WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 166 ms] (4) CpxRelTRS (5) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxWeightedTrs (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedTrs (9) CompletionProof [UPPER BOUND(ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) NarrowingProof [BOTH BOUNDS(ID, ID), 173 ms] (12) CpxTypedWeightedCompleteTrs (13) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (14) CpxRNTS (15) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxRNTS (19) ResultPropagationProof [UPPER BOUND(ID), 1 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 52 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (24) CpxRNTS (25) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 17 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 3 ms] (30) CpxRNTS (31) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 409 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 159 ms] (36) CpxRNTS (37) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 78 ms] (40) CpxRNTS (41) IntTrsBoundProof [UPPER BOUND(ID), 215 ms] (42) CpxRNTS (43) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 154 ms] (46) CpxRNTS (47) IntTrsBoundProof [UPPER BOUND(ID), 4 ms] (48) CpxRNTS (49) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (50) CpxRNTS (51) IntTrsBoundProof [UPPER BOUND(ID), 67 ms] (52) CpxRNTS (53) IntTrsBoundProof [UPPER BOUND(ID), 73 ms] (54) CpxRNTS (55) FinalProof [FINISHED, 0 ms] (56) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(x, y, z) -> g(x, y, z) g(0, 1, x) -> f(x, x, x) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(1) -> 1 encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1, x_2, x_3)) -> g(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1, x_2, x_3) -> g(encArg(x_1), encArg(x_2), encArg(x_3)) encode_0 -> 0 encode_1 -> 1 ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(x, y, z) -> g(x, y, z) g(0, 1, x) -> f(x, x, x) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(1) -> 1 encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1, x_2, x_3)) -> g(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1, x_2, x_3) -> g(encArg(x_1), encArg(x_2), encArg(x_3)) encode_0 -> 0 encode_1 -> 1 Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(x, y, z) -> g(x, y, z) g(0, 1, x) -> f(x, x, x) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(1) -> 1 encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1, x_2, x_3)) -> g(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1, x_2, x_3) -> g(encArg(x_1), encArg(x_2), encArg(x_3)) encode_0 -> 0 encode_1 -> 1 Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(x, y, z) -> g(x, y, z) [1] g(0, 1, x) -> f(x, x, x) [1] encArg(0) -> 0 [0] encArg(1) -> 1 [0] encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encArg(cons_g(x_1, x_2, x_3)) -> g(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_g(x_1, x_2, x_3) -> g(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_0 -> 0 [0] encode_1 -> 1 [0] Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(x, y, z) -> g(x, y, z) [1] g(0, 1, x) -> f(x, x, x) [1] encArg(0) -> 0 [0] encArg(1) -> 1 [0] encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encArg(cons_g(x_1, x_2, x_3)) -> g(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_g(x_1, x_2, x_3) -> g(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_0 -> 0 [0] encode_1 -> 1 [0] The TRS has the following type information: f :: 0:1:cons_f:cons_g -> 0:1:cons_f:cons_g -> 0:1:cons_f:cons_g -> 0:1:cons_f:cons_g g :: 0:1:cons_f:cons_g -> 0:1:cons_f:cons_g -> 0:1:cons_f:cons_g -> 0:1:cons_f:cons_g 0 :: 0:1:cons_f:cons_g 1 :: 0:1:cons_f:cons_g encArg :: 0:1:cons_f:cons_g -> 0:1:cons_f:cons_g cons_f :: 0:1:cons_f:cons_g -> 0:1:cons_f:cons_g -> 0:1:cons_f:cons_g -> 0:1:cons_f:cons_g cons_g :: 0:1:cons_f:cons_g -> 0:1:cons_f:cons_g -> 0:1:cons_f:cons_g -> 0:1:cons_f:cons_g encode_f :: 0:1:cons_f:cons_g -> 0:1:cons_f:cons_g -> 0:1:cons_f:cons_g -> 0:1:cons_f:cons_g encode_g :: 0:1:cons_f:cons_g -> 0:1:cons_f:cons_g -> 0:1:cons_f:cons_g -> 0:1:cons_f:cons_g encode_0 :: 0:1:cons_f:cons_g encode_1 :: 0:1:cons_f:cons_g Rewrite Strategy: INNERMOST ---------------------------------------- (9) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: g_3 f_3 encArg_1 encode_f_3 encode_g_3 encode_0 encode_1 Due to the following rules being added: encArg(v0) -> null_encArg [0] encode_f(v0, v1, v2) -> null_encode_f [0] encode_g(v0, v1, v2) -> null_encode_g [0] encode_0 -> null_encode_0 [0] encode_1 -> null_encode_1 [0] g(v0, v1, v2) -> null_g [0] And the following fresh constants: null_encArg, null_encode_f, null_encode_g, null_encode_0, null_encode_1, null_g ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(x, y, z) -> g(x, y, z) [1] g(0, 1, x) -> f(x, x, x) [1] encArg(0) -> 0 [0] encArg(1) -> 1 [0] encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encArg(cons_g(x_1, x_2, x_3)) -> g(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_g(x_1, x_2, x_3) -> g(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_0 -> 0 [0] encode_1 -> 1 [0] encArg(v0) -> null_encArg [0] encode_f(v0, v1, v2) -> null_encode_f [0] encode_g(v0, v1, v2) -> null_encode_g [0] encode_0 -> null_encode_0 [0] encode_1 -> null_encode_1 [0] g(v0, v1, v2) -> null_g [0] The TRS has the following type information: f :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g g :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g 0 :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g 1 :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g encArg :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g cons_f :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g cons_g :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g encode_f :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g encode_g :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g encode_0 :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g encode_1 :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g null_encArg :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g null_encode_f :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g null_encode_g :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g null_encode_0 :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g null_encode_1 :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g null_g :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g Rewrite Strategy: INNERMOST ---------------------------------------- (11) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(x, y, z) -> g(x, y, z) [1] g(0, 1, x) -> f(x, x, x) [1] encArg(0) -> 0 [0] encArg(1) -> 1 [0] encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encArg(cons_g(x_1, x_2, x_3)) -> g(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_g(x_1, x_2, x_3) -> g(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_0 -> 0 [0] encode_1 -> 1 [0] encArg(v0) -> null_encArg [0] encode_f(v0, v1, v2) -> null_encode_f [0] encode_g(v0, v1, v2) -> null_encode_g [0] encode_0 -> null_encode_0 [0] encode_1 -> null_encode_1 [0] g(v0, v1, v2) -> null_g [0] The TRS has the following type information: f :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g g :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g 0 :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g 1 :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g encArg :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g cons_f :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g cons_g :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g encode_f :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g encode_g :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g -> 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g encode_0 :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g encode_1 :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g null_encArg :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g null_encode_f :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g null_encode_g :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g null_encode_0 :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g null_encode_1 :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g null_g :: 0:1:cons_f:cons_g:null_encArg:null_encode_f:null_encode_g:null_encode_0:null_encode_1:null_g Rewrite Strategy: INNERMOST ---------------------------------------- (13) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 1 => 1 null_encArg => 0 null_encode_f => 0 null_encode_g => 0 null_encode_0 => 0 null_encode_1 => 0 null_g => 0 ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> g(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: v0 >= 0, z' = v0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z1 = x_3, z' = x_1, x_3 >= 0, x_2 >= 0, z'' = x_2 encode_f(z', z'', z1) -{ 0 }-> 0 :|: v0 >= 0, z1 = v2, v1 >= 0, z'' = v1, v2 >= 0, z' = v0 encode_g(z', z'', z1) -{ 0 }-> g(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z1 = x_3, z' = x_1, x_3 >= 0, x_2 >= 0, z'' = x_2 encode_g(z', z'', z1) -{ 0 }-> 0 :|: v0 >= 0, z1 = v2, v1 >= 0, z'' = v1, v2 >= 0, z' = v0 f(z', z'', z1) -{ 1 }-> g(x, y, z) :|: z1 = z, z >= 0, z' = x, z'' = y, x >= 0, y >= 0 g(z', z'', z1) -{ 1 }-> f(x, x, x) :|: x >= 0, z'' = 1, z1 = x, z' = 0 g(z', z'', z1) -{ 0 }-> 0 :|: v0 >= 0, z1 = v2, v1 >= 0, z'' = v1, v2 >= 0, z' = v0 ---------------------------------------- (15) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> g(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 0 }-> f(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'', z1) -{ 0 }-> g(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_g(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 1 }-> g(z', z'', z1) :|: z1 >= 0, z' >= 0, z'' >= 0 g(z', z'', z1) -{ 1 }-> f(z1, z1, z1) :|: z1 >= 0, z'' = 1, z' = 0 g(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 ---------------------------------------- (17) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { encode_0 } { encode_1 } { f, g } { encArg } { encode_f } { encode_g } ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> g(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 0 }-> f(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'', z1) -{ 0 }-> g(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_g(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 1 }-> g(z', z'', z1) :|: z1 >= 0, z' >= 0, z'' >= 0 g(z', z'', z1) -{ 1 }-> f(z1, z1, z1) :|: z1 >= 0, z'' = 1, z' = 0 g(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 Function symbols to be analyzed: {encode_0}, {encode_1}, {f,g}, {encArg}, {encode_f}, {encode_g} ---------------------------------------- (19) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> g(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 0 }-> f(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'', z1) -{ 0 }-> g(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_g(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 1 }-> g(z', z'', z1) :|: z1 >= 0, z' >= 0, z'' >= 0 g(z', z'', z1) -{ 1 }-> f(z1, z1, z1) :|: z1 >= 0, z'' = 1, z' = 0 g(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 Function symbols to be analyzed: {encode_0}, {encode_1}, {f,g}, {encArg}, {encode_f}, {encode_g} ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_0 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> g(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 0 }-> f(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'', z1) -{ 0 }-> g(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_g(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 1 }-> g(z', z'', z1) :|: z1 >= 0, z' >= 0, z'' >= 0 g(z', z'', z1) -{ 1 }-> f(z1, z1, z1) :|: z1 >= 0, z'' = 1, z' = 0 g(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 Function symbols to be analyzed: {encode_0}, {encode_1}, {f,g}, {encArg}, {encode_f}, {encode_g} Previous analysis results are: encode_0: runtime: ?, size: O(1) [0] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_0 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> g(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 0 }-> f(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'', z1) -{ 0 }-> g(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_g(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 1 }-> g(z', z'', z1) :|: z1 >= 0, z' >= 0, z'' >= 0 g(z', z'', z1) -{ 1 }-> f(z1, z1, z1) :|: z1 >= 0, z'' = 1, z' = 0 g(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 Function symbols to be analyzed: {encode_1}, {f,g}, {encArg}, {encode_f}, {encode_g} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (25) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> g(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 0 }-> f(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'', z1) -{ 0 }-> g(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_g(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 1 }-> g(z', z'', z1) :|: z1 >= 0, z' >= 0, z'' >= 0 g(z', z'', z1) -{ 1 }-> f(z1, z1, z1) :|: z1 >= 0, z'' = 1, z' = 0 g(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 Function symbols to be analyzed: {encode_1}, {f,g}, {encArg}, {encode_f}, {encode_g} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_1 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> g(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 0 }-> f(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'', z1) -{ 0 }-> g(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_g(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 1 }-> g(z', z'', z1) :|: z1 >= 0, z' >= 0, z'' >= 0 g(z', z'', z1) -{ 1 }-> f(z1, z1, z1) :|: z1 >= 0, z'' = 1, z' = 0 g(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 Function symbols to be analyzed: {encode_1}, {f,g}, {encArg}, {encode_f}, {encode_g} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: ?, size: O(1) [1] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_1 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> g(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 0 }-> f(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'', z1) -{ 0 }-> g(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_g(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 1 }-> g(z', z'', z1) :|: z1 >= 0, z' >= 0, z'' >= 0 g(z', z'', z1) -{ 1 }-> f(z1, z1, z1) :|: z1 >= 0, z'' = 1, z' = 0 g(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 Function symbols to be analyzed: {f,g}, {encArg}, {encode_f}, {encode_g} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] ---------------------------------------- (31) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> g(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 0 }-> f(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'', z1) -{ 0 }-> g(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_g(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 1 }-> g(z', z'', z1) :|: z1 >= 0, z' >= 0, z'' >= 0 g(z', z'', z1) -{ 1 }-> f(z1, z1, z1) :|: z1 >= 0, z'' = 1, z' = 0 g(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 Function symbols to be analyzed: {f,g}, {encArg}, {encode_f}, {encode_g} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 Computed SIZE bound using CoFloCo for: g after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> g(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 0 }-> f(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'', z1) -{ 0 }-> g(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_g(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 1 }-> g(z', z'', z1) :|: z1 >= 0, z' >= 0, z'' >= 0 g(z', z'', z1) -{ 1 }-> f(z1, z1, z1) :|: z1 >= 0, z'' = 1, z' = 0 g(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 Function symbols to be analyzed: {f,g}, {encArg}, {encode_f}, {encode_g} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] f: runtime: ?, size: O(1) [0] g: runtime: ?, size: O(1) [0] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 3 Computed RUNTIME bound using CoFloCo for: g after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 4 ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> g(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 0 }-> f(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'', z1) -{ 0 }-> g(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_g(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 1 }-> g(z', z'', z1) :|: z1 >= 0, z' >= 0, z'' >= 0 g(z', z'', z1) -{ 1 }-> f(z1, z1, z1) :|: z1 >= 0, z'' = 1, z' = 0 g(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 Function symbols to be analyzed: {encArg}, {encode_f}, {encode_g} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] f: runtime: O(1) [3], size: O(1) [0] g: runtime: O(1) [4], size: O(1) [0] ---------------------------------------- (37) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> g(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 0 }-> f(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'', z1) -{ 0 }-> g(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_g(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 5 }-> s :|: s >= 0, s <= 0, z1 >= 0, z' >= 0, z'' >= 0 g(z', z'', z1) -{ 4 }-> s' :|: s' >= 0, s' <= 0, z1 >= 0, z'' = 1, z' = 0 g(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 Function symbols to be analyzed: {encArg}, {encode_f}, {encode_g} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] f: runtime: O(1) [3], size: O(1) [0] g: runtime: O(1) [4], size: O(1) [0] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> g(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 0 }-> f(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'', z1) -{ 0 }-> g(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_g(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 5 }-> s :|: s >= 0, s <= 0, z1 >= 0, z' >= 0, z'' >= 0 g(z', z'', z1) -{ 4 }-> s' :|: s' >= 0, s' <= 0, z1 >= 0, z'' = 1, z' = 0 g(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 Function symbols to be analyzed: {encArg}, {encode_f}, {encode_g} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] f: runtime: O(1) [3], size: O(1) [0] g: runtime: O(1) [4], size: O(1) [0] encArg: runtime: ?, size: O(1) [1] ---------------------------------------- (41) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 4*z' ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 0 }-> g(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 0 }-> f(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'', z1) -{ 0 }-> g(encArg(z'), encArg(z''), encArg(z1)) :|: z' >= 0, z1 >= 0, z'' >= 0 encode_g(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 5 }-> s :|: s >= 0, s <= 0, z1 >= 0, z' >= 0, z'' >= 0 g(z', z'', z1) -{ 4 }-> s' :|: s' >= 0, s' <= 0, z1 >= 0, z'' = 1, z' = 0 g(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 Function symbols to be analyzed: {encode_f}, {encode_g} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] f: runtime: O(1) [3], size: O(1) [0] g: runtime: O(1) [4], size: O(1) [0] encArg: runtime: O(n^1) [4*z'], size: O(1) [1] ---------------------------------------- (43) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 3 + 4*x_1 + 4*x_2 + 4*x_3 }-> s3 :|: s'' >= 0, s'' <= 1, s1 >= 0, s1 <= 1, s2 >= 0, s2 <= 1, s3 >= 0, s3 <= 0, x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 4 + 4*x_1 + 4*x_2 + 4*x_3 }-> s7 :|: s4 >= 0, s4 <= 1, s5 >= 0, s5 <= 1, s6 >= 0, s6 <= 1, s7 >= 0, s7 <= 0, x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 3 + 4*z' + 4*z'' + 4*z1 }-> s11 :|: s8 >= 0, s8 <= 1, s9 >= 0, s9 <= 1, s10 >= 0, s10 <= 1, s11 >= 0, s11 <= 0, z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'', z1) -{ 4 + 4*z' + 4*z'' + 4*z1 }-> s15 :|: s12 >= 0, s12 <= 1, s13 >= 0, s13 <= 