WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 177 ms] (4) CpxRelTRS (5) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxWeightedTrs (7) CpxWeightedTrsRenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxWeightedTrs (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxTypedWeightedTrs (11) CompletionProof [UPPER BOUND(ID), 0 ms] (12) CpxTypedWeightedCompleteTrs (13) NarrowingProof [BOTH BOUNDS(ID, ID), 272 ms] (14) CpxTypedWeightedCompleteTrs (15) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (16) CpxRNTS (17) InliningProof [UPPER BOUND(ID), 0 ms] (18) CpxRNTS (19) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (20) CpxRNTS (21) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (22) CpxRNTS (23) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 34 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 3 ms] (28) CpxRNTS (29) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 48 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 4 ms] (34) CpxRNTS (35) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 300 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 63 ms] (40) CpxRNTS (41) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (42) CpxRNTS (43) IntTrsBoundProof [UPPER BOUND(ID), 261 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 75 ms] (46) CpxRNTS (47) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (48) CpxRNTS (49) IntTrsBoundProof [UPPER BOUND(ID), 392 ms] (50) CpxRNTS (51) IntTrsBoundProof [UPPER BOUND(ID), 347 ms] (52) CpxRNTS (53) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (54) CpxRNTS (55) IntTrsBoundProof [UPPER BOUND(ID), 97 ms] (56) CpxRNTS (57) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (58) CpxRNTS (59) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (60) CpxRNTS (61) IntTrsBoundProof [UPPER BOUND(ID), 178 ms] (62) CpxRNTS (63) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (64) CpxRNTS (65) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (66) CpxRNTS (67) IntTrsBoundProof [UPPER BOUND(ID), 187 ms] (68) CpxRNTS (69) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (70) CpxRNTS (71) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (72) CpxRNTS (73) IntTrsBoundProof [UPPER BOUND(ID), 178 ms] (74) CpxRNTS (75) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (76) CpxRNTS (77) FinalProof [FINISHED, 0 ms] (78) BOUNDS(1, n^2) (79) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (80) CpxRelTRS (81) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (82) typed CpxTrs (83) OrderProof [LOWER BOUND(ID), 0 ms] (84) typed CpxTrs (85) RewriteLemmaProof [LOWER BOUND(ID), 278 ms] (86) BEST (87) proven lower bound (88) LowerBoundPropagationProof [FINISHED, 0 ms] (89) BOUNDS(n^1, INF) (90) typed CpxTrs (91) RewriteLemmaProof [LOWER BOUND(ID), 74 ms] (92) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: +(X, 0) -> X +(X, s(Y)) -> s(+(X, Y)) f(0, s(0), X) -> f(X, +(X, X), X) g(X, Y) -> X g(X, Y) -> Y S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: +(X, 0) -> X +(X, s(Y)) -> s(+(X, Y)) f(0, s(0), X) -> f(X, +(X, X), X) g(X, Y) -> X g(X, Y) -> Y The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: +(X, 0) -> X +(X, s(Y)) -> s(+(X, Y)) f(0, s(0), X) -> f(X, +(X, X), X) g(X, Y) -> X g(X, Y) -> Y The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: +(X, 0) -> X [1] +(X, s(Y)) -> s(+(X, Y)) [1] f(0, s(0), X) -> f(X, +(X, X), X) [1] g(X, Y) -> X [1] g(X, Y) -> Y [1] encArg(0) -> 0 [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) [0] encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) [0] encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) [0] encode_0 -> 0 [0] encode_s(x_1) -> s(encArg(x_1)) [0] encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (7) CpxWeightedTrsRenamingProof (BOTH BOUNDS(ID, ID)) Renamed defined symbols to avoid conflicts with arithmetic symbols: + => plus ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: plus(X, 0) -> X [1] plus(X, s(Y)) -> s(plus(X, Y)) [1] f(0, s(0), X) -> f(X, plus(X, X), X) [1] g(X, Y) -> X [1] g(X, Y) -> Y [1] encArg(0) -> 0 [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(cons_+(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) [0] encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) [0] encode_+(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) [0] encode_0 -> 0 [0] encode_s(x_1) -> s(encArg(x_1)) [0] encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: plus(X, 0) -> X [1] plus(X, s(Y)) -> s(plus(X, Y)) [1] f(0, s(0), X) -> f(X, plus(X, X), X) [1] g(X, Y) -> X [1] g(X, Y) -> Y [1] encArg(0) -> 0 [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(cons_+(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) [0] encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) [0] encode_+(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) [0] encode_0 -> 0 [0] encode_s(x_1) -> s(encArg(x_1)) [0] encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) [0] The TRS has the following type information: plus :: 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g 0 :: 0:s:cons_+:cons_f:cons_g s :: 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g f :: 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g g :: 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g encArg :: 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g cons_+ :: 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g cons_f :: 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g cons_g :: 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g encode_+ :: 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g encode_0 :: 0:s:cons_+:cons_f:cons_g encode_s :: 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g encode_f :: 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g encode_g :: 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g Rewrite Strategy: INNERMOST ---------------------------------------- (11) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: plus_2 f_3 g_2 encArg_1 encode_+_2 encode_0 encode_s_1 encode_f_3 encode_g_2 Due to the following rules being added: encArg(v0) -> 0 [0] encode_+(v0, v1) -> 0 [0] encode_0 -> 0 [0] encode_s(v0) -> 0 [0] encode_f(v0, v1, v2) -> 0 [0] encode_g(v0, v1) -> 0 [0] plus(v0, v1) -> 0 [0] f(v0, v1, v2) -> 0 [0] And the following fresh constants: none ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: plus(X, 0) -> X [1] plus(X, s(Y)) -> s(plus(X, Y)) [1] f(0, s(0), X) -> f(X, plus(X, X), X) [1] g(X, Y) -> X [1] g(X, Y) -> Y [1] encArg(0) -> 0 [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(cons_+(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) [0] encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) [0] encode_+(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) [0] encode_0 -> 0 [0] encode_s(x_1) -> s(encArg(x_1)) [0] encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) [0] encArg(v0) -> 0 [0] encode_+(v0, v1) -> 0 [0] encode_0 -> 0 [0] encode_s(v0) -> 0 [0] encode_f(v0, v1, v2) -> 0 [0] encode_g(v0, v1) -> 0 [0] plus(v0, v1) -> 0 [0] f(v0, v1, v2) -> 0 [0] The TRS has the following type information: plus :: 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g 