WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 118 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 910 ms] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 253 ms] (18) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: ack(0, y) -> s(y) ack(s(x), 0) -> ack(x, s(0)) ack(s(x), s(y)) -> ack(x, ack(s(x), y)) f(s(x), y) -> f(x, s(x)) f(x, s(y)) -> f(y, x) f(x, y) -> ack(x, y) ack(s(x), y) -> f(x, x) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_ack(x_1, x_2)) -> ack(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_ack(x_1, x_2) -> ack(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: ack(0, y) -> s(y) ack(s(x), 0) -> ack(x, s(0)) ack(s(x), s(y)) -> ack(x, ack(s(x), y)) f(s(x), y) -> f(x, s(x)) f(x, s(y)) -> f(y, x) f(x, y) -> ack(x, y) ack(s(x), y) -> f(x, x) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_ack(x_1, x_2)) -> ack(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_ack(x_1, x_2) -> ack(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: ack(0, y) -> s(y) ack(s(x), 0) -> ack(x, s(0)) ack(s(x), s(y)) -> ack(x, ack(s(x), y)) f(s(x), y) -> f(x, s(x)) f(x, s(y)) -> f(y, x) f(x, y) -> ack(x, y) ack(s(x), y) -> f(x, x) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_ack(x_1, x_2)) -> ack(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_ack(x_1, x_2) -> ack(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: ack(0', y) -> s(y) ack(s(x), 0') -> ack(x, s(0')) ack(s(x), s(y)) -> ack(x, ack(s(x), y)) f(s(x), y) -> f(x, s(x)) f(x, s(y)) -> f(y, x) f(x, y) -> ack(x, y) ack(s(x), y) -> f(x, x) The (relative) TRS S consists of the following rules: encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_ack(x_1, x_2)) -> ack(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_ack(x_1, x_2) -> ack(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Innermost TRS: Rules: ack(0', y) -> s(y) ack(s(x), 0') -> ack(x, s(0')) ack(s(x), s(y)) -> ack(x, ack(s(x), y)) f(s(x), y) -> f(x, s(x)) f(x, s(y)) -> f(y, x) f(x, y) -> ack(x, y) ack(s(x), y) -> f(x, x) encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_ack(x_1, x_2)) -> ack(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_ack(x_1, x_2) -> ack(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) Types: ack :: 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f 0' :: 0':s:cons_ack:cons_f s :: 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f f :: 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f encArg :: 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f cons_ack :: 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f cons_f :: 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f encode_ack :: 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f encode_0 :: 0':s:cons_ack:cons_f encode_s :: 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f encode_f :: 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f hole_0':s:cons_ack:cons_f1_3 :: 0':s:cons_ack:cons_f gen_0':s:cons_ack:cons_f2_3 :: Nat -> 0':s:cons_ack:cons_f ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: ack, f, encArg They will be analysed ascendingly in the following order: ack = f ack < encArg f < encArg ---------------------------------------- (10) Obligation: Innermost TRS: Rules: ack(0', y) -> s(y) ack(s(x), 0') -> ack(x, s(0')) ack(s(x), s(y)) -> ack(x, ack(s(x), y)) f(s(x), y) -> f(x, s(x)) f(x, s(y)) -> f(y, x) f(x, y) -> ack(x, y) ack(s(x), y) -> f(x, x) encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_ack(x_1, x_2)) -> ack(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_ack(x_1, x_2) -> ack(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) Types: ack :: 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f 0' :: 0':s:cons_ack:cons_f s :: 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f f :: 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f encArg :: 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f cons_ack :: 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f cons_f :: 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f encode_ack :: 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f encode_0 :: 0':s:cons_ack:cons_f encode_s :: 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f encode_f :: 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f hole_0':s:cons_ack:cons_f1_3 :: 0':s:cons_ack:cons_f gen_0':s:cons_ack:cons_f2_3 :: Nat -> 0':s:cons_ack:cons_f Generator Equations: gen_0':s:cons_ack:cons_f2_3(0) <=> 0' gen_0':s:cons_ack:cons_f2_3(+(x, 1)) <=> s(gen_0':s:cons_ack:cons_f2_3(x)) The following defined symbols remain to be analysed: f, ack, encArg They will be analysed ascendingly in the following order: ack = f ack < encArg f < encArg ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: ack(gen_0':s:cons_ack:cons_f2_3(1), gen_0':s:cons_ack:cons_f2_3(+(1, n4125_3))) -> *3_3, rt in Omega(n4125_3) Induction Base: ack(gen_0':s:cons_ack:cons_f2_3(1), gen_0':s:cons_ack:cons_f2_3(+(1, 0))) Induction Step: ack(gen_0':s:cons_ack:cons_f2_3(1), gen_0':s:cons_ack:cons_f2_3(+(1, +(n4125_3, 1)))) ->_R^Omega(1) ack(gen_0':s:cons_ack:cons_f2_3(0), ack(s(gen_0':s:cons_ack:cons_f2_3(0)), gen_0':s:cons_ack:cons_f2_3(+(1, n4125_3)))) ->_IH ack(gen_0':s:cons_ack:cons_f2_3(0), *3_3) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: ack(0', y) -> s(y) ack(s(x), 0') -> ack(x, s(0')) ack(s(x), s(y)) -> ack(x, ack(s(x), y)) f(s(x), y) -> f(x, s(x)) f(x, s(y)) -> f(y, x) f(x, y) -> ack(x, y) ack(s(x), y) -> f(x, x) encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_ack(x_1, x_2)) -> ack(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_ack(x_1, x_2) -> ack(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) Types: ack :: 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f 0' :: 0':s:cons_ack:cons_f s :: 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f f :: 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f encArg :: 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f cons_ack :: 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f cons_f :: 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f encode_ack :: 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f encode_0 :: 0':s:cons_ack:cons_f encode_s :: 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f encode_f :: 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f hole_0':s:cons_ack:cons_f1_3 :: 0':s:cons_ack:cons_f gen_0':s:cons_ack:cons_f2_3 :: Nat -> 0':s:cons_ack:cons_f Generator Equations: gen_0':s:cons_ack:cons_f2_3(0) <=> 0' gen_0':s:cons_ack:cons_f2_3(+(x, 1)) <=> s(gen_0':s:cons_ack:cons_f2_3(x)) The following defined symbols remain to be analysed: ack, encArg They will be analysed ascendingly in the following order: ack = f ack < encArg f < encArg ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: Innermost TRS: Rules: ack(0', y) -> s(y) ack(s(x), 0') -> ack(x, s(0')) ack(s(x), s(y)) -> ack(x, ack(s(x), y)) f(s(x), y) -> f(x, s(x)) f(x, s(y)) -> f(y, x) f(x, y) -> ack(x, y) ack(s(x), y) -> f(x, x) encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_ack(x_1, x_2)) -> ack(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_ack(x_1, x_2) -> ack(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) Types: ack :: 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f 0' :: 0':s:cons_ack:cons_f s :: 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f f :: 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f encArg :: 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f cons_ack :: 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f cons_f :: 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f encode_ack :: 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f encode_0 :: 0':s:cons_ack:cons_f encode_s :: 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f encode_f :: 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f -> 0':s:cons_ack:cons_f hole_0':s:cons_ack:cons_f1_3 :: 0':s:cons_ack:cons_f gen_0':s:cons_ack:cons_f2_3 :: Nat -> 0':s:cons_ack:cons_f Lemmas: ack(gen_0':s:cons_ack:cons_f2_3(1), gen_0':s:cons_ack:cons_f2_3(+(1, n4125_3))) -> *3_3, rt in Omega(n4125_3) Generator Equations: gen_0':s:cons_ack:cons_f2_3(0) <=> 0' gen_0':s:cons_ack:cons_f2_3(+(x, 1)) <=> s(gen_0':s:cons_ack:cons_f2_3(x)) The following defined symbols remain to be analysed: f, encArg They will be analysed ascendingly in the following order: ack = f ack < encArg f < encArg ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_0':s:cons_ack:cons_f2_3(n16000_3)) -> gen_0':s:cons_ack:cons_f2_3(n16000_3), rt in Omega(0) Induction Base: encArg(gen_0':s:cons_ack:cons_f2_3(0)) ->_R^Omega(0) 0' Induction Step: encArg(gen_0':s:cons_ack:cons_f2_3(+(n16000_3, 1))) ->_R^Omega(0) s(encArg(gen_0':s:cons_ack:cons_f2_3(n16000_3))) ->_IH s(gen_0':s:cons_ack:cons_f2_3(c16001_3)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (18) BOUNDS(1, INF)