1, s14 >= 0, s14 <= 1, s15 >= 0, s15 <= 0, z' >= 0, z1 >= 0, z'' >= 0 encode_g(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 5 }-> s :|: s >= 0, s <= 0, z1 >= 0, z' >= 0, z'' >= 0 g(z', z'', z1) -{ 4 }-> s' :|: s' >= 0, s' <= 0, z1 >= 0, z'' = 1, z' = 0 g(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 Function symbols to be analyzed: {encode_f}, {encode_g} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] f: runtime: O(1) [3], size: O(1) [0] g: runtime: O(1) [4], size: O(1) [0] encArg: runtime: O(n^1) [4*z'], size: O(1) [1] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_f after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 3 + 4*x_1 + 4*x_2 + 4*x_3 }-> s3 :|: s'' >= 0, s'' <= 1, s1 >= 0, s1 <= 1, s2 >= 0, s2 <= 1, s3 >= 0, s3 <= 0, x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 4 + 4*x_1 + 4*x_2 + 4*x_3 }-> s7 :|: s4 >= 0, s4 <= 1, s5 >= 0, s5 <= 1, s6 >= 0, s6 <= 1, s7 >= 0, s7 <= 0, x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 3 + 4*z' + 4*z'' + 4*z1 }-> s11 :|: s8 >= 0, s8 <= 1, s9 >= 0, s9 <= 1, s10 >= 0, s10 <= 1, s11 >= 0, s11 <= 0, z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'', z1) -{ 4 + 4*z' + 4*z'' + 4*z1 }-> s15 :|: s12 >= 0, s12 <= 1, s13 >= 0, s13 <= 1, s14 >= 0, s14 <= 1, s15 >= 0, s15 <= 0, z' >= 0, z1 >= 0, z'' >= 0 encode_g(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 5 }-> s :|: s >= 0, s <= 0, z1 >= 0, z' >= 0, z'' >= 0 g(z', z'', z1) -{ 4 }-> s' :|: s' >= 0, s' <= 0, z1 >= 0, z'' = 1, z' = 0 g(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 Function symbols to be analyzed: {encode_f}, {encode_g} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] f: runtime: O(1) [3], size: O(1) [0] g: runtime: O(1) [4], size: O(1) [0] encArg: runtime: O(n^1) [4*z'], size: O(1) [1] encode_f: runtime: ?, size: O(1) [0] ---------------------------------------- (47) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 3 + 4*z' + 4*z'' + 4*z1 ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 3 + 4*x_1 + 4*x_2 + 4*x_3 }-> s3 :|: s'' >= 0, s'' <= 1, s1 >= 0, s1 <= 1, s2 >= 0, s2 <= 1, s3 >= 0, s3 <= 0, x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 4 + 4*x_1 + 4*x_2 + 4*x_3 }-> s7 :|: s4 >= 0, s4 <= 1, s5 >= 0, s5 <= 1, s6 >= 0, s6 <= 1, s7 >= 0, s7 <= 0, x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 3 + 4*z' + 4*z'' + 4*z1 }-> s11 :|: s8 >= 0, s8 <= 1, s9 >= 0, s9 <= 1, s10 >= 0, s10 <= 1, s11 >= 0, s11 <= 0, z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'', z1) -{ 4 + 4*z' + 4*z'' + 4*z1 }-> s15 :|: s12 >= 0, s12 <= 1, s13 >= 0, s13 <= 1, s14 >= 0, s14 <= 1, s15 >= 0, s15 <= 0, z' >= 0, z1 >= 0, z'' >= 0 encode_g(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 5 }-> s :|: s >= 0, s <= 0, z1 >= 0, z' >= 0, z'' >= 0 g(z', z'', z1) -{ 4 }-> s' :|: s' >= 0, s' <= 0, z1 >= 0, z'' = 1, z' = 0 g(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 Function symbols to be analyzed: {encode_g} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] f: runtime: O(1) [3], size: O(1) [0] g: runtime: O(1) [4], size: O(1) [0] encArg: runtime: O(n^1) [4*z'], size: O(1) [1] encode_f: runtime: O(n^1) [3 + 4*z' + 4*z'' + 4*z1], size: O(1) [0] ---------------------------------------- (49) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 3 + 4*x_1 + 4*x_2 + 4*x_3 }-> s3 :|: s'' >= 0, s'' <= 1, s1 >= 0, s1 <= 1, s2 >= 0, s2 <= 1, s3 >= 0, s3 <= 0, x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 4 + 4*x_1 + 4*x_2 + 4*x_3 }-> s7 :|: s4 >= 0, s4 <= 1, s5 >= 0, s5 <= 1, s6 >= 0, s6 <= 1, s7 >= 0, s7 <= 0, x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 3 + 4*z' + 4*z'' + 4*z1 }-> s11 :|: s8 >= 0, s8 <= 1, s9 >= 0, s9 <= 1, s10 >= 0, s10 <= 1, s11 >= 0, s11 <= 0, z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'', z1) -{ 4 + 4*z' + 4*z'' + 4*z1 }-> s15 :|: s12 >= 0, s12 <= 1, s13 >= 0, s13 <= 1, s14 >= 0, s14 <= 1, s15 >= 0, s15 <= 0, z' >= 0, z1 >= 