WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 164 ms] (4) CpxRelTRS (5) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxWeightedTrs (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedTrs (9) CompletionProof [UPPER BOUND(ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) NarrowingProof [BOTH BOUNDS(ID, ID), 570 ms] (12) CpxTypedWeightedCompleteTrs (13) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (14) CpxRNTS (15) InliningProof [UPPER BOUND(ID), 422 ms] (16) CpxRNTS (17) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxRNTS (19) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (20) CpxRNTS (21) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 249 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 46 ms] (26) CpxRNTS (27) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 158 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 62 ms] (32) CpxRNTS (33) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 229 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 93 ms] (38) CpxRNTS (39) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (40) CpxRNTS (41) IntTrsBoundProof [UPPER BOUND(ID), 301 ms] (42) CpxRNTS (43) IntTrsBoundProof [UPPER BOUND(ID), 63 ms] (44) CpxRNTS (45) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (46) CpxRNTS (47) IntTrsBoundProof [UPPER BOUND(ID), 179 ms] (48) CpxRNTS (49) IntTrsBoundProof [UPPER BOUND(ID), 225 ms] (50) CpxRNTS (51) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (52) CpxRNTS (53) IntTrsBoundProof [UPPER BOUND(ID), 137 ms] (54) CpxRNTS (55) IntTrsBoundProof [UPPER BOUND(ID), 73 ms] (56) CpxRNTS (57) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (58) CpxRNTS (59) IntTrsBoundProof [UPPER BOUND(ID), 159 ms] (60) CpxRNTS (61) IntTrsBoundProof [UPPER BOUND(ID), 86 ms] (62) CpxRNTS (63) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (64) CpxRNTS (65) IntTrsBoundProof [UPPER BOUND(ID), 117 ms] (66) CpxRNTS (67) IntTrsBoundProof [UPPER BOUND(ID), 53 ms] (68) CpxRNTS (69) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (70) CpxRNTS (71) IntTrsBoundProof [UPPER BOUND(ID), 126 ms] (72) CpxRNTS (73) IntTrsBoundProof [UPPER BOUND(ID), 62 ms] (74) CpxRNTS (75) FinalProof [FINISHED, 0 ms] (76) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(x, y) -> g1(x, x, y) f(x, y) -> g1(y, x, x) f(x, y) -> g2(x, y, y) f(x, y) -> g2(y, y, x) g1(x, x, y) -> h(x, y) g1(y, x, x) -> h(x, y) g2(x, y, y) -> h(x, y) g2(y, y, x) -> h(x, y) h(x, x) -> x S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_g1(x_1, x_2, x_3)) -> g1(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g2(x_1, x_2, x_3)) -> g2(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_g1(x_1, x_2, x_3) -> g1(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g2(x_1, x_2, x_3) -> g2(encArg(x_1), encArg(x_2), encArg(x_3)) encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(x, y) -> g1(x, x, y) f(x, y) -> g1(y, x, x) f(x, y) -> g2(x, y, y) f(x, y) -> g2(y, y, x) g1(x, x, y) -> h(x, y) g1(y, x, x) -> h(x, y) g2(x, y, y) -> h(x, y) g2(y, y, x) -> h(x, y) h(x, x) -> x The (relative) TRS S consists of the following rules: encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_g1(x_1, x_2, x_3)) -> g1(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g2(x_1, x_2, x_3)) -> g2(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_g1(x_1, x_2, x_3) -> g1(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g2(x_1, x_2, x_3) -> g2(encArg(x_1), encArg(x_2), encArg(x_3)) encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(x, y) -> g1(x, x, y) f(x, y) -> g1(y, x, x) f(x, y) -> g2(x, y, y) f(x, y) -> g2(y, y, x) g1(x, x, y) -> h(x, y) g1(y, x, x) -> h(x, y) g2(x, y, y) -> h(x, y) g2(y, y, x) -> h(x, y) h(x, x) -> x The (relative) TRS S consists of the following rules: encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_g1(x_1, x_2, x_3)) -> g1(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g2(x_1, x_2, x_3)) -> g2(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_g1(x_1, x_2, x_3) -> g1(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g2(x_1, x_2, x_3) -> g2(encArg(x_1), encArg(x_2), encArg(x_3)) encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(x, y) -> g1(x, x, y) [1] f(x, y) -> g1(y, x, x) [1] f(x, y) -> g2(x, y, y) [1] f(x, y) -> g2(y, y, x) [1] g1(x, x, y) -> h(x, y) [1] g1(y, x, x) -> h(x, y) [1] g2(x, y, y) -> h(x, y) [1] g2(y, y, x) -> h(x, y) [1] h(x, x) -> x [1] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encArg(cons_g1(x_1, x_2, x_3)) -> g1(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encArg(cons_g2(x_1, x_2, x_3)) -> g2(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encArg(cons_h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_g1(x_1, x_2, x_3) -> g1(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_g2(x_1, x_2, x_3) -> g2(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(x, y) -> g1(x, x, y) [1] f(x, y) -> g1(y, x, x) [1] f(x, y) -> g2(x, y, y) [1] f(x, y) -> g2(y, y, x) [1] g1(x, x, y) -> h(x, y) [1] g1(y, x, x) -> h(x, y) [1] g2(x, y, y) -> h(x, y) [1] g2(y, y, x) -> h(x, y) [1] h(x, x) -> x [1] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encArg(cons_g1(x_1, x_2, x_3)) -> g1(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encArg(cons_g2(x_1, x_2, x_3)) -> g2(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encArg(cons_h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_g1(x_1, x_2, x_3) -> g1(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_g2(x_1, x_2, x_3) -> g2(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) [0] The TRS has the following type information: f :: f:g1:g2:h:encArg:encode_f:encode_g1:encode_g2:encode_h -> f:g1:g2:h:encArg:encode_f:encode_g1:encode_g2:encode_h -> f:g1:g2:h:encArg:encode_f:encode_g1:encode_g2:encode_h g1 :: f:g1:g2:h:encArg:encode_f:encode_g1:encode_g2:encode_h -> f:g1:g2:h:encArg:encode_f:encode_g1:encode_g2:encode_h -> f:g1:g2:h:encArg:encode_f:encode_g1:encode_g2:encode_h -> f:g1:g2:h:encArg:encode_f:encode_g1:encode_g2:encode_h g2 :: f:g1:g2:h:encArg:encode_f:encode_g1:encode_g2:encode_h -> f:g1:g2:h:encArg:encode_f:encode_g1:encode_g2:encode_h -> f:g1:g2:h:encArg:encode_f:encode_g1:encode_g2:encode_h -> f:g1:g2:h:encArg:encode_f:encode_g1:encode_g2:encode_h h :: f:g1:g2:h:encArg:encode_f:encode_g1:encode_g2:encode_h -> f:g1:g2:h:encArg:encode_f:encode_g1:encode_g2:encode_h -> f:g1:g2:h:encArg:encode_f:encode_g1:encode_g2:encode_h encArg :: cons_f:cons_g1:cons_g2:cons_h -> f:g1:g2:h:encArg:encode_f:encode_g1:encode_g2:encode_h cons_f :: cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h cons_g1 :: cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h cons_g2 :: cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h cons_h :: cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h encode_f :: cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h -> f:g1:g2:h:encArg:encode_f:encode_g1:encode_g2:encode_h encode_g1 :: cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h -> f:g1:g2:h:encArg:encode_f:encode_g1:encode_g2:encode_h encode_g2 :: cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h -> f:g1:g2:h:encArg:encode_f:encode_g1:encode_g2:encode_h encode_h :: cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h -> f:g1:g2:h:encArg:encode_f:encode_g1:encode_g2:encode_h Rewrite Strategy: INNERMOST ---------------------------------------- (9) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: g2_3 h_2 g1_3 f_2 encArg_1 encode_f_2 encode_g1_3 encode_g2_3 encode_h_2 Due to the following rules being added: encArg(v0) -> const [0] encode_f(v0, v1) -> const [0] encode_g1(v0, v1, v2) -> const [0] encode_g2(v0, v1, v2) -> const [0] encode_h(v0, v1) -> const [0] g2(v0, v1, v2) -> const [0] h(v0, v1) -> const [0] g1(v0, v1, v2) -> const [0] And the following fresh constants: const, const1 ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(x, y) -> g1(x, x, y) [1] f(x, y) -> g1(y, x, x) [1] f(x, y) -> g2(x, y, y) [1] f(x, y) -> g2(y, y, x) [1] g1(x, x, y) -> h(x, y) [1] g1(y, x, x) -> h(x, y) [1] g2(x, y, y) -> h(x, y) [1] g2(y, y, x) -> h(x, y) [1] h(x, x) -> x [1] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encArg(cons_g1(x_1, x_2, x_3)) -> g1(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encArg(cons_g2(x_1, x_2, x_3)) -> g2(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encArg(cons_h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_g1(x_1, x_2, x_3) -> g1(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_g2(x_1, x_2, x_3) -> g2(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) [0] encArg(v0) -> const [0] encode_f(v0, v1) -> const [0] encode_g1(v0, v1, v2) -> const [0] encode_g2(v0, v1, v2) -> const [0] encode_h(v0, v1) -> const [0] g2(v0, v1, v2) -> const [0] h(v0, v1) -> const [0] g1(v0, v1, v2) -> const [0] The TRS has the following type information: f :: const -> const -> const g1 :: const -> const -> const -> const g2 :: const -> const -> const -> const h :: const -> const -> const encArg :: cons_f:cons_g1:cons_g2:cons_h -> const cons_f :: cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h cons_g1 :: cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h cons_g2 :: cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h cons_h :: cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h encode_f :: cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h -> const encode_g1 :: cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h -> const encode_g2 :: cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h -> const encode_h :: cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h -> const const :: const const1 :: cons_f:cons_g1:cons_g2:cons_h Rewrite Strategy: INNERMOST ---------------------------------------- (11) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(x, y) -> g1(x, x, y) [1] f(x, y) -> g1(y, x, x) [1] f(x, y) -> g2(x, y, y) [1] f(x, y) -> g2(y, y, x) [1] g1(x, x, y) -> h(x, y) [1] g1(y, x, x) -> h(x, y) [1] g2(x, y, y) -> h(x, y) [1] g2(y, y, x) -> h(x, y) [1] h(x, x) -> x [1] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encArg(cons_g1(x_1, x_2, x_3)) -> g1(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encArg(cons_g2(x_1, x_2, x_3)) -> g2(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encArg(cons_h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_g1(x_1, x_2, x_3) -> g1(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_g2(x_1, x_2, x_3) -> g2(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) [0] encArg(v0) -> const [0] encode_f(v0, v1) -> const [0] encode_g1(v0, v1, v2) -> const [0] encode_g2(v0, v1, v2) -> const [0] encode_h(v0, v1) -> const [0] g2(v0, v1, v2) -> const [0] h(v0, v1) -> const [0] g1(v0, v1, v2) -> const [0] The TRS has the following type information: f :: const -> const -> const g1 :: const -> const -> const -> const g2 :: const -> const -> const -> const h :: const -> const -> const encArg :: cons_f:cons_g1:cons_g2:cons_h -> const cons_f :: cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h cons_g1 :: cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h cons_g2 :: cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h cons_h :: cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h encode_f :: cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h -> const encode_g1 :: cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h -> const encode_g2 :: cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h -> const encode_h :: cons_f:cons_g1:cons_g2:cons_h -> cons_f:cons_g1:cons_g2:cons_h -> const const :: const const1 :: cons_f:cons_g1:cons_g2:cons_h Rewrite Strategy: INNERMOST ---------------------------------------- (13) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: const => 0 const1 => 0 ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> h(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g2(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> g1(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_f(z, z') -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_f(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_g1(z, z', z'') -{ 0 }-> g1(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, x_3 >= 0, x_2 >= 0, z = x_1, z' = x_2, z'' = x_3 encode_g1(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 encode_g2(z, z', z'') -{ 0 }-> g2(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, x_3 >= 0, x_2 >= 0, z = x_1, z' = x_2, z'' = x_3 encode_g2(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 encode_h(z, z') -{ 0 }-> h(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_h(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 f(z, z') -{ 1 }-> g2(x, y, y) :|: x >= 0, y >= 0, z = x, z' = y f(z, z') -{ 1 }-> g2(y, y, x) :|: x >= 0, y >= 0, z = x, z' = y f(z, z') -{ 1 }-> g1(x, x, y) :|: x >= 0, y >= 0, z = x, z' = y f(z, z') -{ 1 }-> g1(y, x, x) :|: x >= 0, y >= 0, z = x, z' = y g1(z, z', z'') -{ 1 }-> h(x, y) :|: z' = x, z'' = y, x >= 0, y >= 0, z = x g1(z, z', z'') -{ 1 }-> h(x, y) :|: z' = x, y >= 0, x >= 0, z'' = x, z = y g1(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 g2(z, z', z'') -{ 1 }-> h(x, y) :|: z'' = y, x >= 0, y >= 0, z = x, z' = y g2(z, z', z'') -{ 1 }-> h(x, y) :|: y >= 0, x >= 0, z'' = x, z' = y, z = y g2(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 h(z, z') -{ 1 }-> x :|: z' = x, x >= 0, z = x h(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 ---------------------------------------- (15) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: h(z, z') -{ 1 }-> x :|: z' = x, x >= 0, z = x h(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 g1(z, z', z'') -{ 1 }-> h(x, y) :|: z' = x, z'' = y, x >= 0, y >= 0, z = x g1(z, z', z'') -{ 1 }-> h(x, y) :|: z' = x, y >= 0, x >= 0, z'' = x, z = y g1(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 g2(z, z', z'') -{ 1 }-> h(x, y) :|: z'' = y, x >= 0, y >= 0, z = x, z' = y g2(z, z', z'') -{ 1 }-> h(x, y) :|: y >= 0, x >= 0, z'' = x, z' = y, z = y g2(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> h(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g2(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> g1(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_f(z, z') -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_f(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_g1(z, z', z'') -{ 0 }-> g1(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, x_3 >= 0, x_2 >= 0, z = x_1, z' = x_2, z'' = x_3 encode_g1(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 encode_g2(z, z', z'') -{ 0 }-> g2(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, x_3 >= 0, x_2 >= 0, z = x_1, z' = x_2, z'' = x_3 encode_g2(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 encode_h(z, z') -{ 0 }-> h(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_h(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 f(z, z') -{ 2 }-> h(x', y') :|: x >= 0, y >= 0, z = x, z' = y, x = x', y = y', x' >= 0, y' >= 0 f(z, z') -{ 2 }-> h(x', y') :|: x >= 0, y >= 0, z = x, z' = y, x = x', y' >= 0, x' >= 0, y = x', x = y' f(z, z') -{ 2 }-> h(x', y') :|: x >= 0, y >= 0, z = x, z' = y, y' >= 0, x' >= 0, y = x', y = y', x = y' f(z, z') -{ 1 }-> 0 :|: x >= 0, y >= 0, z = x, z' = y, v0 >= 0, y = v2, v1 >= 0, x = v0, x = v1, v2 >= 0 f(z, z') -{ 1 }-> 0 :|: x >= 0, y >= 0, z = x, z' = y, v0 >= 0, x = v2, v1 >= 0, y = v0, x = v1, v2 >= 0 f(z, z') -{ 1 }-> 0 :|: x >= 0, y >= 0, z = x, z' = y, v0 >= 0, y = v2, v1 >= 0, x = v0, y = v1, v2 >= 0 f(z, z') -{ 1 }-> 0 :|: x >= 0, y >= 0, z = x, z' = y, v0 >= 0, x = v2, v1 >= 0, y = v0, y = v1, v2 >= 0 g1(z, z', z'') -{ 2 }-> x' :|: z' = x, z'' = y, x >= 0, y >= 0, z = x, y = x', x' >= 0, x = x' g1(z, z', z'') -{ 2 }-> x' :|: z' = x, y >= 0, x >= 0, z'' = x, z = y, y = x', x' >= 0, x = x' g1(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 g1(z, z', z'') -{ 1 }-> 0 :|: z' = x, z'' = y, x >= 0, y >= 0, z = x, v0 >= 0, v1 >= 0, x = v0, y = v1 g1(z, z', z'') -{ 1 }-> 0 :|: z' = x, y >= 0, x >= 0, z'' = x, z = y, v0 >= 0, v1 >= 0, x = v0, y = v1 g2(z, z', z'') -{ 2 }-> x' :|: z'' = y, x >= 0, y >= 0, z = x, z' = y, y = x', x' >= 0, x = x' g2(z, z', z'') -{ 2 }-> x' :|: y >= 0, x >= 0, z'' = x, z' = y, z = y, y = x', x' >= 0, x = x' g2(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 g2(z, z', z'') -{ 1 }-> 0 :|: z'' = y, x >= 0, y >= 0, z = x, z' = y, v0 >= 0, v1 >= 0, x = v0, y = v1 g2(z, z', z'') -{ 1 }-> 0 :|: y >= 0, x >= 0, z'' = x, z' = y, z = y, v0 >= 0, v1 >= 0, x = v0, y = v1 h(z, z') -{ 1 }-> x :|: z' = x, x >= 0, z = x h(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 ---------------------------------------- (17) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> h(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g2(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> g1(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> g1(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g2(z, z', z'') -{ 0 }-> g2(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_h(z, z') -{ 0 }-> h(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 2 }-> h(z, z) :|: z >= 0, z' >= 0, z' = z f(z, z') -{ 2 }-> h(z, z') :|: z >= 0, z' >= 0 f(z, z') -{ 2 }-> h(z', z') :|: z >= 0, z' >= 0, z = z' f(z, z') -{ 1 }-> 0 :|: z >= 0, z' >= 0 g1(z, z', z'') -{ 2 }-> z :|: z >= 0, z' >= 0, z'' = z', z' = z g1(z, z', z'') -{ 2 }-> z'' :|: z' >= 0, z'' >= 0, z = z', z' = z'' g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g1(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' g1(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z' >= 0, z'' = z' g2(z, z', z'') -{ 2 }-> z' :|: z' >= 0, z'' >= 0, z = z', z'' = z' g2(z, z', z'') -{ 2 }-> z'' :|: z >= 0, z'' >= 0, z' = z'', z = z'' g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g2(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z'' >= 0, z' = z'' g2(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' h(z, z') -{ 1 }-> z' :|: z' >= 0, z = z' h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 ---------------------------------------- (19) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { g2 } { h } { g1 } { f } { encArg } { encode_g2 } { encode_g1 } { encode_h } { encode_f } ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> h(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g2(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> g1(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> g1(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g2(z, z', z'') -{ 0 }-> g2(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_h(z, z') -{ 0 }-> h(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 2 }-> h(z, z) :|: z >= 0, z' >= 0, z' = z f(z, z') -{ 2 }-> h(z, z') :|: z >= 0, z' >= 0 f(z, z') -{ 2 }-> h(z', z') :|: z >= 0, z' >= 0, z = z' f(z, z') -{ 1 }-> 0 :|: z >= 0, z' >= 0 g1(z, z', z'') -{ 2 }-> z :|: z >= 0, z' >= 0, z'' = z', z' = z g1(z, z', z'') -{ 2 }-> z'' :|: z' >= 0, z'' >= 0, z = z', z' = z'' g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g1(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' g1(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z' >= 0, z'' = z' g2(z, z', z'') -{ 2 }-> z' :|: z' >= 0, z'' >= 0, z = z', z'' = z' g2(z, z', z'') -{ 2 }-> z'' :|: z >= 0, z'' >= 0, z' = z'', z = z'' g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g2(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z'' >= 0, z' = z'' g2(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' h(z, z') -{ 1 }-> z' :|: z' >= 0, z = z' h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {g2}, {h}, {g1}, {f}, {encArg}, {encode_g2}, {encode_g1}, {encode_h}, {encode_f} ---------------------------------------- (21) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> h(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g2(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> g1(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> g1(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g2(z, z', z'') -{ 