WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 158 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 31.1 s] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 26 ms] (18) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: -(0, y) -> 0 -(x, 0) -> x -(x, s(y)) -> if(greater(x, s(y)), s(-(x, p(s(y)))), 0) p(0) -> 0 p(s(x)) -> x S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(greater(x_1, x_2)) -> greater(encArg(x_1), encArg(x_2)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_greater(x_1, x_2) -> greater(encArg(x_1), encArg(x_2)) encode_p(x_1) -> p(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: -(0, y) -> 0 -(x, 0) -> x -(x, s(y)) -> if(greater(x, s(y)), s(-(x, p(s(y)))), 0) p(0) -> 0 p(s(x)) -> x The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(greater(x_1, x_2)) -> greater(encArg(x_1), encArg(x_2)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_greater(x_1, x_2) -> greater(encArg(x_1), encArg(x_2)) encode_p(x_1) -> p(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: -(0, y) -> 0 -(x, 0) -> x -(x, s(y)) -> if(greater(x, s(y)), s(-(x, p(s(y)))), 0) p(0) -> 0 p(s(x)) -> x The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(greater(x_1, x_2)) -> greater(encArg(x_1), encArg(x_2)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_greater(x_1, x_2) -> greater(encArg(x_1), encArg(x_2)) encode_p(x_1) -> p(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: -(0', y) -> 0' -(x, 0') -> x -(x, s(y)) -> if(greater(x, s(y)), s(-(x, p(s(y)))), 0') p(0') -> 0' p(s(x)) -> x The (relative) TRS S consists of the following rules: encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(greater(x_1, x_2)) -> greater(encArg(x_1), encArg(x_2)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_greater(x_1, x_2) -> greater(encArg(x_1), encArg(x_2)) encode_p(x_1) -> p(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Innermost TRS: Rules: -(0', y) -> 0' -(x, 0') -> x -(x, s(y)) -> if(greater(x, s(y)), s(-(x, p(s(y)))), 0') p(0') -> 0' p(s(x)) -> x encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(greater(x_1, x_2)) -> greater(encArg(x_1), encArg(x_2)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_greater(x_1, x_2) -> greater(encArg(x_1), encArg(x_2)) encode_p(x_1) -> p(encArg(x_1)) Types: - :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p 0' :: 0':s:greater:if:cons_-:cons_p s :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p if :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p greater :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p p :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p encArg :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p cons_- :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p cons_p :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p encode_- :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p encode_0 :: 0':s:greater:if:cons_-:cons_p encode_s :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p encode_if :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p encode_greater :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p encode_p :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p hole_0':s:greater:if:cons_-:cons_p1_4 :: 0':s:greater:if:cons_-:cons_p gen_0':s:greater:if:cons_-:cons_p2_4 :: Nat -> 0':s:greater:if:cons_-:cons_p ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: -, encArg They will be analysed ascendingly in the following order: - < encArg ---------------------------------------- (10) Obligation: Innermost TRS: Rules: -(0', y) -> 0' -(x, 0') -> x -(x, s(y)) -> if(greater(x, s(y)), s(-(x, p(s(y)))), 0') p(0') -> 0' p(s(x)) -> x encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(greater(x_1, x_2)) -> greater(encArg(x_1), encArg(x_2)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_greater(x_1, x_2) -> greater(encArg(x_1), encArg(x_2)) encode_p(x_1) -> p(encArg(x_1)) Types: - :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p 0' :: 0':s:greater:if:cons_-:cons_p s :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p if :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p greater :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p p :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p encArg :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p cons_- :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p cons_p :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p encode_- :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p encode_0 :: 0':s:greater:if:cons_-:cons_p encode_s :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p encode_if :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p encode_greater :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p encode_p :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p hole_0':s:greater:if:cons_-:cons_p1_4 :: 0':s:greater:if:cons_-:cons_p gen_0':s:greater:if:cons_-:cons_p2_4 :: Nat -> 0':s:greater:if:cons_-:cons_p Generator Equations: gen_0':s:greater:if:cons_-:cons_p2_4(0) <=> 0' gen_0':s:greater:if:cons_-:cons_p2_4(+(x, 1)) <=> s(gen_0':s:greater:if:cons_-:cons_p2_4(x)) The