0, z'' >= 0 encode_g(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 5 }-> s :|: s >= 0, s <= 0, z1 >= 0, z' >= 0, z'' >= 0 g(z', z'', z1) -{ 4 }-> s' :|: s' >= 0, s' <= 0, z1 >= 0, z'' = 1, z' = 0 g(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 Function symbols to be analyzed: {encode_g} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] f: runtime: O(1) [3], size: O(1) [0] g: runtime: O(1) [4], size: O(1) [0] encArg: runtime: O(n^1) [4*z'], size: O(1) [1] encode_f: runtime: O(n^1) [3 + 4*z' + 4*z'' + 4*z1], size: O(1) [0] ---------------------------------------- (51) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_g after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 3 + 4*x_1 + 4*x_2 + 4*x_3 }-> s3 :|: s'' >= 0, s'' <= 1, s1 >= 0, s1 <= 1, s2 >= 0, s2 <= 1, s3 >= 0, s3 <= 0, x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 4 + 4*x_1 + 4*x_2 + 4*x_3 }-> s7 :|: s4 >= 0, s4 <= 1, s5 >= 0, s5 <= 1, s6 >= 0, s6 <= 1, s7 >= 0, s7 <= 0, x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 3 + 4*z' + 4*z'' + 4*z1 }-> s11 :|: s8 >= 0, s8 <= 1, s9 >= 0, s9 <= 1, s10 >= 0, s10 <= 1, s11 >= 0, s11 <= 0, z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'', z1) -{ 4 + 4*z' + 4*z'' + 4*z1 }-> s15 :|: s12 >= 0, s12 <= 1, s13 >= 0, s13 <= 1, s14 >= 0, s14 <= 1, s15 >= 0, s15 <= 0, z' >= 0, z1 >= 0, z'' >= 0 encode_g(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 5 }-> s :|: s >= 0, s <= 0, z1 >= 0, z' >= 0, z'' >= 0 g(z', z'', z1) -{ 4 }-> s' :|: s' >= 0, s' <= 0, z1 >= 0, z'' = 1, z' = 0 g(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 Function symbols to be analyzed: {encode_g} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] f: runtime: O(1) [3], size: O(1) [0] g: runtime: O(1) [4], size: O(1) [0] encArg: runtime: O(n^1) [4*z'], size: O(1) [1] encode_f: runtime: O(n^1) [3 + 4*z' + 4*z'' + 4*z1], size: O(1) [0] encode_g: runtime: ?, size: O(1) [0] ---------------------------------------- (53) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_g after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 4 + 4*z' + 4*z'' + 4*z1 ---------------------------------------- (54) Obligation: Complexity RNTS consisting of the following rules: encArg(z') -{ 3 + 4*x_1 + 4*x_2 + 4*x_3 }-> s3 :|: s'' >= 0, s'' <= 1, s1 >= 0, s1 <= 1, s2 >= 0, s2 <= 1, s3 >= 0, s3 <= 0, x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 4 + 4*x_1 + 4*x_2 + 4*x_3 }-> s7 :|: s4 >= 0, s4 <= 1, s5 >= 0, s5 <= 1, s6 >= 0, s6 <= 1, s7 >= 0, s7 <= 0, x_1 >= 0, z' = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z') -{ 0 }-> 1 :|: z' = 1 encArg(z') -{ 0 }-> 0 :|: z' = 0 encArg(z') -{ 0 }-> 0 :|: z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_1 -{ 0 }-> 1 :|: encode_1 -{ 0 }-> 0 :|: encode_f(z', z'', z1) -{ 3 + 4*z' + 4*z'' + 4*z1 }-> s11 :|: s8 >= 0, s8 <= 1, s9 >= 0, s9 <= 1, s10 >= 0, s10 <= 1, s11 >= 0, s11 <= 0, z' >= 0, z1 >= 0, z'' >= 0 encode_f(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 encode_g(z', z'', z1) -{ 4 + 4*z' + 4*z'' + 4*z1 }-> s15 :|: s12 >= 0, s12 <= 1, s13 >= 0, s13 <= 1, s14 >= 0, s14 <= 1, s15 >= 0, s15 <= 0, z' >= 0, z1 >= 0, z'' >= 0 encode_g(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 f(z', z'', z1) -{ 5 }-> s :|: s >= 0, s <= 0, z1 >= 0, z' >= 0, z'' >= 0 g(z', z'', z1) -{ 4 }-> s' :|: s' >= 0, s' <= 0, z1 >= 0, z'' = 1, z' = 0 g(z', z'', z1) -{ 0 }-> 0 :|: z' >= 0, z'' >= 0, z1 >= 0 Function symbols to be analyzed: Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] encode_1: runtime: O(1) [0], size: O(1) [1] f: runtime: O(1) [3], size: O(1) [0] g: runtime: O(1) [4], size: O(1) [0] encArg: runtime: O(n^1) [4*z'], size: O(1) [1] encode_f: runtime: O(n^1) [3 + 4*z' + 4*z'' + 4*z1], size: O(1) [0] encode_g: runtime: O(n^1) [4 + 4*z' + 4*z'' + 4*z1], size: O(1) [0] ---------------------------------------- (55) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (56) BOUNDS(1, n^1)