WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 180 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 320 ms] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 2 ms] (18) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(a, g(y)) -> g(g(y)) f(g(x), a) -> f(x, g(a)) f(g(x), g(y)) -> h(g(y), x, g(y)) h(g(x), y, z) -> f(y, h(x, y, z)) h(a, y, z) -> z S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(a) -> a encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_h(x_1, x_2, x_3)) -> h(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) encode_h(x_1, x_2, x_3) -> h(encArg(x_1), encArg(x_2), encArg(x_3)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(a, g(y)) -> g(g(y)) f(g(x), a) -> f(x, g(a)) f(g(x), g(y)) -> h(g(y), x, g(y)) h(g(x), y, z) -> f(y, h(x, y, z)) h(a, y, z) -> z The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_h(x_1, x_2, x_3)) -> h(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) encode_h(x_1, x_2, x_3) -> h(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(a, g(y)) -> g(g(y)) f(g(x), a) -> f(x, g(a)) f(g(x), g(y)) -> h(g(y), x, g(y)) h(g(x), y, z) -> f(y, h(x, y, z)) h(a, y, z) -> z The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_h(x_1, x_2, x_3)) -> h(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) encode_h(x_1, x_2, x_3) -> h(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(a, g(y)) -> g(g(y)) f(g(x), a) -> f(x, g(a)) f(g(x), g(y)) -> h(g(y), x, g(y)) h(g(x), y, z) -> f(y, h(x, y, z)) h(a, y, z) -> z The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_h(x_1, x_2, x_3)) -> h(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) encode_h(x_1, x_2, x_3) -> h(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Innermost TRS: Rules: f(a, g(y)) -> g(g(y)) f(g(x), a) -> f(x, g(a)) f(g(x), g(y)) -> h(g(y), x, g(y)) h(g(x), y, z) -> f(y, h(x, y, z)) h(a, y, z) -> z encArg(a) -> a encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_h(x_1, x_2, x_3)) -> h(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) encode_h(x_1, x_2, x_3) -> h(encArg(x_1), encArg(x_2), encArg(x_3)) Types: f :: a:g:cons_f:cons_h -> a:g:cons_f:cons_h -> a:g:cons_f:cons_h a :: a:g:cons_f:cons_h g :: a:g:cons_f:cons_h -> a:g:cons_f:cons_h h :: a:g:cons_f:cons_h -> a:g:cons_f:cons_h -> a:g:cons_f:cons_h -> a:g:cons_f:cons_h encArg :: a:g:cons_f:cons_h -> a:g:cons_f:cons_h cons_f :: a:g:cons_f:cons_h -> a:g:cons_f:cons_h -> a:g:cons_f:cons_h cons_h :: a:g:cons_f:cons_h -> a:g:cons_f:cons_h -> a:g:cons_f:cons_h -> a:g:cons_f:cons_h encode_f :: a:g:cons_f:cons_h -> a:g:cons_f:cons_h -> a:g:cons_f:cons_h encode_a :: a:g:cons_f:cons_h encode_g :: a:g:cons_f:cons_h -> a:g:cons_f:cons_h encode_h :: a:g:cons_f:cons_h -> a:g:cons_f:cons_h -> a:g:cons_f:cons_h -> a:g:cons_f:cons_h hole_a:g:cons_f:cons_h1_0 :: a:g:cons_f:cons_h gen_a:g:cons_f:cons_h2_0 :: Nat -> a:g:cons_f:cons_h ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: f, h, encArg They will be analysed ascendingly in the following order: f = h f < encArg h < encArg ---------------------------------------- (10) Obligation: Innermost TRS: Rules: f(a, g(y)) -> g(g(y)) f(g(x), a) -> f(x, g(a)) f(g(x), g(y)) -> h(g(y), x, g(y)) h(g(x), y, z) -> f(y, h(x, y, z)) h(a, y, z) -> z encArg(a) -> a encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_h(x_1, x_2, x_3)) -> h(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) encode_h(x_1, x_2, x_3) -> h(encArg(x_1), encArg(x_2), encArg(x_3)) Types: f :: a:g:cons_f:cons_h -> a:g:cons_f:cons_h -> a:g:cons_f:cons_h a :: a:g:cons_f:cons_h g :: a:g:cons_f:cons_h -> a:g:cons_f:cons_h h :: a:g:cons_f:cons_h -> a:g:cons_f:cons_h -> a:g:cons_f:cons_h -> a:g:cons_f:cons_h encArg :: a:g:cons_f:cons_h -> a:g:cons_f:cons_h cons_f :: a:g:cons_f:cons_h -> a:g:cons_f:cons_h -> a:g:cons_f:cons_h cons_h :: a:g:cons_f:cons_h -> a:g:cons_f:cons_h -> a:g:cons_f:cons_h -> a:g:cons_f:cons_h encode_f :: a:g:cons_f:cons_h -> a:g:cons_f:cons_h -> a:g:cons_f:cons_h encode_a :: a:g:cons_f:cons_h encode_g :: a:g:cons_f:cons_h -> a:g:cons_f:cons_h encode_h :: a:g:cons_f:cons_h -> a:g:cons_f:cons_h -> a:g:cons_f:cons_h -> a:g:cons_f:cons_h hole_a:g:cons_f:cons_h1_0 :: a:g:cons_f:cons_h gen_a:g:cons_f:cons_h2_0 :: Nat -> a:g:cons_f:cons_h Generator Equations: gen_a:g:cons_f:cons_h2_0(0) <=> a gen_a:g:cons_f:cons_h2_0(+(x, 1)) <=> g(gen_a:g:cons_f:cons_h2_0(x)) The following defined symbols remain to be analysed: h, f, encArg They will be analysed ascendingly in the following order: f = h f < encArg h < encArg ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: h(gen_a:g:cons_f:cons_h2_0(n4_0), gen_a:g:cons_f:cons_h2_0(0), gen_a:g:cons_f:cons_h2_0(1)) -> gen_a:g:cons_f:cons_h2_0(+(1, n4_0)), rt in Omega(1 + n4_0) Induction Base: h(gen_a:g:cons_f:cons_h2_0(0), gen_a:g:cons_f:cons_h2_0(0), gen_a:g:cons_f:cons_h2_0(1)) ->_R^Omega(1) gen_a:g:cons_f:cons_h2_0(1) Induction Step: h(gen_a:g:cons_f:cons_h2_0(+(n4_0, 1)), gen_a:g:cons_f:cons_h2_0(0), gen_a:g:cons_f:cons_h2_0(1)) ->_R^Omega(1) f(gen_a:g:cons_f:cons_h2_0(0), h(gen_a:g:cons_f:cons_h2_0(n4_0), gen_a:g:cons_f:cons_h2_0(0), gen_a:g:cons_f:cons_h2_0(1))) ->_IH f(gen_a:g:cons_f:cons_h2_0(0), gen_a:g:cons_f:cons_h2_0(+(1, c5_0))) ->_R^Omega(1) g(g(gen_a:g:cons_f:cons_h2_0(n4_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: f(a, g(y)) -> g(g(y)) f(g(x), a) -> f(x, g(a)) f(g(x), g(y)) -> h(g(y), x, g(y)) h(g(x), y, z) -> f(y, h(x, y, z)) h(a, y, z) -> z encArg(a) -> a encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_h(x_1, x_2, x_3)) -> h(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) encode_h(x_1, x_2, x_3) -> h(encArg(x_1), encArg(x_2), encArg(x_3)) Types: f :: a:g:cons_f:cons_h -> a:g:cons_f:cons_h -> a:g:cons_f:cons_h a :: a:g:cons_f:cons_h g :: a:g:cons_f:cons_h -> a:g:cons_f:cons_h h :: a:g:cons_f:cons_h -> a:g:cons_f:cons_h -> a:g:cons_f:cons_h -> a:g:cons_f:cons_h encArg :: a:g:cons_f:cons_h -> a:g:cons_f:cons_h cons_f :: a:g:cons_f:cons_h -> a:g:cons_f:cons_h -> a:g:cons_f:cons_h cons_h :: a:g:cons_f:cons_h -> a:g:cons_f:cons_h -> a:g:cons_f:cons_h -> a:g:cons_f:cons_h encode_f :: a:g:cons_f:cons_h -> a:g:cons_f:cons_h -> a:g:cons_f:cons_h encode_a :: a:g:cons_f:cons_h encode_g :: a:g:cons_f:cons_h -> a:g:cons_f:cons_h encode_h :: a:g:cons_f:cons_h -> a:g:cons_f:cons_h -> a:g:cons_f:cons_h -> a:g:cons_f:cons_h hole_a:g:cons_f:cons_h1_0 :: a:g:cons_f:cons_h gen_a:g:cons_f:cons_h2_0 :: Nat -> a:g:cons_f:cons_h Generator Equations: gen_a:g:cons_f:cons_h2_0(0) <=> a gen_a:g:cons_f:cons_h2_0(+(x, 1)) <=> g(gen_a:g:cons_f:cons_h2_0(x)) The following defined symbols remain to be analysed: h, f, encArg They will be analysed ascendingly in the following order: f = h f < encArg h < encArg ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: Innermost TRS: Rules: f(a, g(y)) -> g(g(y)) f(g(x), a) -> f(x, g(a)) f(g(x), g(y)) -> h(g(y), x, g(y)) h(g(x), y, z) -> f(y, h(x, y, z)) h(a, y, z) -> z encArg(a) -> a encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_h(x_1, x_2, x_3)) -> h(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) encode_h(x_1, x_2, x_3) -> h(encArg(x_1), encArg(x_2), encArg(x_3)) Types: f :: a:g:cons_f:cons_h -> a:g:cons_f:cons_h -> a:g:cons_f:cons_h a :: a:g:cons_f:cons_h g :: a:g:cons_f:cons_h -> a:g:cons_f:cons_h h :: a:g:cons_f:cons_h -> a:g:cons_f:cons_h -> a:g:cons_f:cons_h -> a:g:cons_f:cons_h encArg :: a:g:cons_f:cons_h -> a:g:cons_f:cons_h cons_f :: a:g:cons_f:cons_h -> a:g:cons_f:cons_h -> a:g:cons_f:cons_h cons_h :: a:g:cons_f:cons_h -> a:g:cons_f:cons_h -> a:g:cons_f:cons_h -> a:g:cons_f:cons_h encode_f :: a:g:cons_f:cons_h -> a:g:cons_f:cons_h -> a:g:cons_f:cons_h encode_a :: a:g:cons_f:cons_h encode_g :: a:g:cons_f:cons_h -> a:g:cons_f:cons_h encode_h :: a:g:cons_f:cons_h -> a:g:cons_f:cons_h -> a:g:cons_f:cons_h -> a:g:cons_f:cons_h hole_a:g:cons_f:cons_h1_0 :: a:g:cons_f:cons_h gen_a:g:cons_f:cons_h2_0 :: Nat -> a:g:cons_f:cons_h Lemmas: h(gen_a:g:cons_f:cons_h2_0(n4_0), gen_a:g:cons_f:cons_h2_0(0), gen_a:g:cons_f:cons_h2_0(1)) -> gen_a:g:cons_f:cons_h2_0(+(1, n4_0)), rt in Omega(1 + n4_0) Generator Equations: gen_a:g:cons_f:cons_h2_0(0) <=> a gen_a:g:cons_f:cons_h2_0(+(x, 1)) <=> g(gen_a:g:cons_f:cons_h2_0(x)) The following defined symbols remain to be analysed: f, encArg They will be analysed ascendingly in the following order: f = h f < encArg h < encArg ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_a:g:cons_f:cons_h2_0(n1816_0)) -> gen_a:g:cons_f:cons_h2_0(n1816_0), rt in Omega(0) Induction Base: encArg(gen_a:g:cons_f:cons_h2_0(0)) ->_R^Omega(0) a Induction Step: encArg(gen_a:g:cons_f:cons_h2_0(+(n1816_0, 1))) ->_R^Omega(0) g(encArg(gen_a:g:cons_f:cons_h2_0(n1816_0))) ->_IH g(gen_a:g:cons_f:cons_h2_0(c1817_0)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (18) BOUNDS(1, INF)