0 }-> g2(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_h(z, z') -{ 0 }-> h(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 2 }-> h(z, z) :|: z >= 0, z' >= 0, z' = z f(z, z') -{ 2 }-> h(z, z') :|: z >= 0, z' >= 0 f(z, z') -{ 2 }-> h(z', z') :|: z >= 0, z' >= 0, z = z' f(z, z') -{ 1 }-> 0 :|: z >= 0, z' >= 0 g1(z, z', z'') -{ 2 }-> z :|: z >= 0, z' >= 0, z'' = z', z' = z g1(z, z', z'') -{ 2 }-> z'' :|: z' >= 0, z'' >= 0, z = z', z' = z'' g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g1(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' g1(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z' >= 0, z'' = z' g2(z, z', z'') -{ 2 }-> z' :|: z' >= 0, z'' >= 0, z = z', z'' = z' g2(z, z', z'') -{ 2 }-> z'' :|: z >= 0, z'' >= 0, z' = z'', z = z'' g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g2(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z'' >= 0, z' = z'' g2(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' h(z, z') -{ 1 }-> z' :|: z' >= 0, z = z' h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {g2}, {h}, {g1}, {f}, {encArg}, {encode_g2}, {encode_g1}, {encode_h}, {encode_f} ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: g2 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z'' ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> h(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g2(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> g1(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> g1(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g2(z, z', z'') -{ 0 }-> g2(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_h(z, z') -{ 0 }-> h(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 2 }-> h(z, z) :|: z >= 0, z' >= 0, z' = z f(z, z') -{ 2 }-> h(z, z') :|: z >= 0, z' >= 0 f(z, z') -{ 2 }-> h(z', z') :|: z >= 0, z' >= 0, z = z' f(z, z') -{ 1 }-> 0 :|: z >= 0, z' >= 0 g1(z, z', z'') -{ 2 }-> z :|: z >= 0, z' >= 0, z'' = z', z' = z g1(z, z', z'') -{ 2 }-> z'' :|: z' >= 0, z'' >= 0, z = z', z' = z'' g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g1(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' g1(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z' >= 0, z'' = z' g2(z, z', z'') -{ 2 }-> z' :|: z' >= 0, z'' >= 0, z = z', z'' = z' g2(z, z', z'') -{ 2 }-> z'' :|: z >= 0, z'' >= 0, z' = z'', z = z'' g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g2(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z'' >= 0, z' = z'' g2(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' h(z, z') -{ 1 }-> z' :|: z' >= 0, z = z' h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {g2}, {h}, {g1}, {f}, {encArg}, {encode_g2}, {encode_g1}, {encode_h}, {encode_f} Previous analysis results are: g2: runtime: ?, size: O(n^1) [z''] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: g2 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> h(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g2(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> g1(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> g1(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g2(z, z', z'') -{ 0 }-> g2(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_h(z, z') -{ 0 }-> h(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 2 }-> h(z, z) :|: z >= 0, z' >= 0, z' = z f(z, z') -{ 2 }-> h(z, z') :|: z >= 0, z' >= 0 f(z, z') -{ 2 }-> h(z', z') :|: z >= 0, z' >= 0, z = z' f(z, z') -{ 1 }-> 0 :|: z >= 0, z' >= 0 g1(z, z', z'') -{ 2 }-> z :|: z >= 0, z' >= 0, z'' = z', z' = z g1(z, z', z'') -{ 2 }-> z'' :|: z' >= 0, z'' >= 0, z = z', z' = z'' g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g1(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' g1(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z' >= 0, z'' = z' g2(z, z', z'') -{ 2 }-> z' :|: z' >= 0, z'' >= 0, z = z', z'' = z' g2(z, z', z'') -{ 2 }-> z'' :|: z >= 0, z'' >= 0, z' = z'', z = z'' g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g2(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z'' >= 0, z' = z'' g2(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' h(z, z') -{ 1 }-> z' :|: z' >= 0, z = z' h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {h}, {g1}, {f}, {encArg}, {encode_g2}, {encode_g1}, {encode_h}, {encode_f} Previous analysis results are: g2: runtime: O(1) [2], size: O(n^1) [z''] ---------------------------------------- (27) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> h(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g2(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> g1(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> g1(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g2(z, z', z'') -{ 0 }-> g2(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_h(z, z') -{ 0 }-> h(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 2 }-> h(z, z) :|: z >= 0, z' >= 0, z' = z f(z, z') -{ 2 }-> h(z, z') :|: z >= 0, z' >= 0 f(z, z') -{ 2 }-> h(z', z') :|: z >= 0, z' >= 0, z = z' f(z, z') -{ 1 }-> 0 :|: z >= 0, z' >= 0 g1(z, z', z'') -{ 2 }-> z :|: z >= 0, z' >= 0, z'' = z', z' = z g1(z, z', z'') -{ 2 }-> z'' :|: z' >= 0, z'' >= 0, z = z', z' = z'' g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g1(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' g1(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z' >= 0, z'' = z' g2(z, z', z'') -{ 2 }-> z' :|: z' >= 0, z'' >= 0, z = z', z'' = z' g2(z, z', z'') -{ 2 }-> z'' :|: z >= 0, z'' >= 0, z' = z'', z = z'' g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g2(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z'' >= 0, z' = z'' g2(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' h(z, z') -{ 1 }-> z' :|: z' >= 0, z = z' h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {h}, {g1}, {f}, {encArg}, {encode_g2}, {encode_g1}, {encode_h}, {encode_f} Previous analysis results are: g2: runtime: O(1) [2], size: O(n^1) [z''] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: h after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> h(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g2(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> g1(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> g1(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g2(z, z', z'') -{ 0 }-> g2(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_h(z, z') -{ 0 }-> h(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 2 }-> h(z, z) :|: z >= 0, z' >= 0, z' = z f(z, z') -{ 2 }-> h(z, z') :|: z >= 0, z' >= 0 f(z, z') -{ 2 }-> h(z', z') :|: z >= 0, z' >= 0, z = z' f(z, z') -{ 1 }-> 0 :|: z >= 0, z' >= 0 g1(z, z', z'') -{ 2 }-> z :|: z >= 0, z' >= 0, z'' = z', z' = z g1(z, z', z'') -{ 2 }-> z'' :|: z' >= 0, z'' >= 0, z = z', z' = z'' g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g1(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' g1(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z' >= 0, z'' = z' g2(z, z', z'') -{ 2 }-> z' :|: z' >= 0, z'' >= 0, z = z', z'' = z' g2(z, z', z'') -{ 2 }-> z'' :|: z >= 0, z'' >= 0, z' = z'', z = z'' g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g2(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z'' >= 0, z' = z'' g2(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' h(z, z') -{ 1 }-> z' :|: z' >= 0, z = z' h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {h}, {g1}, {f}, {encArg}, {encode_g2}, {encode_g1}, {encode_h}, {encode_f} Previous analysis results are: g2: runtime: O(1) [2], size: O(n^1) [z''] h: runtime: ?, size: O(n^1) [z'] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: h after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> h(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g2(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> g1(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> g1(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g2(z, z', z'') -{ 0 }-> g2(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_h(z, z') -{ 0 }-> h(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 2 }-> h(z, z) :|: z >= 0, z' >= 0, z' = z f(z, z') -{ 2 }-> h(z, z') :|: z >= 0, z' >= 0 f(z, z') -{ 2 }-> h(z', z') :|: z >= 0, z' >= 0, z = z' f(z, z') -{ 1 }-> 0 :|: z >= 0, z' >= 0 g1(z, z', z'') -{ 2 }-> z :|: z >= 0, z' >= 0, z'' = z', z' = z g1(z, z', z'') -{ 2 }-> z'' :|: z' >= 0, z'' >= 0, z = z', z' = z'' g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g1(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' g1(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z' >= 0, z'' = z' g2(z, z', z'') -{ 2 }-> z' :|: z' >= 0, z'' >= 0, z = z', z'' = z' g2(z, z', z'') -{ 2 }-> z'' :|: z >= 0, z'' >= 0, z' = z'', z = z'' g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g2(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z'' >= 0, z' = z'' g2(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' h(z, z') -{ 1 }-> z' :|: z' >= 0, z = z' h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {g1}, {f}, {encArg}, {encode_g2}, {encode_g1}, {encode_h}, {encode_f} Previous analysis results are: g2: runtime: O(1) [2], size: O(n^1) [z''] h: runtime: O(1) [1], size: O(n^1) [z'] ---------------------------------------- (33) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> h(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g2(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> g1(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> g1(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g2(z, z', z'') -{ 0 }-> g2(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_h(z, z') -{ 0 }-> h(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 3 }-> s :|: s >= 0, s <= z', z >= 0, z' >= 0 f(z, z') -{ 3 }-> s' :|: s' >= 0, s' <= z, z >= 0, z' >= 0, z' = z f(z, z') -{ 3 }-> s'' :|: s'' >= 0, s'' <= z', z >= 0, z' >= 0, z = z' f(z, z') -{ 1 }-> 0 :|: z >= 0, z' >= 0 g1(z, z', z'') -{ 2 }-> z :|: z >= 0, z' >= 0, z'' = z', z' = z g1(z, z', z'') -{ 2 }-> z'' :|: z' >= 0, z'' >= 0, z = z', z' = z'' g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g1(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' g1(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z' >= 0, z'' = z' g2(z, z', z'') -{ 2 }-> z' :|: z' >= 0, z'' >= 0, z = z', z'' = z' g2(z, z', z'') -{ 2 }-> z'' :|: z >= 0, z'' >= 0, z' = z'', z = z'' g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g2(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z'' >= 0, z' = z'' g2(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' h(z, z') -{ 1 }-> z' :|: z' >= 0, z = z' h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {g1}, {f}, {encArg}, {encode_g2}, {encode_g1}, {encode_h}, {encode_f} Previous analysis results are: g2: runtime: O(1) [2], size: O(n^1) [z''] h: runtime: O(1) [1], size: O(n^1) [z'] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: g1 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z'' ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> h(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g2(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> g1(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> g1(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g2(z, z', z'') -{ 0 }-> g2(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_h(z, z') -{ 0 }-> h(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 3 }-> s :|: s >= 0, s <= z', z >= 0, z' >= 0 f(z, z') -{ 3 }-> s' :|: s' >= 0, s' <= z, z >= 0, z' >= 0, z' = z f(z, z') -{ 3 }-> s'' :|: s'' >= 0, s'' <= z', z >= 0, z' >= 0, z = z' f(z, z') -{ 1 }-> 0 :|: z >= 0, z' >= 0 g1(z, z', z'') -{ 2 }-> z :|: z >= 0, z' >= 0, z'' = z', z' = z g1(z, z', z'') -{ 2 }-> z'' :|: z' >= 0, z'' >= 0, z = z', z' = z'' g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g1(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' g1(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z' >= 0, z'' = z' g2(z, z', z'') -{ 2 }-> z' :|: z' >= 0, z'' >= 0, z = z', z'' = z' g2(z, z', z'') -{ 2 }-> z'' :|: z >= 0, z'' >= 0, z' = z'', z = z'' g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g2(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z'' >= 0, z' = z'' g2(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' h(z, z') -{ 1 }-> z' :|: z' >= 0, z = z' h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {g1}, {f}, {encArg}, {encode_g2}, {encode_g1}, {encode_h}, {encode_f} Previous analysis results are: g2: runtime: O(1) [2], size: O(n^1) [z''] h: runtime: O(1) [1], size: O(n^1) [z'] g1: runtime: ?, size: O(n^1) [z''] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: g1 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> h(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g2(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> g1(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> g1(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g2(z, z', z'') -{ 0 }-> g2(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_h(z, z') -{ 0 }-> h(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 3 }-> s :|: s >= 0, s <= z', z >= 0, z' >= 0 f(z, z') -{ 3 }-> s' :|: s' >= 0, s' <= z, z >= 0, z' >= 0, z' = z f(z, z') -{ 3 }-> s'' :|: s'' >= 0, s'' <= z', z >= 0, z' >= 0, z = z' f(z, z') -{ 1 }-> 0 :|: z >= 0, z' >= 0 g1(z, z', z'') -{ 2 }-> z :|: z >= 0, z' >= 0, z'' = z', z' = z g1(z, z', z'') -{ 2 }-> z'' :|: z' >= 0, z'' >= 0, z = z', z' = z'' g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g1(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' g1(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z' >= 0, z'' = z' g2(z, z', z'') -{ 2 }-> z' :|: z' >= 0, z'' >= 0, z = z', z'' = z' g2(z, z', z'') -{ 2 }-> z'' :|: z >= 0, z'' >= 0, z' = z'', z = z'' g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g2(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z'' >= 0, z' = z'' g2(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' h(z, z') -{ 1 }-> z' :|: z' >= 0, z = z' h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {f}, {encArg}, {encode_g2}, {encode_g1}, {encode_h}, {encode_f} Previous analysis results are: g2: runtime: O(1) [2], size: O(n^1) [z''] h: runtime: O(1) [1], size: O(n^1) [z'] g1: runtime: O(1) [2], size: O(n^1) [z''] ---------------------------------------- (39) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> h(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g2(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> g1(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> g1(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g2(z, z', z'') -{ 0 }-> g2(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_h(z, z') -{ 0 }-> h(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 3 }-> s :|: s >= 0, s <= z', z >= 0, z' >= 0 f(z, z') -{ 3 }-> s' :|: s' >= 0, s' <= z, z >= 0, z' >= 0, z' = z f(z, z') -{ 3 }-> s'' :|: s'' >= 0, s'' <= z', z >= 0, z' >= 0, z = z' f(z, z') -{ 1 }-> 0 :|: z >= 0, z' >= 0 g1(z, z', z'') -{ 2 }-> z :|: z >= 0, z' >= 0, z'' = z', z' = z g1(z, z', z'') -{ 2 }-> z'' :|: z' >= 0, z'' >= 0, z = z', z' = z'' g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g1(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' g1(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z' >= 0, z'' = z' g2(z, z', z'') -{ 2 }-> z' :|: z' >= 0, z'' >= 0, z = z', z'' = z' g2(z, z', z'') -{ 2 }-> z'' :|: z >= 0, z'' >= 0, z' = z'', z = z'' g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g2(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z'' >= 0, z' = z'' g2(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' h(z, z') -{ 1 }-> z' :|: z' >= 0, z = z' h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {f}, {encArg}, {encode_g2}, {encode_g1}, {encode_h}, {encode_f} Previous analysis results are: g2: runtime: O(1) [2], size: O(n^1) [z''] h: runtime: O(1) [1], size: O(n^1) [z'] g1: runtime: O(1) [2], size: O(n^1) [z''] ---------------------------------------- (41) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> h(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g2(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> g1(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> g1(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g2(z, z', z'') -{ 0 }-> g2(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_h(z, z') -{ 0 }-> h(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 3 }-> s :|: s >= 0, s <= z', z >= 0, z' >= 0 f(z, z') -{ 3 }-> s' :|: s' >= 0, s' <= z, z >= 0, z' >= 0, z' = z f(z, z') -{ 3 }-> s'' :|: s'' >= 0, s'' <= z', z >= 0, z' >= 0, z = z' f(z, z') -{ 1 }-> 0 :|: z >= 0, z' >= 0 g1(z, z', z'') -{ 2 }-> z :|: z >= 0, z' >= 0, z'' = z', z' = z g1(z, z', z'') -{ 2 }-> z'' :|: z' >= 0, z'' >= 0, z = z', z' = z'' g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g1(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' g1(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z' >= 0, z'' = z' g2(z, z', z'') -{ 2 }-> z' :|: z' >= 0, z'' >= 0, z = z', z'' = z' g2(z, z', z'') -{ 2 }-> z'' :|: z >= 0, z'' >= 0, z' = z'', z = z'' g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g2(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z'' >= 0, z' = z'' g2(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' h(z, z') -{ 1 }-> z' :|: z' >= 0, z = z' h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {f}, {encArg}, {encode_g2}, {encode_g1}, {encode_h}, {encode_f} Previous analysis results are: g2: runtime: O(1) [2], size: O(n^1) [z''] h: runtime: O(1) [1], size: O(n^1) [z'] g1: runtime: O(1) [2], size: O(n^1) [z''] f: runtime: ?, size: O(n^1) [z'] ---------------------------------------- (43) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 3 ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> h(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g2(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> g1(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> g1(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g2(z, z', z'') -{ 0 }-> g2(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_h(z, z') -{ 0 }-> h(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 3 }-> s :|: s >= 0, s <= z', z >= 0, z' >= 0 f(z, z') -{ 3 }-> s' :|: s' >= 0, s' <= z, z >= 0, z' >= 0, z' = z f(z, z') -{ 3 }-> s'' :|: s'' >= 0, s'' <= z', z >= 0, z' >= 0, z = z' f(z, z') -{ 1 }-> 0 :|: z >= 0, z' >= 0 g1(z, z', z'') -{ 2 }-> z :|: z >= 0, z' >= 0, z'' = z', z' = z g1(z, z', z'') -{ 2 }-> z'' :|: z' >= 0, z'' >= 0, z = z', z' = z'' g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g1(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' g1(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z' >= 0, z'' = z' g2(z, z', z'') -{ 2 }-> z' :|: z' >= 0, z'' >= 0, z = z', z'' = z' g2(z, z', z'') -{ 2 }-> z'' :|: z >= 0, z'' >= 0, z' = z'', z = z'' g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g2(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z'' >= 0, z' = z'' g2(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' h(z, z') -{ 1 }-> z' :|: z' >= 0, z = z' h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encArg}, {encode_g2}, {encode_g1}, {encode_h}, {encode_f} Previous analysis results are: g2: runtime: O(1) [2], size: O(n^1) [z''] h: runtime: O(1) [1], size: O(n^1) [z'] g1: runtime: O(1) [2], size: O(n^1) [z''] f: runtime: O(1) [3], size: O(n^1) [z'] ---------------------------------------- (45) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> h(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g2(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> g1(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> g1(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g2(z, z', z'') -{ 0 }-> g2(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_h(z, z') -{ 0 }-> h(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 