0 :: 0:s:cons_+:cons_f:cons_g s :: 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g f :: 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g g :: 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g encArg :: 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g cons_+ :: 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g cons_f :: 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g cons_g :: 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g encode_+ :: 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g encode_0 :: 0:s:cons_+:cons_f:cons_g encode_s :: 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g encode_f :: 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g encode_g :: 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g Rewrite Strategy: INNERMOST ---------------------------------------- (13) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (14) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: plus(X, 0) -> X [1] plus(X, s(Y)) -> s(plus(X, Y)) [1] f(0, s(0), 0) -> f(0, 0, 0) [2] f(0, s(0), s(Y')) -> f(s(Y'), s(plus(s(Y'), Y')), s(Y')) [2] f(0, s(0), X) -> f(X, 0, X) [1] g(X, Y) -> X [1] g(X, Y) -> Y [1] encArg(0) -> 0 [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(cons_+(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) [0] encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) [0] encode_+(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) [0] encode_0 -> 0 [0] encode_s(x_1) -> s(encArg(x_1)) [0] encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) [0] encArg(v0) -> 0 [0] encode_+(v0, v1) -> 0 [0] encode_0 -> 0 [0] encode_s(v0) -> 0 [0] encode_f(v0, v1, v2) -> 0 [0] encode_g(v0, v1) -> 0 [0] plus(v0, v1) -> 0 [0] f(v0, v1, v2) -> 0 [0] The TRS has the following type information: plus :: 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g 0 :: 0:s:cons_+:cons_f:cons_g s :: 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g f :: 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g g :: 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g encArg :: 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g cons_+ :: 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g cons_f :: 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g cons_g :: 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g encode_+ :: 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g encode_0 :: 0:s:cons_+:cons_f:cons_g encode_s :: 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g encode_f :: 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g encode_g :: 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g -> 0:s:cons_+:cons_f:cons_g Rewrite Strategy: INNERMOST ---------------------------------------- (15) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encArg(z) -{ 0 }-> 1 + encArg(x_1) :|: z = 1 + x_1, x_1 >= 0 encode_+(z, z') -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_+(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_0 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, x_3 >= 0, x_2 >= 0, z = x_1, z' = x_2, z'' = x_3 encode_f(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 encode_g(z, z') -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_g(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_s(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_s(z) -{ 0 }-> 1 + encArg(x_1) :|: x_1 >= 0, z = x_1 f(z, z', z'') -{ 1 }-> f(X, 0, X) :|: z'' = X, X >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 2 }-> f(0, 0, 0) :|: z'' = 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 2 }-> f(1 + Y', 1 + plus(1 + Y', Y'), 1 + Y') :|: z'' = 1 + Y', Y' >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 g(z, z') -{ 1 }-> X :|: z' = Y, Y >= 0, X >= 0, z = X g(z, z') -{ 1 }-> Y :|: z' = Y, Y >= 0, X >= 0, z = X plus(z, z') -{ 1 }-> X :|: X >= 0, z = X, z' = 0 plus(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 plus(z, z') -{ 1 }-> 1 + plus(X, Y) :|: Y >= 0, z' = 1 + Y, X >= 0, z = X ---------------------------------------- (17) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: g(z, z') -{ 1 }-> Y :|: z' = Y, Y >= 0, X >= 0, z = X g(z, z') -{ 1 }-> X :|: z' = Y, Y >= 0, X >= 0, z = X ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encArg(z) -{ 0 }-> 1 + encArg(x_1) :|: z = 1 + x_1, x_1 >= 0 encode_+(z, z') -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_+(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_0 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, x_3 >= 0, x_2 >= 0, z = x_1, z' = x_2, z'' = x_3 encode_f(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 encode_g(z, z') -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_g(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_s(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_s(z) -{ 0 }-> 1 + encArg(x_1) :|: x_1 >= 0, z = x_1 f(z, z', z'') -{ 1 }-> f(X, 0, X) :|: z'' = X, X >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 2 }-> f(0, 0, 0) :|: z'' = 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 2 }-> f(1 + Y', 1 + plus(1 + Y', Y'), 1 + Y') :|: z'' = 1 + Y', Y' >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 g(z, z') -{ 1 }-> X :|: z' = Y, Y >= 0, X >= 0, z = X g(z, z') -{ 1 }-> Y :|: z' = Y, Y >= 0, X >= 0, z = X plus(z, z') -{ 1 }-> X :|: X >= 0, z = X, z' = 0 plus(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 plus(z, z') -{ 1 }-> 1 + plus(X, Y) :|: Y >= 0, z' = 1 + Y, X >= 0, z = X ---------------------------------------- (19) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_+(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z', z'') -{ 1 }-> f(z'', 0, z'') :|: z'' >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 2 }-> f(0, 0, 0) :|: z'' = 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 2 }-> f(1 + (z'' - 1), 1 + plus(1 + (z'' - 1), z'' - 1), 1 + (z'' - 1)) :|: z'' - 1 >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 ---------------------------------------- (21) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { encode_0 } { g } { plus } { f } { encArg } { encode_g } { encode_f } { encode_+ } { encode_s } ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_+(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z', z'') -{ 1 }-> f(z'', 0, z'') :|: z'' >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 2 }-> f(0, 0, 0) :|: z'' = 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 2 }-> f(1 + (z'' - 1), 1 + plus(1 + (z'' - 1), z'' - 1), 1 + (z'' - 1)) :|: z'' - 1 >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {encode_0}, {g}, {plus}, {f}, {encArg}, {encode_g}, {encode_f}, {encode_+}, {encode_s} ---------------------------------------- (23) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_+(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z', z'') -{ 1 }-> f(z'', 0, z'') :|: z'' >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 2 }-> f(0, 0, 0) :|: z'' = 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 2 }-> f(1 + (z'' - 1), 1 + plus(1 + (z'' - 1), z'' - 1), 1 + (z'' - 1)) :|: z'' - 1 >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {encode_0}, {g}, {plus}, {f}, {encArg}, {encode_g}, {encode_f}, {encode_+}, {encode_s} ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_0 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_+(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z', z'') -{ 1 }-> f(z'', 0, z'') :|: z'' >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 2 }-> f(0, 0, 0) :|: z'' = 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 2 }-> f(1 + (z'' - 1), 1 + plus(1 + (z'' - 1), z'' - 1), 1 + (z'' - 1)) :|: z'' - 1 >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {encode_0}, {g}, {plus}, {f}, {encArg}, {encode_g}, {encode_f}, {encode_+}, {encode_s} Previous analysis results are: encode_0: runtime: ?, size: O(1) [0] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_0 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_+(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z', z'') -{ 1 }-> f(z'', 0, z'') :|: z'' >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 2 }-> f(0, 0, 0) :|: z'' = 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 2 }-> f(1 + (z'' - 1), 1 + plus(1 + (z'' - 1), z'' - 1), 1 + (z'' - 1)) :|: z'' - 1 >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {g}, {plus}, {f}, {encArg}, {encode_g}, {encode_f}, {encode_+}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (29) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_+(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z', z'') -{ 1 }-> f(z'', 0, z'') :|: z'' >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 2 }-> f(0, 0, 0) :|: z'' = 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 2 }-> f(1 + (z'' - 1), 1 + plus(1 + (z'' - 1), z'' - 1), 1 + (z'' - 1)) :|: z'' - 1 >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {g}, {plus}, {f}, {encArg}, {encode_g}, {encode_f}, {encode_+}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: g after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z + z' ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_+(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z', z'') -{ 1 }-> f(z'', 0, z'') :|: z'' >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 2 }-> f(0, 0, 0) :|: z'' = 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 2 }-> f(1 + (z'' - 1), 1 + plus(1 + (z'' - 1), z'' - 1), 1 + (z'' - 1)) :|: z'' - 1 >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {g}, {plus}, {f}, {encArg}, {encode_g}, {encode_f}, {encode_+}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] g: runtime: ?, size: O(n^1) [z + z'] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: g after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_+(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z', z'') -{ 1 }-> f(z'', 0, z'') :|: z'' >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 2 }-> f(0, 0, 0) :|: z'' = 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 2 }-> f(1 + (z'' - 1), 1 + plus(1 + (z'' - 1), z'' - 1), 1 + (z'' - 1)) :|: z'' - 1 >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {plus}, {f}, {encArg}, {encode_g}, {encode_f}, {encode_+}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] g: runtime: O(1) [1], size: O(n^1) [z + z'] ---------------------------------------- (35) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_+(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z', z'') -{ 1 }-> f(z'', 0, z'') :|: z'' >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 2 }-> f(0, 0, 0) :|: z'' = 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 2 }-> f(1 + (z'' - 1), 1 + plus(1 + (z'' - 1), z'' - 1), 1 + (z'' - 1)) :|: z'' - 1 >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {plus}, {f}, {encArg}, {encode_g}, {encode_f}, {encode_+}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] g: runtime: O(1) [1], size: O(n^1) [z + z'] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: plus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z + z' ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_+(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z', z'') -{ 1 }-> f(z'', 0, z'') :|: z'' >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 2 }-> f(0, 0, 0) :|: z'' = 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 2 }-> f(1 + (z'' - 1), 1 + plus(1 + (z'' - 1), z'' - 1), 1 + (z'' - 1)) :|: z'' - 1 >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {plus}, {f}, {encArg}, {encode_g}, {encode_f}, {encode_+}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] g: runtime: O(1) [1], size: O(n^1) [z + z'] plus: runtime: ?, size: O(n^1) [z + z'] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: plus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_+(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z', z'') -{ 1 }-> f(z'', 0, z'') :|: z'' >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 2 }-> f(0, 0, 0) :|: z'' = 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 2 }-> f(1 + (z'' - 1), 1 + plus(1 + (z'' - 1), z'' - 1), 1 + (z'' - 1)) :|: z'' - 1 >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {f}, {encArg}, {encode_g}, {encode_f}, {encode_+}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] g: runtime: O(1) [1], size: O(n^1) [z + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] ---------------------------------------- (41) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_+(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z', z'') -{ 1 }-> f(z'', 0, z'') :|: z'' >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 2 }-> f(0, 0, 0) :|: z'' = 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 2 + z'' }-> f(1 + (z'' - 1), 1 + s', 1 + (z'' - 1)) :|: s' >= 0, s' <= 1 + (z'' - 1) + (z'' - 1), z'' - 1 >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {f}, {encArg}, {encode_g}, {encode_f}, {encode_+}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] g: runtime: O(1) [1], size: O(n^1) [z + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] ---------------------------------------- (43) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_+(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z', z'') -{ 1 }-> f(z'', 0, z'') :|: z'' >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 2 }-> f(0, 0, 0) :|: z'' = 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 2 + z'' }-> f(1 + (z'' - 1), 1 + s', 1 + (z'' - 1)) :|: s' >= 0, s' <= 1 + (z'' - 1) + (z'' - 1), z'' - 1 >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {f}, {encArg}, {encode_g}, {encode_f}, {encode_+}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] g: runtime: O(1) [1], size: O(n^1) [z + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] f: runtime: ?, size: O(1) [0] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z'' ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_+(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z', z'') -{ 1 }-> f(z'', 0, z'') :|: z'' >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 2 }-> f(0, 0, 0) :|: z'' = 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 2 + z'' }-> f(1 + (z'' - 1), 1 + s', 1 + (z'' - 1)) :|: s' >= 0, s' <= 1 + (z'' - 1) + (z'' - 1), z'' - 1 >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {encArg}, {encode_g}, {encode_f}, {encode_+}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] g: runtime: O(1) [1], size: O(n^1) [z + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] f: runtime: O(n^1) [2 + z''], size: O(1) [0] ---------------------------------------- (47) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_+(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z', z'') -{ 4 }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 4 + 2*z'' }-> s1 :|: s1 >= 0, s1 <= 0, s' >= 0, s' <= 1 + (z'' - 1) + (z'' - 1), z'' - 1 >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 3 + z'' }-> s2 :|: s2 >= 0, s2 <= 0, z'' >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {encArg}, {encode_g}, {encode_f}, {encode_+}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] g: runtime: O(1) [1], size: O(n^1) [z + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] f: runtime: O(n^1) [2 + z''], size: O(1) [0] ---------------------------------------- (49) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_+(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z', z'') -{ 4 }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 4 + 2*z'' }-> s1 :|: s1 >= 0, s1 <= 0, s' >= 0, s' <= 1 + (z'' - 1) + (z'' - 1), z'' - 1 >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 3 + z'' }-> s2 :|: s2 >= 0, s2 <= 0, z'' >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {encArg}, {encode_g}, {encode_f}, {encode_+}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] g: runtime: O(1) [1], size: O(n^1) [z + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] f: runtime: O(n^1) [2 + z''], size: O(1) [0] encArg: runtime: ?, size: O(n^1) [z] ---------------------------------------- (51) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: z + z^2 ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_+(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z', z'') -{ 4 }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 4 + 2*z'' }-> s1 :|: s1 >= 0, s1 <= 0, s' >= 0, s' <= 1 + (z'' - 1) + (z'' - 1), z'' - 1 >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 3 + z'' }-> s2 :|: s2 >= 0, s2 <= 0, z'' >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {encode_g}, {encode_f}, {encode_+}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] g: runtime: O(1) [1], size: O(n^1) [z + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] f: runtime: O(n^1) [2 + z''], size: O(1) [0] encArg: runtime: O(n^2) [z + z^2], size: O(n^1) [z] ---------------------------------------- (53) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (54) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 2 + s9 + x_1 + x_1^2 + x_2 + x_2^2 + x_3 + x_3^2 }-> s10 :|: s7 >= 0, s7 <= x_1, s8 >= 0, s8 <= x_2, s9 >= 0, s9 <= x_3, s10 >= 0, s10 <= 0, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 1 + x_1 + x_1^2 + x_2 + x_2^2 }-> s21 :|: s19 >= 0, s19 <= x_1, s20 >= 0, s20 <= x_2, s21 >= 0, s21 <= s20 + s19, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 + s5 + x_1 + x_1^2 + x_2 + x_2^2 }-> s6 :|: s4 >= 0, s4 <= x_1, s5 >= 0, s5 <= x_2, s6 >= 0, s6 <= s4 + s5, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -1*z + z^2 }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 encode_+(z, z') -{ 1 + s12 + z + z^2 + z' + z'^2 }-> s13 :|: s11 >= 0, s11 <= z, s12 >= 0, s12 <= z', s13 >= 0, s13 <= s11 + s12, z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 2 + s17 + z + z^2 + z' + z'^2 + z'' + z''^2 }-> s18 :|: s15 >= 0, s15 <= z, s16 >= 0, s16 <= z', s17 >= 0, s17 <= z'', s18 >= 0, s18 <= 0, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 1 + z + z^2 + z' + z'^2 }-> s24 :|: s22 >= 0, s22 <= z, s23 >= 0, s23 <= z', s24 >= 0, s24 <= s23 + s22, z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ z + z^2 }-> 1 + s14 :|: s14 >= 0, s14 <= z, z >= 0 f(z, z', z'') -{ 4 }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 4 + 2*z'' }-> s1 :|: s1 >= 0, s1 <= 0, s' >= 0, s' <= 1 + (z'' - 1) + (z'' - 1), z'' - 1 >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 3 + z'' }-> s2 :|: s2 >= 0, s2 <= 0, z'' >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {encode_g}, {encode_f}, {encode_+}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] g: runtime: O(1) [1], size: O(n^1) [z + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] f: runtime: O(n^1) [2 + z''], size: O(1) [0] encArg: runtime: O(n^2) [z + z^2], size: O(n^1) [z] ---------------------------------------- (55) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_g after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z + z' ---------------------------------------- (56) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 2 + s9 + x_1 + x_1^2 + x_2 + x_2^2 + x_3 + x_3^2 }-> s10 :|: s7 >= 0, s7 <= x_1, s8 >= 0, s8 <= x_2, s9 >= 0, s9 <= x_3, s10 >= 0, s10 <= 0, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 1 + x_1 + x_1^2 + x_2 + x_2^2 }-> s21 :|: s19 >= 0, s19 <= x_1, s20 >= 0, s20 <= x_2, s21 >= 0, s21 <= s20 + s19, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 + s5 + x_1 + x_1^2 + x_2 + x_2^2 }-> s6 :|: s4 >= 0, s4 <= x_1, s5 >= 0, s5 <= x_2, s6 >= 0, s6 <= s4 + s5, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -1*z + z^2 }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 encode_+(z, z') -{ 1 + s12 + z + z^2 + z' + z'^2 }-> s13 :|: s11 >= 0, s11 <= z, s12 >= 0, s12 <= z', s13 >= 0, s13 <= s11 + s12, z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 2 + s17 + z + z^2 + z' + z'^2 + z'' + z''^2 }-> s18 :|: s15 >= 0, s15 <= z, s16 >= 0, s16 <= z', s17 >= 0, s17 <= z'', s18 >= 0, s18 <= 0, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 1 + z + z^2 + z' + z'^2 }-> s24 :|: s22 >= 0, s22 <= z, s23 >= 0, s23 <= z', s24 >= 0, s24 <= s23 + s22, z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ z + z^2 }-> 1 + s14 :|: s14 >= 0, s14 <= z, z >= 0 f(z, z', z'') -{ 4 }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 4 + 2*z'' }-> s1 :|: s1 >= 0, s1 <= 0, s' >= 0, s' <= 1 + (z'' - 1) + (z'' - 1), z'' - 1 >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 3 + z'' }-> s2 :|: s2 >= 0, s2 <= 0, z'' >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {encode_g}, {encode_f}, {encode_+}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] g: runtime: O(1) [1], size: O(n^1) [z + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] f: runtime: O(n^1) [2 + z''], size: O(1) [0] encArg: runtime: O(n^2) [z + z^2], size: O(n^1) [z] encode_g: runtime: ?, size: O(n^1) [z + z'] ---------------------------------------- (57) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_g after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 1 + z + z^2 + z' + z'^2 ---------------------------------------- (58) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 2 + s9 + x_1 + x_1^2 + x_2 + x_2^2 + x_3 + x_3^2 }-> s10 :|: s7 >= 0, s7 <= x_1, s8 >= 0, s8 <= x_2, s9 >= 0, s9 <= x_3, s10 >= 0, s10 <= 0, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 1 + x_1 + x_1^2 + x_2 + x_2^2 }-> s21 :|: s19 >= 0, s19 <= x_1, s20 >= 0, s20 <= x_2, s21 >= 0, s21 <= s20 + s19, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 + s5 + x_1 + x_1^2 + x_2 + x_2^2 }-> s6 :|: s4 >= 0, s4 <= x_1, s5 >= 0, s5 <= x_2, s6 >= 0, s6 <= s4 + s5, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -1*z + z^2 }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 encode_+(z, z') -{ 1 + s12 + z + z^2 + z' + z'^2 }-> s13 :|: s11 >= 0, s11 <= z, s12 >= 0, s12 <= z', s13 >= 0, s13 <= s11 + s12, z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 2 + s17 + z + z^2 + z' + z'^2 + z'' + z''^2 }-> s18 :|: s15 >= 0, s15 <= z, s16 >= 0, s16 <= z', s17 >= 0, s17 <= z'', s18 >= 0, s18 <= 0, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 1 + z + z^2 + z' + z'^2 }-> s24 :|: s22 >= 0, s22 <= z, s23 >= 0, s23 <= z', s24 >= 0, s24 <= s23 + s22, z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ z + z^2 }-> 1 + s14 :|: s14 >= 0, s14 <= z, z >= 0 f(z, z', z'') -{ 4 }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 4 + 2*z'' }-> s1 :|: s1 >= 0, s1 <= 0, s' >= 0, s' <= 1 + (z'' - 1) + (z'' - 1), z'' - 1 >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 3 + z'' }-> s2 :|: s2 >= 0, s2 <= 0, z'' >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {encode_f}, {encode_+}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] g: runtime: O(1) [1], size: O(n^1) [z + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] f: runtime: O(n^1) [2 + z''], size: O(1) [0] encArg: runtime: O(n^2) [z + z^2], size: O(n^1) [z] encode_g: runtime: O(n^2) [1 + z + z^2 + z' + z'^2], size: O(n^1) [z + z'] ---------------------------------------- (59) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (60) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 2 + s9 + x_1 + x_1^2 + x_2 + x_2^2 + x_3 + x_3^2 }-> s10 :|: s7 >= 0, s7 <= x_1, s8 >= 0, s8 <= x_2, s9 >= 0, s9 <= x_3, s10 >= 0, s10 <= 0, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 1 + x_1 + x_1^2 + x_2 + x_2^2 }-> s21 :|: s19 >= 0, s19 <= x_1, s20 >= 0, s20 <= x_2, s21 >= 0, s21 <= s20 + s19, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 + s5 + x_1 + x_1^2 + x_2 + x_2^2 }-> s6 :|: s4 >= 0, s4 <= x_1, s5 >= 0, s5 <= x_2, s6 >= 0, s6 <= s4 + s5, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -1*z + z^2 }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 encode_+(z, z') -{ 1 + s12 + z + z^2 + z' + z'^2 }-> s13 :|: s11 >= 0, s11 <= z, s12 >= 0, s12 <= z', s13 >= 0, s13 <= s11 + s12, z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 2 + s17 + z + z^2 + z' + z'^2 + z'' + z''^2 }-> s18 :|: s15 >= 0, s15 <= z, s16 >= 0, s16 <= z', s17 >= 0, s17 <= z'', s18 >= 0, s18 <= 0, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 1 + z + z^2 + z' + z'^2 }-> s24 :|: s22 >= 0, s22 <= z, s23 >= 0, s23 <= z', s24 >= 0, s24 <= s23 + s22, z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ z + z^2 }-> 1 + s14 :|: s14 >= 0, s14 <= z, z >= 0 f(z, z', z'') -{ 4 }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 4 + 2*z'' }-> s1 :|: s1 >= 0, s1 <= 0, s' >= 0, s' <= 1 + (z'' - 1) + (z'' - 1), z'' - 1 >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 3 + z'' }-> s2 :|: s2 >= 0, s2 <= 0, z'' >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {encode_f}, {encode_+}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] g: runtime: O(1) [1], size: O(n^1) [z + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] f: runtime: O(n^1) [2 + z''], size: O(1) [0] encArg: runtime: O(n^2) [z + z^2], size: O(n^1) [z] encode_g: runtime: O(n^2) [1 + z + z^2 + z' + z'^2], size: O(n^1) [z + z'] ---------------------------------------- (61) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_f after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (62) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 2 + s9 + x_1 + x_1^2 + x_2 + x_2^2 + x_3 + x_3^2 }-> s10 :|: s7 >= 0, s7 <= x_1, s8 >= 0, s8 <= x_2, s9 >= 0, s9 <= x_3, s10 >= 0, s10 <= 0, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 1 + x_1 + x_1^2 + x_2 + x_2^2 }-> s21 :|: s19 >= 0, s19 <= x_1, s20 >= 0, s20 <= x_2, s21 >= 0, s21 <= s20 + s19, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 + s5 + x_1 + x_1^2 + x_2 + x_2^2 }-> s6 :|: s4 >= 0, s4 <= x_1, s5 >= 0, s5 <= x_2, s6 >= 0, s6 <= s4 + s5, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -1*z + z^2 }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 encode_+(z, z') -{ 1 + s12 + z + z^2 + z' + z'^2 }-> s13 :|: s11 >= 0, s11 <= z, s12 >= 0, s12 <= z', s13 >= 0, s13 <= s11 + s12, z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 2 + s17 + z + z^2 + z' + z'^2 + z'' + z''^2 }-> s18 :|: s15 >= 0, s15 <= z, s16 >= 0, s16 <= z', s17 >= 0, s17 <= z'', s18 >= 0, s18 <= 0, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 1 + z + z^2 + z' + z'^2 }-> s24 :|: s22 >= 0, s22 <= z, s23 >= 0, s23 <= z', s24 >= 0, s24 <= s23 + s22, z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ z + z^2 }-> 1 + s14 :|: s14 >= 0, s14 <= z, z >= 0 f(z, z', z'') -{ 4 }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 4 + 2*z'' }-> s1 :|: s1 >= 0, s1 <= 0, s' >= 0, s' <= 1 + (z'' - 1) + (z'' - 1), z'' - 1 >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 3 + z'' }-> s2 :|: s2 >= 0, s2 <= 0, z'' >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {encode_f}, {encode_+}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] g: runtime: O(1) [1], size: O(n^1) [z + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] f: runtime: O(n^1) [2 + z''], size: O(1) [0] encArg: runtime: O(n^2) [z + z^2], size: O(n^1) [z] encode_g: runtime: O(n^2) [1 + z + z^2 + z' + z'^2], size: O(n^1) [z + z'] encode_f: runtime: ?, size: O(1) [0] ---------------------------------------- (63) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_f after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 2 + z + z^2 + z' + z'^2 + 2*z'' + z''^2 ---------------------------------------- (64) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 2 + s9 + x_1 + x_1^2 + x_2 + x_2^2 + x_3 + x_3^2 }-> s10 :|: s7 >= 0, s7 <= x_1, s8 >= 0, s8 <= x_2, s9 >= 0, s9 <= x_3, s10 >= 0, s10 <= 0, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 1 + x_1 + x_1^2 + x_2 + x_2^2 }-> s21 :|: s19 >= 0, s19 <= x_1, s20 >= 0, s20 <= x_2, s21 >= 0, s21 <= s20 + s19, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 + s5 + x_1 + x_1^2 + x_2 + x_2^2 }-> s6 :|: s4 >= 0, s4 <= x_1, s5 >= 0, s5 <= x_2, s6 >= 0, s6 <= s4 + s5, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -1*z + z^2 }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 encode_+(z, z') -{ 1 + s12 + z + z^2 + z' + z'^2 }-> s13 :|: s11 >= 0, s11 <= z, s12 >= 0, s12 <= z', s13 >= 0, s13 <= s11 + s12, z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 2 + s17 + z + z^2 + z' + z'^2 + z'' + z''^2 }-> s18 :|: s15 >= 0, s15 <= z, s16 >= 0, s16 <= z', s17 >= 0, s17 <= z'', s18 >= 0, s18 <= 0, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 1 + z + z^2 + z' + z'^2 }-> s24 :|: s22 >= 0, s22 <= z, s23 >= 0, s23 <= z', s24 >= 0, s24 <= s23 + s22, z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ z + z^2 }-> 1 + s14 :|: s14 >= 0, s14 <= z, z >= 0 f(z, z', z'') -{ 4 }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 4 + 2*z'' }-> s1 :|: s1 >= 0, s1 <= 0, s' >= 0, s' <= 1 + (z'' - 1) + (z'' - 1), z'' - 1 >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 3 + z'' }-> s2 :|: s2 >= 0, s2 <= 