WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 201 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: plus(s(s(x)), y) -> s(plus(x, s(y))) plus(x, s(s(y))) -> s(plus(s(x), y)) plus(s(0), y) -> s(y) plus(0, y) -> y ack(0, y) -> s(y) ack(s(x), 0) -> ack(x, s(0)) ack(s(x), s(y)) -> ack(x, plus(y, ack(s(x), y))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_ack(x_1, x_2)) -> ack(encArg(x_1), encArg(x_2)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_0 -> 0 encode_ack(x_1, x_2) -> ack(encArg(x_1), encArg(x_2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: plus(s(s(x)), y) -> s(plus(x, s(y))) plus(x, s(s(y))) -> s(plus(s(x), y)) plus(s(0), y) -> s(y) plus(0, y) -> y ack(0, y) -> s(y) ack(s(x), 0) -> ack(x, s(0)) ack(s(x), s(y)) -> ack(x, plus(y, ack(s(x), y))) The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_ack(x_1, x_2)) -> ack(encArg(x_1), encArg(x_2)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_0 -> 0 encode_ack(x_1, x_2) -> ack(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: plus(s(s(x)), y) -> s(plus(x, s(y))) plus(x, s(s(y))) -> s(plus(s(x), y)) plus(s(0), y) -> s(y) plus(0, y) -> y ack(0, y) -> s(y) ack(s(x), 0) -> ack(x, s(0)) ack(s(x), s(y)) -> ack(x, plus(y, ack(s(x), y))) The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_ack(x_1, x_2)) -> ack(encArg(x_1), encArg(x_2)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_0 -> 0 encode_ack(x_1, x_2) -> ack(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: plus(s(s(x)), y) -> s(plus(x, s(y))) plus(x, s(s(y))) -> s(plus(s(x), y)) plus(s(0), y) -> s(y) plus(0, y) -> y ack(0, y) -> s(y) ack(s(x), 0) -> ack(x, s(0)) ack(s(x), s(y)) -> ack(x, plus(y, ack(s(x), y))) The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_ack(x_1, x_2)) -> ack(encArg(x_1), encArg(x_2)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_0 -> 0 encode_ack(x_1, x_2) -> ack(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence plus(x, s(s(y))) ->^+ s(plus(s(x), y)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [y / s(s(y))]. The result substitution is [x / s(x)]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: plus(s(s(x)), y) -> s(plus(x, s(y))) plus(x, s(s(y))) -> s(plus(s(x), y)) plus(s(0), y) -> s(y) plus(0, y) -> y ack(0, y) -> s(y) ack(s(x), 0) -> ack(x, s(0)) ack(s(x), s(y)) -> ack(x, plus(y, ack(s(x), y))) The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_ack(x_1, x_2)) -> ack(encArg(x_1), encArg(x_2)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_0 -> 0 encode_ack(x_1, x_2) -> ack(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: plus(s(s(x)), y) -> s(plus(x, s(y))) plus(x, s(s(y))) -> s(plus(s(x), y)) plus(s(0), y) -> s(y) plus(0, y) -> y ack(0, y) -> s(y) ack(s(x), 0) -> ack(x, s(0)) ack(s(x), s(y)) -> ack(x, plus(y, ack(s(x), y))) The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_ack(x_1, x_2)) -> ack(encArg(x_1), encArg(x_2)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_0 -> 0 encode_ack(x_1, x_2) -> ack(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST