, z - 2 >= 0 encArg(z) -{ 1 + s7 + 3*x_1 + 2*x_1^2 + 3*x_2 + 2*x_2^2 + 3*x_3 + 2*x_3^2 }-> s8 :|: s5 >= 0, s5 <= x_1, s6 >= 0, s6 <= x_2, s7 >= 0, s7 <= x_3, s8 >= 0, s8 <= 0, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z', z'') -{ 1 + s19 + 3*z + 2*z^2 + 3*z' + 2*z'^2 + 3*z'' + 2*z''^2 }-> s20 :|: s17 >= 0, s17 <= z, s18 >= 0, s18 <= z', s19 >= 0, s19 <= z'', s20 >= 0, s20 <= 0, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> s1 :|: s1 >= 0, s1 <= 0 + 1, z >= 0 encode_g(z) -{ 1 + s23 + s24 + 3*x_153 + 2*x_153^2 + 3*x_226 + 2*x_226^2 + 3*x_326 + 2*x_326^2 }-> s25 :|: s21 >= 0, s21 <= x_153, s22 >= 0, s22 <= x_226, s23 >= 0, s23 <= x_326, s24 >= 0, s24 <= 0, s25 >= 0, s25 <= s24 + 1, x_226 >= 0, z = 1 + x_153 + x_226 + x_326, x_153 >= 0, x_326 >= 0 encode_g(z) -{ -1 + s26 + s27 + -1*z + 2*z^2 }-> s28 :|: s26 >= 0, s26 <= z - 1, s27 >= 0, s27 <= s26 + 1, s28 >= 0, s28 <= s27 + 1, z - 1 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 f(z, z', z'') -{ 2 + s + z'' }-> s2 :|: s2 >= 0, s2 <= 0, s >= 0, s <= z'' - 1 + 1, z' >= 0, z'' - 1 >= 0, z = 1 + z' f(z, z', z'') -{ 3 + z'' }-> s3 :|: s3 >= 0, s3 <= 0, z' >= 0, z'' >= 0, z = 1 + z' f(z, z', z'') -{ 2 }-> s4 :|: s4 >= 0, s4 <= 0, z' >= 0, z'' >= 0, z = 1 + z' f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z) -{ z }-> s' :|: s' >= 0, s' <= z - 1 + 1, z - 1 >= 0 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encode_g} Previous analysis results are: g: runtime: O(n^1) [z], size: O(n^1) [1 + z] f: runtime: O(n^1) [1 + z''], size: O(1) [0] encArg: runtime: O(n^2) [3*z + 2*z^2], size: O(n^1) [z] encode_f: runtime: O(n^2) [1 + 3*z + 2*z^2 + 3*z' + 2*z'^2 + 4*z'' + 2*z''^2], size: O(1) [0] encode_g: runtime: ?, size: O(n^1) [1 + z] ---------------------------------------- (49) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_g after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 1 + 11*z + 8*z^2 ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> s'' :|: s'' >= 0, s'' <= 0 + 1, z - 1 >= 0 encArg(z) -{ 1 + s11 + s12 + 3*x_125 + 2*x_125^2 + 3*x_212 + 2*x_212^2 + 3*x_312 + 2*x_312^2 }-> s13 :|: s9 >= 0, s9 <= x_125, s10 >= 0, s10 <= x_212, s11 >= 0, s11 <= x_312, s12 >= 0, s12 <= 0, s13 >= 0, s13 <= s12 + 1, x_212 >= 0, x_312 >= 0, x_125 >= 0, z = 1 + (1 + x_125 + x_212 + x_312) encArg(z) -{ 2 + s14 + s15 + -5*z + 2*z^2 }-> s16 :|: s14 >= 0, s14 <= z - 2, s15 >= 0, s15 <= s14 + 1, s16 >= 0, s16 <= s15 + 1, z - 2 >= 0 encArg(z) -{ 1 + s7 + 3*x_1 + 2*x_1^2 + 3*x_2 + 2*x_2^2 + 3*x_3 + 2*x_3^2 }-> s8 :|: s5 >= 0, s5 <= x_1, s6 >= 0, s6 <= x_2, s7 >= 0, s7 <= x_3, s8 >= 0, s8 <= 0, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z', z'') -{ 1 + s19 + 3*z + 2*z^2 + 3*z' + 2*z'^2 + 3*z'' + 2*z''^2 }-> s20 :|: s17 >= 0, s17 <= z, s18 >= 0, s18 <= z', s19 >= 0, s19 <= z'', s20 >= 0, s20 <= 0, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> s1 :|: s1 >= 0, s1 <= 0 + 1, z >= 0 encode_g(z) -{ 1 + s23 + s24 + 3*x_153 + 2*x_153^2 + 3*x_226 + 2*x_226^2 + 3*x_326 + 2*x_326^2 }-> s25 :|: s21 >= 0, s21 <= x_153, s22 >= 0, s22 <= x_226, s23 >= 0, s23 <= x_326, s24 >= 0, s24 <= 0, s25 >= 0, s25 <= s24 + 1, x_226 >= 0, z = 1 + x_153 + x_226 + x_326, x_153 >= 0, x_326 >= 0 encode_g(z) -{ -1 + s26 + s27 + -1*z + 2*z^2 }-> s28 :|: s26 >= 0, s26 <= z - 1, s27 >= 0, s27 <= s26 + 1, s28 >= 0, s28 <= s27 + 1, z - 1 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 f(z, z', z'') -{ 2 + s + z'' }-> s2 :|: s2 >= 0, s2 <= 0, s >= 0, s <= z'' - 1 + 1, z' >= 0, z'' - 1 >= 0, z = 1 + z' f(z, z', z'') -{ 3 + z'' }-> s3 :|: s3 >= 0, s3 <= 0, z' >= 0, z'' >= 0, z = 1 + z' f(z, z', z'') -{ 2 }-> s4 :|: s4 >= 0, s4 <= 0, z' >= 0, z'' >= 0, z = 1 + z' f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z) -{ z }-> s' :|: s' >= 0, s' <= z - 1 + 1, z - 1 >= 0 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: Previous analysis results are: g: runtime: O(n^1) [z], size: O(n^1) [1 + z] f: runtime: O(n^1) [1 + z''], size: O(1) [0] encArg: runtime: O(n^2) [3*z + 2*z^2], size: O(n^1) [z] encode_f: runtime: O(n^2) [1 + 3*z + 2*z^2 + 3*z' + 2*z'^2 + 4*z'' + 2*z''^2], size: O(1) [0] encode_g: runtime: O(n^2) [1 + 11*z + 8*z^2], size: O(n^1) [1 + z] ---------------------------------------- (51) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (52) BOUNDS(1, n^2)