0, z'' >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {encode_+}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] g: runtime: O(1) [1], size: O(n^1) [z + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] f: runtime: O(n^1) [2 + z''], size: O(1) [0] encArg: runtime: O(n^2) [z + z^2], size: O(n^1) [z] encode_g: runtime: O(n^2) [1 + z + z^2 + z' + z'^2], size: O(n^1) [z + z'] encode_f: runtime: O(n^2) [2 + z + z^2 + z' + z'^2 + 2*z'' + z''^2], size: O(1) [0] ---------------------------------------- (65) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (66) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 2 + s9 + x_1 + x_1^2 + x_2 + x_2^2 + x_3 + x_3^2 }-> s10 :|: s7 >= 0, s7 <= x_1, s8 >= 0, s8 <= x_2, s9 >= 0, s9 <= x_3, s10 >= 0, s10 <= 0, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 1 + x_1 + x_1^2 + x_2 + x_2^2 }-> s21 :|: s19 >= 0, s19 <= x_1, s20 >= 0, s20 <= x_2, s21 >= 0, s21 <= s20 + s19, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 + s5 + x_1 + x_1^2 + x_2 + x_2^2 }-> s6 :|: s4 >= 0, s4 <= x_1, s5 >= 0, s5 <= x_2, s6 >= 0, s6 <= s4 + s5, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -1*z + z^2 }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 encode_+(z, z') -{ 1 + s12 + z + z^2 + z' + z'^2 }-> s13 :|: s11 >= 0, s11 <= z, s12 >= 0, s12 <= z', s13 >= 0, s13 <= s11 + s12, z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 2 + s17 + z + z^2 + z' + z'^2 + z'' + z''^2 }-> s18 :|: s15 >= 0, s15 <= z, s16 >= 0, s16 <= z', s17 >= 0, s17 <= z'', s18 >= 0, s18 <= 0, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 1 + z + z^2 + z' + z'^2 }-> s24 :|: s22 >= 0, s22 <= z, s23 >= 0, s23 <= z', s24 >= 0, s24 <= s23 + s22, z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ z + z^2 }-> 1 + s14 :|: s14 >= 0, s14 <= z, z >= 0 f(z, z', z'') -{ 4 }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 4 + 2*z'' }-> s1 :|: s1 >= 0, s1 <= 0, s' >= 0, s' <= 1 + (z'' - 1) + (z'' - 1), z'' - 1 >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 3 + z'' }-> s2 :|: s2 >= 0, s2 <= 0, z'' >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {encode_+}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] g: runtime: O(1) [1], size: O(n^1) [z + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] f: runtime: O(n^1) [2 + z''], size: O(1) [0] encArg: runtime: O(n^2) [z + z^2], size: O(n^1) [z] encode_g: runtime: O(n^2) [1 + z + z^2 + z' + z'^2], size: O(n^1) [z + z'] encode_f: runtime: O(n^2) [2 + z + z^2 + z' + z'^2 + 2*z'' + z''^2], size: O(1) [0] ---------------------------------------- (67) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_+ after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z + z' ---------------------------------------- (68) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 2 + s9 + x_1 + x_1^2 + x_2 + x_2^2 + x_3 + x_3^2 }-> s10 :|: s7 >= 0, s7 <= x_1, s8 >= 0, s8 <= x_2, s9 >= 0, s9 <= x_3, s10 >= 0, s10 <= 0, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 1 + x_1 + x_1^2 + x_2 + x_2^2 }-> s21 :|: s19 >= 0, s19 <= x_1, s20 >= 0, s20 <= x_2, s21 >= 0, s21 <= s20 + s19, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 + s5 + x_1 + x_1^2 + x_2 + x_2^2 }-> s6 :|: s4 >= 0, s4 <= x_1, s5 >= 0, s5 <= x_2, s6 >= 0, s6 <= s4 + s5, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -1*z + z^2 }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 encode_+(z, z') -{ 1 + s12 + z + z^2 + z' + z'^2 }-> s13 :|: s11 >= 0, s11 <= z, s12 >= 0, s12 <= z', s13 >= 0, s13 <= s11 + s12, z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 2 + s17 + z + z^2 + z' + z'^2 + z'' + z''^2 }-> s18 :|: s15 >= 0, s15 <= z, s16 >= 0, s16 <= z', s17 >= 0, s17 <= z'', s18 >= 0, s18 <= 0, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 1 + z + z^2 + z' + z'^2 }-> s24 :|: s22 >= 0, s22 <= z, s23 >= 0, s23 <= z', s24 >= 0, s24 <= s23 + s22, z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ z + z^2 }-> 1 + s14 :|: s14 >= 0, s14 <= z, z >= 0 f(z, z', z'') -{ 4 }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 4 + 2*z'' }-> s1 :|: s1 >= 0, s1 <= 0, s' >= 0, s' <= 1 + (z'' - 1) + (z'' - 1), z'' - 1 >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 3 + z'' }-> s2 :|: s2 >= 0, s2 <= 0, z'' >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {encode_+}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] g: runtime: O(1) [1], size: O(n^1) [z + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] f: runtime: O(n^1) [2 + z''], size: O(1) [0] encArg: runtime: O(n^2) [z + z^2], size: O(n^1) [z] encode_g: runtime: O(n^2) [1 + z + z^2 + z' + z'^2], size: O(n^1) [z + z'] encode_f: runtime: O(n^2) [2 + z + z^2 + z' + z'^2 + 2*z'' + z''^2], size: O(1) [0] encode_+: runtime: ?, size: O(n^1) [z + z'] ---------------------------------------- (69) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_+ after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 1 + z + z^2 + 2*z' + z'^2 ---------------------------------------- (70) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 2 + s9 + x_1 + x_1^2 + x_2 + x_2^2 + x_3 + x_3^2 }-> s10 :|: s7 >= 0, s7 <= x_1, s8 >= 0, s8 <= x_2, s9 >= 0, s9 <= x_3, s10 >= 0, s10 <= 0, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 1 + x_1 + x_1^2 + x_2 + x_2^2 }-> s21 :|: s19 >= 0, s19 <= x_1, s20 >= 0, s20 <= x_2, s21 >= 0, s21 <= s20 + s19, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 + s5 + x_1 + x_1^2 + x_2 + x_2^2 }-> s6 :|: s4 >= 0, s4 <= x_1, s5 >= 0, s5 <= x_2, s6 >= 0, s6 <= s4 + s5, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -1*z + z^2 }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 encode_+(z, z') -{ 1 + s12 + z + z^2 + z' + z'^2 }-> s13 :|: s11 >= 0, s11 <= z, s12 >= 0, s12 <= z', s13 >= 0, s13 <= s11 + s12, z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 2 + s17 + z + z^2 + z' + z'^2 + z'' + z''^2 }-> s18 :|: s15 >= 0, s15 <= z, s16 >= 0, s16 <= z', s17 >= 0, s17 <= z'', s18 >= 0, s18 <= 0, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 1 + z + z^2 + z' + z'^2 }-> s24 :|: s22 >= 0, s22 <= z, s23 >= 0, s23 <= z', s24 >= 0, s24 <= s23 + s22, z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ z + z^2 }-> 1 + s14 :|: s14 >= 0, s14 <= z, z >= 0 f(z, z', z'') -{ 4 }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 4 + 2*z'' }-> s1 :|: s1 >= 0, s1 <= 0, s' >= 0, s' <= 1 + (z'' - 1) + (z'' - 1), z'' - 1 >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 3 + z'' }-> s2 :|: s2 >= 0, s2 <= 0, z'' >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] g: runtime: O(1) [1], size: O(n^1) [z + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] f: runtime: O(n^1) [2 + z''], size: O(1) [0] encArg: runtime: O(n^2) [z + z^2], size: O(n^1) [z] encode_g: runtime: O(n^2) [1 + z + z^2 + z' + z'^2], size: O(n^1) [z + z'] encode_f: runtime: O(n^2) [2 + z + z^2 + z' + z'^2 + 2*z'' + z''^2], size: O(1) [0] encode_+: runtime: O(n^2) [1 + z + z^2 + 2*z' + z'^2], size: O(n^1) [z + z'] ---------------------------------------- (71) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (72) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 2 + s9 + x_1 + x_1^2 + x_2 + x_2^2 + x_3 + x_3^2 }-> s10 :|: s7 >= 0, s7 <= x_1, s8 >= 0, s8 <= x_2, s9 >= 0, s9 <= x_3, s10 >= 0, s10 <= 0, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 1 + x_1 + x_1^2 + x_2 + x_2^2 }-> s21 :|: s19 >= 0, s19 <= x_1, s20 >= 0, s20 <= x_2, s21 >= 0, s21 <= s20 + s19, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 + s5 + x_1 + x_1^2 + x_2 + x_2^2 }-> s6 :|: s4 >= 0, s4 <= x_1, s5 >= 0, s5 <= x_2, s6 >= 0, s6 <= s4 + s5, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -1*z + z^2 }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 encode_+(z, z') -{ 1 + s12 + z + z^2 + z' + z'^2 }-> s13 :|: s11 >= 0, s11 <= z, s12 >= 0, s12 <= z', s13 >= 0, s13 <= s11 + s12, z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 2 + s17 + z + z^2 + z' + z'^2 + z'' + z''^2 }-> s18 :|: s15 >= 0, s15 <= z, s16 >= 0, s16 <= z', s17 >= 0, s17 <= z'', s18 >= 0, s18 <= 0, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 1 + z + z^2 + z' + z'^2 }-> s24 :|: s22 >= 0, s22 <= z, s23 >= 0, s23 <= z', s24 >= 0, s24 <= s23 + s22, z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ z + z^2 }-> 1 + s14 :|: s14 >= 0, s14 <= z, z >= 0 f(z, z', z'') -{ 4 }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 4 + 2*z'' }-> s1 :|: s1 >= 0, s1 <= 0, s' >= 0, s' <= 1 + (z'' - 1) + (z'' - 1), z'' - 1 >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 3 + z'' }-> s2 :|: s2 >= 0, s2 <= 0, z'' >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] g: runtime: O(1) [1], size: O(n^1) [z + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] f: runtime: O(n^1) [2 + z''], size: O(1) [0] encArg: runtime: O(n^2) [z + z^2], size: O(n^1) [z] encode_g: runtime: O(n^2) [1 + z + z^2 + z' + z'^2], size: O(n^1) [z + z'] encode_f: runtime: O(n^2) [2 + z + z^2 + z' + z'^2 + 2*z'' + z''^2], size: O(1) [0] encode_+: runtime: O(n^2) [1 + z + z^2 + 2*z' + z'^2], size: O(n^1) [z + z'] ---------------------------------------- (73) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_s after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (74) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 2 + s9 + x_1 + x_1^2 + x_2 + x_2^2 + x_3 + x_3^2 }-> s10 :|: s7 >= 0, s7 <= x_1, s8 >= 0, s8 <= x_2, s9 >= 0, s9 <= x_3, s10 >= 0, s10 <= 0, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 1 + x_1 + x_1^2 + x_2 + x_2^2 }-> s21 :|: s19 >= 0, s19 <= x_1, s20 >= 0, s20 <= x_2, s21 >= 0, s21 <= s20 + s19, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 + s5 + x_1 + x_1^2 + x_2 + x_2^2 }-> s6 :|: s4 >= 0, s4 <= x_1, s5 >= 0, s5 <= x_2, s6 >= 0, s6 <= s4 + s5, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -1*z + z^2 }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 encode_+(z, z') -{ 1 + s12 + z + z^2 + z' + z'^2 }-> s13 :|: s11 >= 0, s11 <= z, s12 >= 0, s12 <= z', s13 >= 0, s13 <= s11 + s12, z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 2 + s17 + z + z^2 + z' + z'^2 + z'' + z''^2 }-> s18 :|: s15 >= 0, s15 <= z, s16 >= 0, s16 <= z', s17 >= 0, s17 <= z'', s18 >= 0, s18 <= 0, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 1 + z + z^2 + z' + z'^2 }-> s24 :|: s22 >= 0, s22 <= z, s23 >= 0, s23 <= z', s24 >= 0, s24 <= s23 + s22, z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ z + z^2 }-> 1 + s14 :|: s14 >= 0, s14 <= z, z >= 0 f(z, z', z'') -{ 4 }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 4 + 2*z'' }-> s1 :|: s1 >= 0, s1 <= 0, s' >= 0, s' <= 1 + (z'' - 1) + (z'' - 1), z'' - 1 >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 3 + z'' }-> s2 :|: s2 >= 0, s2 <= 0, z'' >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] g: runtime: O(1) [1], size: O(n^1) [z + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] f: runtime: O(n^1) [2 + z''], size: O(1) [0] encArg: runtime: O(n^2) [z + z^2], size: O(n^1) [z] encode_g: runtime: O(n^2) [1 + z + z^2 + z' + z'^2], size: O(n^1) [z + z'] encode_f: runtime: O(n^2) [2 + z + z^2 + z' + z'^2 + 2*z'' + z''^2], size: O(1) [0] encode_+: runtime: O(n^2) [1 + z + z^2 + 2*z' + z'^2], size: O(n^1) [z + z'] encode_s: runtime: ?, size: O(n^1) [1 + z] ---------------------------------------- (75) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_s after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: z + z^2 ---------------------------------------- (76) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 2 + s9 + x_1 + x_1^2 + x_2 + x_2^2 + x_3 + x_3^2 }-> s10 :|: s7 >= 0, s7 <= x_1, s8 >= 0, s8 <= x_2, s9 >= 0, s9 <= x_3, s10 >= 0, s10 <= 0, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 1 + x_1 + x_1^2 + x_2 + x_2^2 }-> s21 :|: s19 >= 0, s19 <= x_1, s20 >= 0, s20 <= x_2, s21 >= 0, s21 <= s20 + s19, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 + s5 + x_1 + x_1^2 + x_2 + x_2^2 }-> s6 :|: s4 >= 0, s4 <= x_1, s5 >= 0, s5 <= x_2, s6 >= 0, s6 <= s4 + s5, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -1*z + z^2 }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 encode_+(z, z') -{ 1 + s12 + z + z^2 + z' + z'^2 }-> s13 :|: s11 >= 0, s11 <= z, s12 >= 0, s12 <= z', s13 >= 0, s13 <= s11 + s12, z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 2 + s17 + z + z^2 + z' + z'^2 + z'' + z''^2 }-> s18 :|: s15 >= 0, s15 <= z, s16 >= 0, s16 <= z', s17 >= 0, s17 <= z'', s18 >= 0, s18 <= 0, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z, z') -{ 1 + z + z^2 + z' + z'^2 }-> s24 :|: s22 >= 0, s22 <= z, s23 >= 0, s23 <= z', s24 >= 0, s24 <= s23 + s22, z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ z + z^2 }-> 1 + s14 :|: s14 >= 0, s14 <= z, z >= 0 f(z, z', z'') -{ 4 }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 4 + 2*z'' }-> s1 :|: s1 >= 0, s1 <= 0, s' >= 0, s' <= 1 + (z'' - 1) + (z'' - 1), z'' - 1 >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 3 + z'' }-> s2 :|: s2 >= 0, s2 <= 0, z'' >= 0, z' = 1 + 0, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z, z') -{ 1 }-> z :|: z' >= 0, z >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] g: runtime: O(1) [1], size: O(n^1) [z + z'] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] f: runtime: O(n^1) [2 + z''], size: O(1) [0] encArg: runtime: O(n^2) [z + z^2], size: O(n^1) [z] encode_g: runtime: O(n^2) [1 + z + z^2 + z' + z'^2], size: O(n^1) [z + z'] encode_f: runtime: O(n^2) [2 + z + z^2 + z' + z'^2 + 2*z'' + z''^2], size: O(1) [0] encode_+: runtime: O(n^2) [1 + z + z^2 + 2*z' + z'^2], size: O(n^1) [z + z'] encode_s: runtime: O(n^2) [z + z^2], size: O(n^1) [1 + z] ---------------------------------------- (77) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (78) BOUNDS(1, n^2) ---------------------------------------- (79) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (80) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: +'(X, 0') -> X +'(X, s(Y)) -> s(+'(X, Y)) f(0', s(0'), X) -> f(X, +'(X, X), X) g(X, Y) -> X g(X, Y) -> Y The (relative) TRS S consists of the following rules: encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (81) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (82) Obligation: Innermost TRS: Rules: +'(X, 0') -> X +'(X, s(Y)) -> s(+'(X, Y)) f(0', s(0'), X) -> f(X, +'(X, X), X) g(X, Y) -> X g(X, Y) -> Y encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) Types: +' :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g 