3 }-> s :|: s >= 0, s <= z', z >= 0, z' >= 0 f(z, z') -{ 3 }-> s' :|: s' >= 0, s' <= z, z >= 0, z' >= 0, z' = z f(z, z') -{ 3 }-> s'' :|: s'' >= 0, s'' <= z', z >= 0, z' >= 0, z = z' f(z, z') -{ 1 }-> 0 :|: z >= 0, z' >= 0 g1(z, z', z'') -{ 2 }-> z :|: z >= 0, z' >= 0, z'' = z', z' = z g1(z, z', z'') -{ 2 }-> z'' :|: z' >= 0, z'' >= 0, z = z', z' = z'' g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g1(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' g1(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z' >= 0, z'' = z' g2(z, z', z'') -{ 2 }-> z' :|: z' >= 0, z'' >= 0, z = z', z'' = z' g2(z, z', z'') -{ 2 }-> z'' :|: z >= 0, z'' >= 0, z' = z'', z = z'' g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g2(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z'' >= 0, z' = z'' g2(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' h(z, z') -{ 1 }-> z' :|: z' >= 0, z = z' h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encArg}, {encode_g2}, {encode_g1}, {encode_h}, {encode_f} Previous analysis results are: g2: runtime: O(1) [2], size: O(n^1) [z''] h: runtime: O(1) [1], size: O(n^1) [z'] g1: runtime: O(1) [2], size: O(n^1) [z''] f: runtime: O(1) [3], size: O(n^1) [z'] ---------------------------------------- (47) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> h(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g2(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> g1(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> g1(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g2(z, z', z'') -{ 0 }-> g2(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_h(z, z') -{ 0 }-> h(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 3 }-> s :|: s >= 0, s <= z', z >= 0, z' >= 0 f(z, z') -{ 3 }-> s' :|: s' >= 0, s' <= z, z >= 0, z' >= 0, z' = z f(z, z') -{ 3 }-> s'' :|: s'' >= 0, s'' <= z', z >= 0, z' >= 0, z = z' f(z, z') -{ 1 }-> 0 :|: z >= 0, z' >= 0 g1(z, z', z'') -{ 2 }-> z :|: z >= 0, z' >= 0, z'' = z', z' = z g1(z, z', z'') -{ 2 }-> z'' :|: z' >= 0, z'' >= 0, z = z', z' = z'' g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g1(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' g1(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z' >= 0, z'' = z' g2(z, z', z'') -{ 2 }-> z' :|: z' >= 0, z'' >= 0, z = z', z'' = z' g2(z, z', z'') -{ 2 }-> z'' :|: z >= 0, z'' >= 0, z' = z'', z = z'' g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g2(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z'' >= 0, z' = z'' g2(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' h(z, z') -{ 1 }-> z' :|: z' >= 0, z = z' h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encArg}, {encode_g2}, {encode_g1}, {encode_h}, {encode_f} Previous analysis results are: g2: runtime: O(1) [2], size: O(n^1) [z''] h: runtime: O(1) [1], size: O(n^1) [z'] g1: runtime: O(1) [2], size: O(n^1) [z''] f: runtime: O(1) [3], size: O(n^1) [z'] encArg: runtime: ?, size: O(1) [0] ---------------------------------------- (49) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 3*z ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> h(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> g2(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> g1(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> g1(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g2(z, z', z'') -{ 0 }-> g2(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_h(z, z') -{ 0 }-> h(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 3 }-> s :|: s >= 0, s <= z', z >= 0, z' >= 0 f(z, z') -{ 3 }-> s' :|: s' >= 0, s' <= z, z >= 0, z' >= 0, z' = z f(z, z') -{ 3 }-> s'' :|: s'' >= 0, s'' <= z', z >= 0, z' >= 0, z = z' f(z, z') -{ 1 }-> 0 :|: z >= 0, z' >= 0 g1(z, z', z'') -{ 2 }-> z :|: z >= 0, z' >= 0, z'' = z', z' = z g1(z, z', z'') -{ 2 }-> z'' :|: z' >= 0, z'' >= 0, z = z', z' = z'' g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g1(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' g1(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z' >= 0, z'' = z' g2(z, z', z'') -{ 2 }-> z' :|: z' >= 0, z'' >= 0, z = z', z'' = z' g2(z, z', z'') -{ 2 }-> z'' :|: z >= 0, z'' >= 0, z' = z'', z = z'' g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g2(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z'' >= 0, z' = z'' g2(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' h(z, z') -{ 1 }-> z' :|: z' >= 0, z = z' h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_g2}, {encode_g1}, {encode_h}, {encode_f} Previous analysis results are: g2: runtime: O(1) [2], size: O(n^1) [z''] h: runtime: O(1) [1], size: O(n^1) [z'] g1: runtime: O(1) [2], size: O(n^1) [z''] f: runtime: O(1) [3], size: O(n^1) [z'] encArg: runtime: O(n^1) [3*z], size: O(1) [0] ---------------------------------------- (51) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 2 + 3*x_1 + 3*x_2 + 3*x_3 }-> s16 :|: s13 >= 0, s13 <= 0, s14 >= 0, s14 <= 0, s15 >= 0, s15 <= 0, s16 >= 0, s16 <= s15, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 2 + 3*x_1 + 3*x_2 + 3*x_3 }-> s24 :|: s21 >= 0, s21 <= 0, s22 >= 0, s22 <= 0, s23 >= 0, s23 <= 0, s24 >= 0, s24 <= s23, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 3 + 3*x_1 + 3*x_2 }-> s3 :|: s1 >= 0, s1 <= 0, s2 >= 0, s2 <= 0, s3 >= 0, s3 <= s2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 + 3*x_1 + 3*x_2 }-> s9 :|: s7 >= 0, s7 <= 0, s8 >= 0, s8 <= 0, s9 >= 0, s9 <= s8, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z') -{ 3 + 3*z + 3*z' }-> s6 :|: s4 >= 0, s4 <= 0, s5 >= 0, s5 <= 0, s6 >= 0, s6 <= s5, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g1(z, z', z'') -{ 2 + 3*z + 3*z' + 3*z'' }-> s20 :|: s17 >= 0, s17 <= 0, s18 >= 0, s18 <= 0, s19 >= 0, s19 <= 0, s20 >= 0, s20 <= s19, z >= 0, z'' >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g2(z, z', z'') -{ 2 + 3*z + 3*z' + 3*z'' }-> s28 :|: s25 >= 0, s25 <= 0, s26 >= 0, s26 <= 0, s27 >= 0, s27 <= 0, s28 >= 0, s28 <= s27, z >= 0, z'' >= 0, z' >= 0 encode_g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_h(z, z') -{ 1 + 3*z + 3*z' }-> s12 :|: s10 >= 0, s10 <= 0, s11 >= 0, s11 <= 0, s12 >= 0, s12 <= s11, z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 3 }-> s :|: s >= 0, s <= z', z >= 0, z' >= 0 f(z, z') -{ 3 }-> s' :|: s' >= 0, s' <= z, z >= 0, z' >= 0, z' = z f(z, z') -{ 3 }-> s'' :|: s'' >= 0, s'' <= z', z >= 0, z' >= 0, z = z' f(z, z') -{ 1 }-> 0 :|: z >= 0, z' >= 0 g1(z, z', z'') -{ 2 }-> z :|: z >= 0, z' >= 0, z'' = z', z' = z g1(z, z', z'') -{ 2 }-> z'' :|: z' >= 0, z'' >= 0, z = z', z' = z'' g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g1(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' g1(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z' >= 0, z'' = z' g2(z, z', z'') -{ 2 }-> z' :|: z' >= 0, z'' >= 0, z = z', z'' = z' g2(z, z', z'') -{ 2 }-> z'' :|: z >= 0, z'' >= 0, z' = z'', z = z'' g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g2(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z'' >= 0, z' = z'' g2(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' h(z, z') -{ 1 }-> z' :|: z' >= 0, z = z' h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_g2}, {encode_g1}, {encode_h}, {encode_f} Previous analysis results are: g2: runtime: O(1) [2], size: O(n^1) [z''] h: runtime: O(1) [1], size: O(n^1) [z'] g1: runtime: O(1) [2], size: O(n^1) [z''] f: runtime: O(1) [3], size: O(n^1) [z'] encArg: runtime: O(n^1) [3*z], size: O(1) [0] ---------------------------------------- (53) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_g2 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (54) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 2 + 3*x_1 + 3*x_2 + 3*x_3 }-> s16 :|: s13 >= 0, s13 <= 0, s14 >= 0, s14 <= 0, s15 >= 0, s15 <= 0, s16 >= 0, s16 <= s15, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 2 + 3*x_1 + 3*x_2 + 3*x_3 }-> s24 :|: s21 >= 0, s21 <= 0, s22 >= 0, s22 <= 0, s23 >= 0, s23 <= 0, s24 >= 0, s24 <= s23, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 3 + 3*x_1 + 3*x_2 }-> s3 :|: s1 >= 0, s1 <= 0, s2 >= 0, s2 <= 0, s3 >= 0, s3 <= s2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 + 3*x_1 + 3*x_2 }-> s9 :|: s7 >= 0, s7 <= 0, s8 >= 0, s8 <= 0, s9 >= 0, s9 <= s8, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z') -{ 3 + 3*z + 3*z' }-> s6 :|: s4 >= 0, s4 <= 0, s5 >= 0, s5 <= 0, s6 >= 0, s6 <= s5, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g1(z, z', z'') -{ 2 + 3*z + 3*z' + 3*z'' }-> s20 :|: s17 >= 0, s17 <= 0, s18 >= 0, s18 <= 0, s19 >= 0, s19 <= 0, s20 >= 0, s20 <= s19, z >= 0, z'' >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g2(z, z', z'') -{ 2 + 3*z + 3*z' + 3*z'' }-> s28 :|: s25 >= 0, s25 <= 0, s26 >= 0, s26 <= 0, s27 >= 0, s27 <= 0, s28 >= 0, s28 <= s27, z >= 0, z'' >= 0, z' >= 0 encode_g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_h(z, z') -{ 1 + 3*z + 3*z' }-> s12 :|: s10 >= 0, s10 <= 0, s11 >= 0, s11 <= 0, s12 >= 0, s12 <= s11, z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 3 }-> s :|: s >= 0, s <= z', z >= 0, z' >= 0 f(z, z') -{ 3 }-> s' :|: s' >= 0, s' <= z, z >= 0, z' >= 0, z' = z f(z, z') -{ 3 }-> s'' :|: s'' >= 0, s'' <= z', z >= 0, z' >= 0, z = z' f(z, z') -{ 1 }-> 0 :|: z >= 0, z' >= 0 g1(z, z', z'') -{ 2 }-> z :|: z >= 0, z' >= 0, z'' = z', z' = z g1(z, z', z'') -{ 2 }-> z'' :|: z' >= 0, z'' >= 0, z = z', z' = z'' g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g1(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' g1(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z' >= 0, z'' = z' g2(z, z', z'') -{ 2 }-> z' :|: z' >= 0, z'' >= 0, z = z', z'' = z' g2(z, z', z'') -{ 2 }-> z'' :|: z >= 0, z'' >= 0, z' = z'', z = z'' g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g2(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z'' >= 0, z' = z'' g2(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' h(z, z') -{ 1 }-> z' :|: z' >= 0, z = z' h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_g2}, {encode_g1}, {encode_h}, {encode_f} Previous analysis results are: g2: runtime: O(1) [2], size: O(n^1) [z''] h: runtime: O(1) [1], size: O(n^1) [z'] g1: runtime: O(1) [2], size: O(n^1) [z''] f: runtime: O(1) [3], size: O(n^1) [z'] encArg: runtime: O(n^1) [3*z], size: O(1) [0] encode_g2: runtime: ?, size: O(1) [0] ---------------------------------------- (55) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_g2 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + 3*z + 3*z' + 3*z'' ---------------------------------------- (56) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 2 + 3*x_1 + 3*x_2 + 3*x_3 }-> s16 :|: s13 >= 0, s13 <= 0, s14 >= 0, s14 <= 0, s15 >= 0, s15 <= 0, s16 >= 0, s16 <= s15, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 2 + 3*x_1 + 3*x_2 + 3*x_3 }-> s24 :|: s21 >= 0, s21 <= 0, s22 >= 0, s22 <= 0, s23 >= 0, s23 <= 0, s24 >= 0, s24 <= s23, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 3 + 3*x_1 + 3*x_2 }-> s3 :|: s1 >= 0, s1 <= 0, s2 >= 0, s2 <= 0, s3 >= 0, s3 <= s2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 + 3*x_1 + 3*x_2 }-> s9 :|: s7 >= 0, s7 <= 0, s8 >= 0, s8 <= 0, s9 >= 0, s9 <= s8, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z') -{ 3 + 3*z + 3*z' }-> s6 :|: s4 >= 0, s4 <= 0, s5 >= 0, s5 <= 0, s6 >= 0, s6 <= s5, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g1(z, z', z'') -{ 2 + 3*z + 3*z' + 3*z'' }-> s20 :|: s17 >= 0, s17 <= 0, s18 >= 0, s18 <= 0, s19 >= 0, s19 <= 0, s20 >= 0, s20 <= s19, z >= 0, z'' >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g2(z, z', z'') -{ 2 + 3*z + 3*z' + 3*z'' }-> s28 :|: s25 >= 0, s25 <= 0, s26 >= 0, s26 <= 0, s27 >= 0, s27 <= 0, s28 >= 0, s28 <= s27, z >= 0, z'' >= 0, z' >= 0 encode_g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_h(z, z') -{ 1 + 3*z + 3*z' }-> s12 :|: s10 >= 0, s10 <= 0, s11 >= 0, s11 <= 0, s12 >= 0, s12 <= s11, z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 3 }-> s :|: s >= 0, s <= z', z >= 0, z' >= 0 f(z, z') -{ 3 }-> s' :|: s' >= 0, s' <= z, z >= 0, z' >= 0, z' = z f(z, z') -{ 3 }-> s'' :|: s'' >= 0, s'' <= z', z >= 0, z' >= 0, z = z' f(z, z') -{ 1 }-> 0 :|: z >= 0, z' >= 0 g1(z, z', z'') -{ 2 }-> z :|: z >= 0, z' >= 0, z'' = z', z' = z g1(z, z', z'') -{ 2 }-> z'' :|: z' >= 0, z'' >= 0, z = z', z' = z'' g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g1(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' g1(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z' >= 0, z'' = z' g2(z, z', z'') -{ 2 }-> z' :|: z' >= 0, z'' >= 0, z = z', z'' = z' g2(z, z', z'') -{ 2 }-> z'' :|: z >= 0, z'' >= 0, z' = z'', z = z'' g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g2(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z'' >= 0, z' = z'' g2(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' h(z, z') -{ 1 }-> z' :|: z' >= 0, z = z' h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_g1}, {encode_h}, {encode_f} Previous analysis results are: g2: runtime: O(1) [2], size: O(n^1) [z''] h: runtime: O(1) [1], size: O(n^1) [z'] g1: runtime: O(1) [2], size: O(n^1) [z''] f: runtime: O(1) [3], size: O(n^1) [z'] encArg: runtime: O(n^1) [3*z], size: O(1) [0] encode_g2: runtime: O(n^1) [2 + 3*z + 3*z' + 3*z''], size: O(1) [0] ---------------------------------------- (57) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (58) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 2 + 3*x_1 + 3*x_2 + 3*x_3 }-> s16 :|: s13 >= 0, s13 <= 0, s14 >= 0, s14 <= 0, s15 >= 0, s15 <= 0, s16 >= 0, s16 <= s15, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 2 + 3*x_1 + 3*x_2 + 3*x_3 }-> s24 :|: s21 >= 0, s21 <= 0, s22 >= 0, s22 <= 0, s23 >= 0, s23 <= 0, s24 >= 0, s24 <= s23, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 3 + 3*x_1 + 3*x_2 }-> s3 :|: s1 >= 0, s1 <= 0, s2 >= 0, s2 <= 0, s3 >= 0, s3 <= s2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 + 3*x_1 + 3*x_2 }-> s9 :|: s7 >= 0, s7 <= 0, s8 >= 0, s8 <= 0, s9 >= 0, s9 <= s8, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z') -{ 3 + 3*z + 3*z' }-> s6 :|: s4 >= 0, s4 <= 0, s5 >= 0, s5 <= 0, s6 >= 0, s6 <= s5, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g1(z, z', z'') -{ 2 + 3*z + 3*z' + 3*z'' }-> s20 :|: s17 >= 0, s17 <= 0, s18 >= 0, s18 <= 0, s19 >= 0, s19 <= 0, s20 >= 0, s20 <= s19, z >= 0, z'' >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g2(z, z', z'') -{ 2 + 3*z + 3*z' + 3*z'' }-> s28 :|: s25 >= 0, s25 <= 0, s26 >= 0, s26 <= 0, s27 >= 0, s27 <= 0, s28 >= 0, s28 <= s27, z >= 0, z'' >= 0, z' >= 0 encode_g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_h(z, z') -{ 1 + 3*z + 3*z' }-> s12 :|: s10 >= 0, s10 <= 0, s11 >= 0, s11 <= 0, s12 >= 0, s12 <= s11, z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 3 }-> s :|: s >= 0, s <= z', z >= 0, z' >= 0 f(z, z') -{ 3 }-> s' :|: s' >= 0, s' <= z, z >= 0, z' >= 0, z' = z f(z, z') -{ 3 }-> s'' :|: s'' >= 0, s'' <= z', z >= 0, z' >= 0, z = z' f(z, z') -{ 1 }-> 0 :|: z >= 0, z' >= 0 g1(z, z', z'') -{ 2 }-> z :|: z >= 0, z' >= 0, z'' = z', z' = z g1(z, z', z'') -{ 2 }-> z'' :|: z' >= 0, z'' >= 0, z = z', z' = z'' g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g1(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' g1(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z' >= 0, z'' = z' g2(z, z', z'') -{ 2 }-> z' :|: z' >= 0, z'' >= 0, z = z', z'' = z' g2(z, z', z'') -{ 2 }-> z'' :|: z >= 0, z'' >= 0, z' = z'', z = z'' g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g2(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z'' >= 0, z' = z'' g2(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' h(z, z') -{ 1 }-> z' :|: z' >= 0, z = z' h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_g1}, {encode_h}, {encode_f} Previous analysis results are: g2: runtime: O(1) [2], size: O(n^1) [z''] h: runtime: O(1) [1], size: O(n^1) [z'] g1: runtime: O(1) [2], size: O(n^1) [z''] f: runtime: O(1) [3], size: O(n^1) [z'] encArg: runtime: O(n^1) [3*z], size: O(1) [0] encode_g2: runtime: O(n^1) [2 + 3*z + 3*z' + 3*z''], size: O(1) [0] ---------------------------------------- (59) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_g1 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (60) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 2 + 3*x_1 + 3*x_2 + 3*x_3 }-> s16 :|: s13 >= 0, s13 <= 0, s14 >= 0, s14 <= 0, s15 >= 0, s15 <= 0, s16 >= 0, s16 <= s15, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 2 + 3*x_1 + 3*x_2 + 3*x_3 }-> s24 :|: s21 >= 0, s21 <= 0, s22 >= 0, s22 <= 0, s23 >= 0, s23 <= 0, s24 >= 0, s24 <= s23, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 3 + 3*x_1 + 3*x_2 }-> s3 :|: s1 >= 0, s1 <= 0, s2 >= 0, s2 <= 0, s3 >= 0, s3 <= s2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 + 3*x_1 + 3*x_2 }-> s9 :|: s7 >= 0, s7 <= 0, s8 >= 0, s8 <= 0, s9 >= 0, s9 <= s8, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z') -{ 3 + 3*z + 3*z' }-> s6 :|: s4 >= 0, s4 <= 0, s5 >= 0, s5 <= 0, s6 >= 0, s6 <= s5, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g1(z, z', z'') -{ 2 + 3*z + 3*z' + 3*z'' }-> s20 :|: s17 >= 0, s17 <= 0, s18 >= 0, s18 <= 0, s19 >= 0, s19 <= 0, s20 >= 0, s20 <= s19, z >= 0, z'' >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g2(z, z', z'') -{ 2 + 3*z + 3*z' + 3*z'' }-> s28 :|: s25 >= 0, s25 <= 0, s26 >= 0, s26 <= 0, s27 >= 0, s27 <= 0, s28 >= 0, s28 <= s27, z >= 0, z'' >= 0, z' >= 0 encode_g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_h(z, z') -{ 1 + 3*z + 3*z' }-> s12 :|: s10 >= 0, s10 <= 0, s11 >= 0, s11 <= 0, s12 >= 0, s12 <= s11, z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 3 }-> s :|: s >= 0, s <= z', z >= 0, z' >= 0 f(z, z') -{ 3 }-> s' :|: s' >= 0, s' <= z, z >= 0, z' >= 0, z' = z f(z, z') -{ 3 }-> s'' :|: s'' >= 0, s'' <= z', z >= 0, z' >= 0, z = z' f(z, z') -{ 1 }-> 0 :|: z >= 0, z' >= 0 g1(z, z', z'') -{ 2 }-> z :|: z >= 0, z' >= 0, z'' = z', z' = z g1(z, z', z'') -{ 2 }-> z'' :|: z' >= 0, z'' >= 0, z = z', z' = z'' g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g1(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' g1(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z' >= 0, z'' = z' g2(z, z', z'') -{ 2 }-> z' :|: z' >= 0, z'' >= 0, z = z', z'' = z' g2(z, z', z'') -{ 2 }-> z'' :|: z >= 0, z'' >= 0, z' = z'', z = z'' g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g2(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z'' >= 0, z' = z'' g2(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' h(z, z') -{ 1 }-> z' :|: z' >= 0, z = z' h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_g1}, {encode_h}, {encode_f} Previous analysis results are: g2: runtime: O(1) [2], size: O(n^1) [z''] h: runtime: O(1) [1], size: O(n^1) [z'] g1: runtime: O(1) [2], size: O(n^1) [z''] f: runtime: O(1) [3], size: O(n^1) [z'] encArg: runtime: O(n^1) [3*z], size: O(1) [0] encode_g2: runtime: O(n^1) [2 + 3*z + 3*z' + 3*z''], size: O(1) [0] encode_g1: runtime: ?, size: O(1) [0] ---------------------------------------- (61) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_g1 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + 3*z + 3*z' + 3*z'' ---------------------------------------- (62) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 2 + 3*x_1 + 3*x_2 + 3*x_3 }-> s16 :|: s13 >= 0, s13 <= 0, s14 >= 0, s14 <= 0, s15 >= 0, s15 <= 0, s16 >= 0, s16 <= s15, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 2 + 3*x_1 + 3*x_2 + 3*x_3 }-> s24 :|: s21 >= 0, s21 <= 0, s22 >= 0, s22 <= 0, s23 >= 0, s23 <= 0, s24 >= 0, s24 <= s23, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 3 + 3*x_1 + 3*x_2 }-> s3 :|: s1 >= 0, s1 <= 0, s2 >= 0, s2 <= 0, s3 >= 0, s3 <= s2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 + 3*x_1 + 3*x_2 }-> s9 :|: s7 >= 0, s7 <= 0, s8 >= 0, s8 <= 0, s9 >= 0, s9 <= s8, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z') -{ 3 + 3*z + 3*z' }-> s6 :|: s4 >= 0, s4 <= 0, s5 >= 0, s5 <= 0, s6 >= 0, s6 <= s5, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g1(z, z', z'') -{ 2 + 3*z + 3*z' + 3*z'' }-> s20 :|: s17 >= 0, s17 <= 0, s18 >= 0, s18 <= 0, s19 >= 0, s19 <= 0, s20 >= 0, s20 <= s19, z >= 0, z'' >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g2(z, z', z'') -{ 2 + 3*z + 3*z' + 3*z'' }-> s28 :|: s25 >= 0, s25 <= 0, s26 >= 0, s26 <= 0, s27 >= 0, s27 <= 0, s28 >= 0, s28 <= s27, z >= 0, z'' >= 0, z' >= 0 encode_g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_h(z, z') -{ 1 + 3*z + 3*z' }-> s12 :|: s10 >= 0, s10 <= 0, s11 >= 0, s11 <= 0, s12 >= 0, s12 <= s11, z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 3 }-> s :|: s >= 0, s <= z', z >= 0, z' >= 0 f(z, z') -{ 3 }-> s' :|: s' >= 0, s' <= z, z >= 0, z' >= 0, z' = z f(z, z') -{ 3 }-> s'' :|: s'' >= 0, s'' <= z', z >= 0, z' >= 0, z = z' f(z, z') -{ 1 }-> 0 :|: z >= 0, z' >= 0 g1(z, z', z'') -{ 2 }-> z :|: z >= 0, z' >= 0, z'' = z', z' = z g1(z, z', z'') -{ 2 }-> z'' :|: z' >= 0, z'' >= 0, z = z', z' = z'' g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g1(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' g1(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z' >= 0, z'' = z' g2(z, z', z'') -{ 2 }-> z' :|: z' >= 0, z'' >= 0, z = z', z'' = z' g2(z, z', z'') -{ 2 }-> z'' :|: z >= 0, z'' >= 0, z' = z'', z = z'' g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g2(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z'' >= 0, z' = z'' g2(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' h(z, z') -{ 1 }-> z' :|: z' >= 0, z = z' h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_h}, {encode_f} Previous analysis results are: g2: runtime: O(1) [2], size: O(n^1) [z''] h: runtime: O(1) [1], size: O(n^1) [z'] g1: runtime: O(1) [2], size: O(n^1) [z''] f: runtime: O(1) [3], size: O(n^1) [z'] encArg: runtime: O(n^1) [3*z], size: O(1) [0] encode_g2: runtime: O(n^1) [2 + 3*z + 3*z' + 3*z''], size: O(1) [0] encode_g1: runtime: O(n^1) [2 + 3*z + 3*z' + 3*z''], size: O(1) [0] ---------------------------------------- (63) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (64) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 2 + 3*x_1 + 3*x_2 + 3*x_3 }-> s16 :|: s13 >= 0, s13 <= 0, s14 >= 0, s14 <= 0, s15 >= 0, s15 <= 0, s16 >= 0, s16 <= s15, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 2 + 3*x_1 + 3*x_2 + 3*x_3 }-> s24 :|: s21 >= 0, s21 <= 0, s22 >= 0, s22 <= 0, s23 >= 0, s23 <= 0, s24 >= 0, s24 <= s23, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 3 + 3*x_1 + 3*x_2 }-> s3 :|: s1 >= 0, s1 <= 0, s2 >= 0, s2 <= 0, s3 >= 0, s3 <= s2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 + 3*x_1 + 3*x_2 }-> s9 :|: s7 >= 0, s7 <= 0, s8 >= 0, s8 <= 0, s9 >= 0, s9 <= s8, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z') -{ 3 + 3*z + 3*z' }-> s6 :|: s4 >= 0, s4 <= 0, s5 >= 0, s5 <= 0, s6 >= 0, s6 <= s5, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g1(z, z', z'') -{ 2 + 3*z + 3*z' + 3*z'' }-> s20 :|: s17 >= 0, s17 <= 0, s18 >= 0, s18 <= 0, s19 >= 0, s19 <= 0, s20 >= 0, s20 <= s19, z >= 0, z'' >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g2(z, z', z'') -{ 2 + 3*z + 3*z' + 3*z'' }-> s28 :|: s25 >= 0, s25 <= 0, s26 >= 0, s26 <= 0, s27 >= 0, s27 <= 0, s28 >= 0, s28 <= s27, z >= 0, z'' >= 0, z' >= 0 encode_g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_h(z, z') -{ 1 + 3*z + 3*z' }-> s12 :|: s10 >= 0, s10 <= 0, s11 >= 0, s11 <= 0, s12 >= 0, s12 <= s11, z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 3 }-> s :|: s >= 0, s <= z', z >= 0, z' >= 0 f(z, z') -{ 3 }-> s' :|: s' >= 0, s' <= z, z >= 0, z' >= 0, z' = z f(z, z') -{ 3 }-> s'' :|: s'' >= 0, s'' <= z', z >= 0, z' >= 0, z = z' f(z, z') -{ 1 }-> 0 :|: z >= 0, z' >= 0 g1(z, z', z'') -{ 2 }-> z :|: z >= 0, z' >= 0, z'' = z', z' = z g1(z, z', z'') -{ 2 }-> z'' :|: z' >= 0, z'' >= 0, z = z', z' = z'' g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g1(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' g1(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z' >= 0, z'' = z' g2(z, z', z'') -{ 2 }-> z' :|: z' >= 0, z'' >= 0, z = z', z'' = z' g2(z, z', z'') -{ 2 }-> z'' :|: z >= 0, z'' >= 0, z' = z'', z = z'' g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g2(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z'' >= 0, z' = z'' g2(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' h(z, z') -{ 1 }-> z' :|: z' >= 0, z = z' h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_h}, {encode_f} Previous analysis results are: g2: runtime: O(1) [2], size: O(n^1) [z''] h: runtime: O(1) [1], size: O(n^1) [z'] g1: runtime: O(1) [2], size: O(n^1) [z''] f: runtime: O(1) [3], size: O(n^1) [z'] encArg: runtime: O(n^1) [3*z], size: O(1) [0] encode_g2: runtime: O(n^1) [2 + 3*z + 3*z' + 3*z''], size: O(1) [0] encode_g1: runtime: O(n^1) [2 + 3*z + 3*z' + 3*z''], size: O(1) [0] ---------------------------------------- (65) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_h after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (66) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 2 + 3*x_1 + 3*x_2 + 3*x_3 }-> s16 :|: s13 >= 0, s13 <= 0, s14 >= 0, s14 <= 0, s15 >= 0, s15 <= 0, s16 >= 0, s16 <= s15, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 2 + 3*x_1 + 3*x_2 + 3*x_3 }-> s24 :|: s21 >= 0, s21 <= 0, s22 >= 0, s22 <= 0, s23 >= 0, s23 <= 0, s24 >= 0, s24 <= s23, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 3 + 3*x_1 + 3*x_2 }-> s3 :|: s1 >= 0, s1 <= 0, s2 >= 0, s2 <= 0, s3 >= 0, s3 <= s2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 + 3*x_1 + 3*x_2 }-> s9 :|: s7 >= 0, s7 <= 0, s8 >= 0, s8 <= 0, s9 >= 0, s9 <= s8, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z') -{ 3 + 3*z + 3*z' }-> s6 :|: s4 >= 0, s4 <= 0, s5 >= 0, s5 <= 0, s6 >= 0, s6 <= s5, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g1(z, z', z'') -{ 2 + 3*z + 3*z' + 3*z'' }-> s20 :|: s17 >= 0, s17 <= 0, s18 >= 0, s18 <= 0, s19 >= 0, s19 <= 0, s20 >= 0, s20 <= s19, z >= 0, z'' >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g2(z, z', z'') -{ 2 + 3*z + 3*z' + 3*z'' }-> s28 :|: s25 >= 0, s25 <= 0, s26 >= 0, s26 <= 0, s27 >= 0, s27 <= 0, s28 >= 0, s28 <= s27, z >= 0, z'' >= 0, z' >= 0 encode_g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_h(z, z') -{ 1 + 3*z + 3*z' }-> s12 :|: s10 >= 0, s10 <= 0, s11 >= 0, s11 <= 0, s12 >= 0, s12 <= s11, z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 3 }-> s :|: s >= 0, s <= z', z >= 0, z' >= 0 f(z, z') -{ 3 }-> s' :|: s' >= 0, s' <= z, z >= 0, z' >= 0, z' = z f(z, z') -{ 3 }-> s'' :|: s'' >= 0, s'' <= z', z >= 0, z' >= 0, z = z' f(z, z') -{ 1 }-> 0 :|: z >= 0, z' >= 0 g1(z, z', z'') -{ 2 }-> z :|: z >= 0, z' >= 0, z'' = z', z' = z g1(z, z', z'') -{ 2 }-> z'' :|: z' >= 0, z'' >= 0, z = z', z' = z'' g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g1(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' g1(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z' >= 0, z'' = z' g2(z, z', z'') -{ 2 }-> z' :|: z' >= 0, z'' >= 0, z = z', z'' = z' g2(z, z', z'') -{ 2 }-> z'' :|: z >= 0, z'' >= 0, z' = z'', z = z'' g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g2(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z'' >= 0, z' = z'' g2(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' h(z, z') -{ 1 }-> z' :|: z' >= 0, z = z' h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_h}, {encode_f} Previous analysis results are: g2: runtime: O(1) [2], size: O(n^1) [z''] h: runtime: O(1) [1], size: O(n^1) [z'] g1: runtime: O(1) [2], size: O(n^1) [z''] f: runtime: O(1) [3], size: O(n^1) [z'] encArg: runtime: O(n^1) [3*z], size: O(1) [0] encode_g2: runtime: O(n^1) [2 + 3*z + 3*z' + 3*z''], size: O(1) [0] encode_g1: runtime: O(n^1) [2 + 3*z + 3*z' + 3*z''], size: O(1) [0] encode_h: runtime: ?, size: O(1) [0] ---------------------------------------- (67) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_h after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + 3*z + 3*z' ---------------------------------------- (68) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 2 + 3*x_1 + 3*x_2 + 3*x_3 }-> s16 :|: s13 >= 0, s13 <= 0, s14 >= 0, s14 <= 0, s15 >= 0, s15 <= 0, s16 >= 0, s16 <= s15, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 2 + 3*x_1 + 3*x_2 + 3*x_3 }-> s24 :|: s21 >= 0, s21 <= 0, s22 >= 0, s22 <= 0, s23 >= 0, s23 <= 0, s24 >= 0, s24 <= s23, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 3 + 3*x_1 + 3*x_2 }-> s3 :|: s1 >= 0, s1 <= 0, s2 >= 0, s2 <= 0, s3 >= 0, s3 <= s2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 + 3*x_1 + 3*x_2 }-> s9 :|: s7 >= 0, s7 <= 0, s8 >= 0, s8 <= 0, s9 >= 0, s9 <= s8, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z') -{ 3 + 3*z + 3*z' }-> s6 :|: s4 >= 0, s4 <= 0, s5 >= 0, s5 <= 0, s6 >= 0, s6 <= s5, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g1(z, z', z'') -{ 2 + 3*z + 3*z' + 3*z'' }-> s20 :|: s17 >= 0, s17 <= 0, s18 >= 0, s18 <= 0, s19 >= 0, s19 <= 0, s20 >= 0, s20 <= s19, z >= 0, z'' >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g2(z, z', z'') -{ 2 + 3*z + 3*z' + 3*z'' }-> s28 :|: s25 >= 0, s25 <= 0, s26 >= 0, s26 <= 0, s27 >= 0, s27 <= 0, s28 >= 0, s28 <= s27, z >= 0, z'' >= 0, z' >= 0 encode_g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_h(z, z') -{ 1 + 3*z + 3*z' }-> s12 :|: s10 >= 0, s10 <= 0, s11 >= 0, s11 <= 0, s12 >= 0, s12 <= s11, z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 3 }-> s :|: s >= 0, s <= z', z >= 0, z' >= 0 f(z, z') -{ 3 }-> s' :|: s' >= 0, s' <= z, z >= 0, z' >= 0, z' = z f(z, z') -{ 3 }-> s'' :|: s'' >= 0, s'' <= z', z >= 0, z' >= 0, z = z' f(z, z') -{ 1 }-> 0 :|: z >= 0, z' >= 0 g1(z, z', z'') -{ 2 }-> z :|: z >= 0, z' >= 0, z'' = z', z' = z g1(z, z', z'') -{ 2 }-> z'' :|: z' >= 0, z'' >= 0, z = z', z' = z'' g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g1(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' g1(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z' >= 