following defined symbols remain to be analysed: -, encArg They will be analysed ascendingly in the following order: - < encArg ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: -(gen_0':s:greater:if:cons_-:cons_p2_4(a), gen_0':s:greater:if:cons_-:cons_p2_4(n4_4)) -> *3_4, rt in Omega(n4_4) Induction Base: -(gen_0':s:greater:if:cons_-:cons_p2_4(a), gen_0':s:greater:if:cons_-:cons_p2_4(0)) Induction Step: -(gen_0':s:greater:if:cons_-:cons_p2_4(a), gen_0':s:greater:if:cons_-:cons_p2_4(+(n4_4, 1))) ->_R^Omega(1) if(greater(gen_0':s:greater:if:cons_-:cons_p2_4(a), s(gen_0':s:greater:if:cons_-:cons_p2_4(n4_4))), s(-(gen_0':s:greater:if:cons_-:cons_p2_4(a), p(s(gen_0':s:greater:if:cons_-:cons_p2_4(n4_4))))), 0') ->_R^Omega(1) if(greater(gen_0':s:greater:if:cons_-:cons_p2_4(a), s(gen_0':s:greater:if:cons_-:cons_p2_4(n4_4))), s(-(gen_0':s:greater:if:cons_-:cons_p2_4(a), gen_0':s:greater:if:cons_-:cons_p2_4(n4_4))), 0') ->_IH if(greater(gen_0':s:greater:if:cons_-:cons_p2_4(a), s(gen_0':s:greater:if:cons_-:cons_p2_4(n4_4))), s(*3_4), 0') We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: -(0', y) -> 0' -(x, 0') -> x -(x, s(y)) -> if(greater(x, s(y)), s(-(x, p(s(y)))), 0') p(0') -> 0' p(s(x)) -> x encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(greater(x_1, x_2)) -> greater(encArg(x_1), encArg(x_2)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_greater(x_1, x_2) -> greater(encArg(x_1), encArg(x_2)) encode_p(x_1) -> p(encArg(x_1)) Types: - :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p 0' :: 0':s:greater:if:cons_-:cons_p s :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p if :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p greater :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p p :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p encArg :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p cons_- :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p cons_p :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p encode_- :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p encode_0 :: 0':s:greater:if:cons_-:cons_p encode_s :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p encode_if :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p encode_greater :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p encode_p :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p hole_0':s:greater:if:cons_-:cons_p1_4 :: 0':s:greater:if:cons_-:cons_p gen_0':s:greater:if:cons_-:cons_p2_4 :: Nat -> 0':s:greater:if:cons_-:cons_p Generator Equations: gen_0':s:greater:if:cons_-:cons_p2_4(0) <=> 0' gen_0':s:greater:if:cons_-:cons_p2_4(+(x, 1)) <=> s(gen_0':s:greater:if:cons_-:cons_p2_4(x)) The following defined symbols remain to be analysed: -, encArg They will be analysed ascendingly in the following order: - < encArg ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: Innermost TRS: Rules: -(0', y) -> 0' -(x, 0') -> x -(x, s(y)) -> if(greater(x, s(y)), s(-(x, p(s(y)))), 0') p(0') -> 0' p(s(x)) -> x encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(greater(x_1, x_2)) -> greater(encArg(x_1), encArg(x_2)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_greater(x_1, x_2) -> greater(encArg(x_1), encArg(x_2)) encode_p(x_1) -> p(encArg(x_1)) Types: - :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p 0' :: 0':s:greater:if:cons_-:cons_p s :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p if :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p greater :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p p :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p encArg :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p cons_- :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p cons_p :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p encode_- :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p encode_0 :: 0':s:greater:if:cons_-:cons_p encode_s :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p encode_if :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p encode_greater :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p encode_p :: 0':s:greater:if:cons_-:cons_p -> 0':s:greater:if:cons_-:cons_p hole_0':s:greater:if:cons_-:cons_p1_4 :: 0':s:greater:if:cons_-:cons_p gen_0':s:greater:if:cons_-:cons_p2_4 :: Nat -> 0':s:greater:if:cons_-:cons_p Lemmas: -(gen_0':s:greater:if:cons_-:cons_p2_4(a), gen_0':s:greater:if:cons_-:cons_p2_4(n4_4)) -> *3_4, rt in Omega(n4_4) Generator Equations: gen_0':s:greater:if:cons_-:cons_p2_4(0) <=> 0' gen_0':s:greater:if:cons_-:cons_p2_4(+(x, 1)) <=> s(gen_0':s:greater:if:cons_-:cons_p2_4(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_0':s:greater:if:cons_-:cons_p2_4(n300598_4)) -> gen_0':s:greater:if:cons_-:cons_p2_4(n300598_4), rt in Omega(0) Induction Base: encArg(gen_0':s:greater:if:cons_-:cons_p2_4(0)) ->_R^Omega(0) 0' Induction Step: encArg(gen_0':s:greater:if:cons_-:cons_p2_4(+(n300598_4, 1))) ->_R^Omega(0) s(encArg(gen_0':s:greater:if:cons_-:cons_p2_4(n300598_4))) ->_IH s(gen_0':s:greater:if:cons_-:cons_p2_4(c300599_4)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (18) BOUNDS(1, INF)