0' :: 0':s:cons_+:cons_f:cons_g s :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g f :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g g :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g encArg :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g cons_+ :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g cons_f :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g cons_g :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g encode_+ :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g encode_0 :: 0':s:cons_+:cons_f:cons_g encode_s :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g encode_f :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g encode_g :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g hole_0':s:cons_+:cons_f:cons_g1_4 :: 0':s:cons_+:cons_f:cons_g gen_0':s:cons_+:cons_f:cons_g2_4 :: Nat -> 0':s:cons_+:cons_f:cons_g ---------------------------------------- (83) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: +', f, encArg They will be analysed ascendingly in the following order: +' < f +' < encArg f < encArg ---------------------------------------- (84) Obligation: Innermost TRS: Rules: +'(X, 0') -> X +'(X, s(Y)) -> s(+'(X, Y)) f(0', s(0'), X) -> f(X, +'(X, X), X) g(X, Y) -> X g(X, Y) -> Y encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) Types: +' :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g 0' :: 0':s:cons_+:cons_f:cons_g s :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g f :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g g :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g encArg :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g cons_+ :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g cons_f :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g cons_g :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g encode_+ :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g encode_0 :: 0':s:cons_+:cons_f:cons_g encode_s :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g encode_f :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g encode_g :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g hole_0':s:cons_+:cons_f:cons_g1_4 :: 0':s:cons_+:cons_f:cons_g gen_0':s:cons_+:cons_f:cons_g2_4 :: Nat -> 0':s:cons_+:cons_f:cons_g Generator Equations: gen_0':s:cons_+:cons_f:cons_g2_4(0) <=> 0' gen_0':s:cons_+:cons_f:cons_g2_4(+(x, 1)) <=> s(gen_0':s:cons_+:cons_f:cons_g2_4(x)) The following defined symbols remain to be analysed: +', f, encArg They will be analysed ascendingly in the following order: +' < f +' < encArg f < encArg ---------------------------------------- (85) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: +'(gen_0':s:cons_+:cons_f:cons_g2_4(a), gen_0':s:cons_+:cons_f:cons_g2_4(n4_4)) -> gen_0':s:cons_+:cons_f:cons_g2_4(+(n4_4, a)), rt in Omega(1 + n4_4) Induction Base: +'(gen_0':s:cons_+:cons_f:cons_g2_4(a), gen_0':s:cons_+:cons_f:cons_g2_4(0)) ->_R^Omega(1) gen_0':s:cons_+:cons_f:cons_g2_4(a) Induction Step: +'(gen_0':s:cons_+:cons_f:cons_g2_4(a), gen_0':s:cons_+:cons_f:cons_g2_4(+(n4_4, 1))) ->_R^Omega(1) s(+'(gen_0':s:cons_+:cons_f:cons_g2_4(a), gen_0':s:cons_+:cons_f:cons_g2_4(n4_4))) ->_IH s(gen_0':s:cons_+:cons_f:cons_g2_4(+(a, c5_4))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (86) Complex Obligation (BEST) ---------------------------------------- (87) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: +'(X, 0') -> X +'(X, s(Y)) -> s(+'(X, Y)) f(0', s(0'), X) -> f(X, +'(X, X), X) g(X, Y) -> X g(X, Y) -> Y encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) Types: +' :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g 0' :: 0':s:cons_+:cons_f:cons_g s :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g f :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g g :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g encArg :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g cons_+ :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g cons_f :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g cons_g :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g encode_+ :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g encode_0 :: 0':s:cons_+:cons_f:cons_g encode_s :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g encode_f :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g encode_g :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g hole_0':s:cons_+:cons_f:cons_g1_4 :: 0':s:cons_+:cons_f:cons_g gen_0':s:cons_+:cons_f:cons_g2_4 :: Nat -> 0':s:cons_+:cons_f:cons_g Generator Equations: gen_0':s:cons_+:cons_f:cons_g2_4(0) <=> 0' gen_0':s:cons_+:cons_f:cons_g2_4(+(x, 1)) <=> s(gen_0':s:cons_+:cons_f:cons_g2_4(x)) The following defined symbols remain to be analysed: +', f, encArg They will be analysed ascendingly in the following order: +' < f +' < encArg f < encArg ---------------------------------------- (88) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (89) BOUNDS(n^1, INF) ---------------------------------------- (90) Obligation: Innermost TRS: Rules: +'(X, 0') -> X +'(X, s(Y)) -> s(+'(X, Y)) f(0', s(0'), X) -> f(X, +'(X, X), X) g(X, Y) -> X g(X, Y) -> Y encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) Types: +' :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g 0' :: 0':s:cons_+:cons_f:cons_g s :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g f :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g g :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g encArg :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g cons_+ :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g cons_f :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g cons_g :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g encode_+ :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g encode_0 :: 0':s:cons_+:cons_f:cons_g encode_s :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g encode_f :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g encode_g :: 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g -> 0':s:cons_+:cons_f:cons_g hole_0':s:cons_+:cons_f:cons_g1_4 :: 0':s:cons_+:cons_f:cons_g gen_0':s:cons_+:cons_f:cons_g2_4 :: Nat -> 0':s:cons_+:cons_f:cons_g Lemmas: +'(gen_0':s:cons_+:cons_f:cons_g2_4(a), gen_0':s:cons_+:cons_f:cons_g2_4(n4_4)) -> gen_0':s:cons_+:cons_f:cons_g2_4(+(n4_4, a)), rt in Omega(1 + n4_4) Generator Equations: gen_0':s:cons_+:cons_f:cons_g2_4(0) <=> 0' gen_0':s:cons_+:cons_f:cons_g2_4(+(x, 1)) <=> s(gen_0':s:cons_+:cons_f:cons_g2_4(x)) The following defined symbols remain to be analysed: f, encArg They will be analysed ascendingly in the following order: f < encArg ---------------------------------------- (91) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_0':s:cons_+:cons_f:cons_g2_4(n805_4)) -> gen_0':s:cons_+:cons_f:cons_g2_4(n805_4), rt in Omega(0) Induction Base: encArg(gen_0':s:cons_+:cons_f:cons_g2_4(0)) ->_R^Omega(0) 0' Induction Step: encArg(gen_0':s:cons_+:cons_f:cons_g2_4(+(n805_4, 1))) ->_R^Omega(0) s(encArg(gen_0':s:cons_+:cons_f:cons_g2_4(n805_4))) ->_IH s(gen_0':s:cons_+:cons_f:cons_g2_4(c806_4)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (92) BOUNDS(1, INF)