0, z'' = z' g2(z, z', z'') -{ 2 }-> z' :|: z' >= 0, z'' >= 0, z = z', z'' = z' g2(z, z', z'') -{ 2 }-> z'' :|: z >= 0, z'' >= 0, z' = z'', z = z'' g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g2(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z'' >= 0, z' = z'' g2(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' h(z, z') -{ 1 }-> z' :|: z' >= 0, z = z' h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_f} Previous analysis results are: g2: runtime: O(1) [2], size: O(n^1) [z''] h: runtime: O(1) [1], size: O(n^1) [z'] g1: runtime: O(1) [2], size: O(n^1) [z''] f: runtime: O(1) [3], size: O(n^1) [z'] encArg: runtime: O(n^1) [3*z], size: O(1) [0] encode_g2: runtime: O(n^1) [2 + 3*z + 3*z' + 3*z''], size: O(1) [0] encode_g1: runtime: O(n^1) [2 + 3*z + 3*z' + 3*z''], size: O(1) [0] encode_h: runtime: O(n^1) [1 + 3*z + 3*z'], size: O(1) [0] ---------------------------------------- (69) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (70) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 2 + 3*x_1 + 3*x_2 + 3*x_3 }-> s16 :|: s13 >= 0, s13 <= 0, s14 >= 0, s14 <= 0, s15 >= 0, s15 <= 0, s16 >= 0, s16 <= s15, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 2 + 3*x_1 + 3*x_2 + 3*x_3 }-> s24 :|: s21 >= 0, s21 <= 0, s22 >= 0, s22 <= 0, s23 >= 0, s23 <= 0, s24 >= 0, s24 <= s23, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 3 + 3*x_1 + 3*x_2 }-> s3 :|: s1 >= 0, s1 <= 0, s2 >= 0, s2 <= 0, s3 >= 0, s3 <= s2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 + 3*x_1 + 3*x_2 }-> s9 :|: s7 >= 0, s7 <= 0, s8 >= 0, s8 <= 0, s9 >= 0, s9 <= s8, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z') -{ 3 + 3*z + 3*z' }-> s6 :|: s4 >= 0, s4 <= 0, s5 >= 0, s5 <= 0, s6 >= 0, s6 <= s5, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g1(z, z', z'') -{ 2 + 3*z + 3*z' + 3*z'' }-> s20 :|: s17 >= 0, s17 <= 0, s18 >= 0, s18 <= 0, s19 >= 0, s19 <= 0, s20 >= 0, s20 <= s19, z >= 0, z'' >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g2(z, z', z'') -{ 2 + 3*z + 3*z' + 3*z'' }-> s28 :|: s25 >= 0, s25 <= 0, s26 >= 0, s26 <= 0, s27 >= 0, s27 <= 0, s28 >= 0, s28 <= s27, z >= 0, z'' >= 0, z' >= 0 encode_g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_h(z, z') -{ 1 + 3*z + 3*z' }-> s12 :|: s10 >= 0, s10 <= 0, s11 >= 0, s11 <= 0, s12 >= 0, s12 <= s11, z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 3 }-> s :|: s >= 0, s <= z', z >= 0, z' >= 0 f(z, z') -{ 3 }-> s' :|: s' >= 0, s' <= z, z >= 0, z' >= 0, z' = z f(z, z') -{ 3 }-> s'' :|: s'' >= 0, s'' <= z', z >= 0, z' >= 0, z = z' f(z, z') -{ 1 }-> 0 :|: z >= 0, z' >= 0 g1(z, z', z'') -{ 2 }-> z :|: z >= 0, z' >= 0, z'' = z', z' = z g1(z, z', z'') -{ 2 }-> z'' :|: z' >= 0, z'' >= 0, z = z', z' = z'' g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g1(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' g1(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z' >= 0, z'' = z' g2(z, z', z'') -{ 2 }-> z' :|: z' >= 0, z'' >= 0, z = z', z'' = z' g2(z, z', z'') -{ 2 }-> z'' :|: z >= 0, z'' >= 0, z' = z'', z = z'' g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g2(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z'' >= 0, z' = z'' g2(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' h(z, z') -{ 1 }-> z' :|: z' >= 0, z = z' h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_f} Previous analysis results are: g2: runtime: O(1) [2], size: O(n^1) [z''] h: runtime: O(1) [1], size: O(n^1) [z'] g1: runtime: O(1) [2], size: O(n^1) [z''] f: runtime: O(1) [3], size: O(n^1) [z'] encArg: runtime: O(n^1) [3*z], size: O(1) [0] encode_g2: runtime: O(n^1) [2 + 3*z + 3*z' + 3*z''], size: O(1) [0] encode_g1: runtime: O(n^1) [2 + 3*z + 3*z' + 3*z''], size: O(1) [0] encode_h: runtime: O(n^1) [1 + 3*z + 3*z'], size: O(1) [0] ---------------------------------------- (71) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_f after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (72) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 2 + 3*x_1 + 3*x_2 + 3*x_3 }-> s16 :|: s13 >= 0, s13 <= 0, s14 >= 0, s14 <= 0, s15 >= 0, s15 <= 0, s16 >= 0, s16 <= s15, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 2 + 3*x_1 + 3*x_2 + 3*x_3 }-> s24 :|: s21 >= 0, s21 <= 0, s22 >= 0, s22 <= 0, s23 >= 0, s23 <= 0, s24 >= 0, s24 <= s23, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 3 + 3*x_1 + 3*x_2 }-> s3 :|: s1 >= 0, s1 <= 0, s2 >= 0, s2 <= 0, s3 >= 0, s3 <= s2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 + 3*x_1 + 3*x_2 }-> s9 :|: s7 >= 0, s7 <= 0, s8 >= 0, s8 <= 0, s9 >= 0, s9 <= s8, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z') -{ 3 + 3*z + 3*z' }-> s6 :|: s4 >= 0, s4 <= 0, s5 >= 0, s5 <= 0, s6 >= 0, s6 <= s5, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g1(z, z', z'') -{ 2 + 3*z + 3*z' + 3*z'' }-> s20 :|: s17 >= 0, s17 <= 0, s18 >= 0, s18 <= 0, s19 >= 0, s19 <= 0, s20 >= 0, s20 <= s19, z >= 0, z'' >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g2(z, z', z'') -{ 2 + 3*z + 3*z' + 3*z'' }-> s28 :|: s25 >= 0, s25 <= 0, s26 >= 0, s26 <= 0, s27 >= 0, s27 <= 0, s28 >= 0, s28 <= s27, z >= 0, z'' >= 0, z' >= 0 encode_g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_h(z, z') -{ 1 + 3*z + 3*z' }-> s12 :|: s10 >= 0, s10 <= 0, s11 >= 0, s11 <= 0, s12 >= 0, s12 <= s11, z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 3 }-> s :|: s >= 0, s <= z', z >= 0, z' >= 0 f(z, z') -{ 3 }-> s' :|: s' >= 0, s' <= z, z >= 0, z' >= 0, z' = z f(z, z') -{ 3 }-> s'' :|: s'' >= 0, s'' <= z', z >= 0, z' >= 0, z = z' f(z, z') -{ 1 }-> 0 :|: z >= 0, z' >= 0 g1(z, z', z'') -{ 2 }-> z :|: z >= 0, z' >= 0, z'' = z', z' = z g1(z, z', z'') -{ 2 }-> z'' :|: z' >= 0, z'' >= 0, z = z', z' = z'' g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g1(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' g1(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z' >= 0, z'' = z' g2(z, z', z'') -{ 2 }-> z' :|: z' >= 0, z'' >= 0, z = z', z'' = z' g2(z, z', z'') -{ 2 }-> z'' :|: z >= 0, z'' >= 0, z' = z'', z = z'' g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g2(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z'' >= 0, z' = z'' g2(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' h(z, z') -{ 1 }-> z' :|: z' >= 0, z = z' h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_f} Previous analysis results are: g2: runtime: O(1) [2], size: O(n^1) [z''] h: runtime: O(1) [1], size: O(n^1) [z'] g1: runtime: O(1) [2], size: O(n^1) [z''] f: runtime: O(1) [3], size: O(n^1) [z'] encArg: runtime: O(n^1) [3*z], size: O(1) [0] encode_g2: runtime: O(n^1) [2 + 3*z + 3*z' + 3*z''], size: O(1) [0] encode_g1: runtime: O(n^1) [2 + 3*z + 3*z' + 3*z''], size: O(1) [0] encode_h: runtime: O(n^1) [1 + 3*z + 3*z'], size: O(1) [0] encode_f: runtime: ?, size: O(1) [0] ---------------------------------------- (73) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 3 + 3*z + 3*z' ---------------------------------------- (74) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 2 + 3*x_1 + 3*x_2 + 3*x_3 }-> s16 :|: s13 >= 0, s13 <= 0, s14 >= 0, s14 <= 0, s15 >= 0, s15 <= 0, s16 >= 0, s16 <= s15, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 2 + 3*x_1 + 3*x_2 + 3*x_3 }-> s24 :|: s21 >= 0, s21 <= 0, s22 >= 0, s22 <= 0, s23 >= 0, s23 <= 0, s24 >= 0, s24 <= s23, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 3 + 3*x_1 + 3*x_2 }-> s3 :|: s1 >= 0, s1 <= 0, s2 >= 0, s2 <= 0, s3 >= 0, s3 <= s2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 + 3*x_1 + 3*x_2 }-> s9 :|: s7 >= 0, s7 <= 0, s8 >= 0, s8 <= 0, s9 >= 0, s9 <= s8, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z, z') -{ 3 + 3*z + 3*z' }-> s6 :|: s4 >= 0, s4 <= 0, s5 >= 0, s5 <= 0, s6 >= 0, s6 <= s5, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g1(z, z', z'') -{ 2 + 3*z + 3*z' + 3*z'' }-> s20 :|: s17 >= 0, s17 <= 0, s18 >= 0, s18 <= 0, s19 >= 0, s19 <= 0, s20 >= 0, s20 <= s19, z >= 0, z'' >= 0, z' >= 0 encode_g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g2(z, z', z'') -{ 2 + 3*z + 3*z' + 3*z'' }-> s28 :|: s25 >= 0, s25 <= 0, s26 >= 0, s26 <= 0, s27 >= 0, s27 <= 0, s28 >= 0, s28 <= s27, z >= 0, z'' >= 0, z' >= 0 encode_g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_h(z, z') -{ 1 + 3*z + 3*z' }-> s12 :|: s10 >= 0, s10 <= 0, s11 >= 0, s11 <= 0, s12 >= 0, s12 <= s11, z >= 0, z' >= 0 encode_h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 3 }-> s :|: s >= 0, s <= z', z >= 0, z' >= 0 f(z, z') -{ 3 }-> s' :|: s' >= 0, s' <= z, z >= 0, z' >= 0, z' = z f(z, z') -{ 3 }-> s'' :|: s'' >= 0, s'' <= z', z >= 0, z' >= 0, z = z' f(z, z') -{ 1 }-> 0 :|: z >= 0, z' >= 0 g1(z, z', z'') -{ 2 }-> z :|: z >= 0, z' >= 0, z'' = z', z' = z g1(z, z', z'') -{ 2 }-> z'' :|: z' >= 0, z'' >= 0, z = z', z' = z'' g1(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g1(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' g1(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z' >= 0, z'' = z' g2(z, z', z'') -{ 2 }-> z' :|: z' >= 0, z'' >= 0, z = z', z'' = z' g2(z, z', z'') -{ 2 }-> z'' :|: z >= 0, z'' >= 0, z' = z'', z = z'' g2(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g2(z, z', z'') -{ 1 }-> 0 :|: z >= 0, z'' >= 0, z' = z'' g2(z, z', z'') -{ 1 }-> 0 :|: z' >= 0, z'' >= 0, z = z' h(z, z') -{ 1 }-> z' :|: z' >= 0, z = z' h(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: Previous analysis results are: g2: runtime: O(1) [2], size: O(n^1) [z''] h: runtime: O(1) [1], size: O(n^1) [z'] g1: runtime: O(1) [2], size: O(n^1) [z''] f: runtime: O(1) [3], size: O(n^1) [z'] encArg: runtime: O(n^1) [3*z], size: O(1) [0] encode_g2: runtime: O(n^1) [2 + 3*z + 3*z' + 3*z''], size: O(1) [0] encode_g1: runtime: O(n^1) [2 + 3*z + 3*z' + 3*z''], size: O(1) [0] encode_h: runtime: O(n^1) [1 + 3*z + 3*z'], size: O(1) [0] encode_f: runtime: O(n^1) [3 + 3*z + 3*z'], size: O(1) [0] ---------------------------------------- (75) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (76) BOUNDS(1, n^1)