WORST_CASE(?, O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^2). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 158 ms] (4) CpxRelTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (6) CdtProblem (7) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CdtProblem (9) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CdtProblem (13) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (14) CdtProblem (15) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CdtProblem (17) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 59 ms] (18) CdtProblem (19) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 171 ms] (20) CdtProblem (21) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (22) BOUNDS(1, 1) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: +(*(x, y), *(a, y)) -> *(+(x, a), y) *(*(x, y), z) -> *(x, *(y, z)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(a) -> a encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) encode_a -> a ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: +(*(x, y), *(a, y)) -> *(+(x, a), y) *(*(x, y), z) -> *(x, *(y, z)) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) encode_a -> a Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: +(*(x, y), *(a, y)) -> *(+(x, a), y) *(*(x, y), z) -> *(x, *(y, z)) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) encode_a -> a Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: encArg(a) -> a encArg(cons_+(z0, z1)) -> +(encArg(z0), encArg(z1)) encArg(cons_*(z0, z1)) -> *(encArg(z0), encArg(z1)) encode_+(z0, z1) -> +(encArg(z0), encArg(z1)) encode_*(z0, z1) -> *(encArg(z0), encArg(z1)) encode_a -> a +(*(z0, z1), *(a, z1)) -> *(+(z0, a), z1) *(*(z0, z1), z2) -> *(z0, *(z1, z2)) Tuples: ENCARG(a) -> c ENCARG(cons_+(z0, z1)) -> c1(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_*(z0, z1)) -> c2(*'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_+(z0, z1) -> c3(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_*(z0, z1) -> c4(*'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_A -> c5 +'(*(z0, z1), *(a, z1)) -> c6(*'(+(z0, a), z1), +'(z0, a)) *'(*(z0, z1), z2) -> c7(*'(z0, *(z1, z2)), *'(z1, z2)) S tuples: +'(*(z0, z1), *(a, z1)) -> c6(*'(+(z0, a), z1), +'(z0, a)) *'(*(z0, z1), z2) -> c7(*'(z0, *(z1, z2)), *'(z1, z2)) K tuples:none Defined Rule Symbols: +_2, *_2, encArg_1, encode_+_2, encode_*_2, encode_a Defined Pair Symbols: ENCARG_1, ENCODE_+_2, ENCODE_*_2, ENCODE_A, +'_2, *'_2 Compound Symbols: c, c1_3, c2_3, c3_3, c4_3, c5, c6_2, c7_2 ---------------------------------------- (7) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 2 trailing nodes: ENCARG(a) -> c ENCODE_A -> c5 ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: encArg(a) -> a encArg(cons_+(z0, z1)) -> +(encArg(z0), encArg(z1)) encArg(cons_*(z0, z1)) -> *(encArg(z0), encArg(z1)) encode_+(z0, z1) -> +(encArg(z0), encArg(z1)) encode_*(z0, z1) -> *(encArg(z0), encArg(z1)) encode_a -> a +(*(z0, z1), *(a, z1)) -> *(+(z0, a), z1) *(*(z0, z1), z2) -> *(z0, *(z1, z2)) Tuples: ENCARG(cons_+(z0, z1)) -> c1(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_*(z0, z1)) -> c2(*'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_+(z0, z1) -> c3(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_*(z0, z1) -> c4(*'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) +'(*(z0, z1), *(a, z1)) -> c6(*'(+(z0, a), z1), +'(z0, a)) *'(*(z0, z1), z2) -> c7(*'(z0, *(z1, z2)), *'(z1, z2)) S tuples: +'(*(z0, z1), *(a, z1)) -> c6(*'(+(z0, a), z1), +'(z0, a)) *'(*(z0, z1), z2) -> c7(*'(z0, *(z1, z2)), *'(z1, z2)) K tuples:none Defined Rule Symbols: +_2, *_2, encArg_1, encode_+_2, encode_*_2, encode_a Defined Pair Symbols: ENCARG_1, ENCODE_+_2, ENCODE_*_2, +'_2, *'_2 Compound Symbols: c1_3, c2_3, c3_3, c4_3, c6_2, c7_2 ---------------------------------------- (9) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 2 trailing tuple parts ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(a) -> a encArg(cons_+(z0, z1)) -> +(encArg(z0), encArg(z1)) encArg(cons_*(z0, z1)) -> *(encArg(z0), encArg(z1)) encode_+(z0, z1) -> +(encArg(z0), encArg(z1)) encode_*(z0, z1) -> *(encArg(z0), encArg(z1)) encode_a -> a +(*(z0, z1), *(a, z1)) -> *(+(z0, a), z1) *(*(z0, z1), z2) -> *(z0, *(z1, z2)) Tuples: ENCARG(cons_+(z0, z1)) -> c1(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_*(z0, z1)) -> c2(*'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_+(z0, z1) -> c3(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_*(z0, z1) -> c4(*'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) *'(*(z0, z1), z2) -> c7(*'(z0, *(z1, z2)), *'(z1, z2)) +'(*(z0, z1), *(a, z1)) -> c6 S tuples: *'(*(z0, z1), z2) -> c7(*'(z0, *(z1, z2)), *'(z1, z2)) +'(*(z0, z1), *(a, z1)) -> c6 K tuples:none Defined Rule Symbols: +_2, *_2, encArg_1, encode_+_2, encode_*_2, encode_a Defined Pair Symbols: ENCARG_1, ENCODE_+_2, ENCODE_*_2, *'_2, +'_2 Compound Symbols: c1_3, c2_3, c3_3, c4_3, c7_2, c6 ---------------------------------------- (11) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(a) -> a encArg(cons_+(z0, z1)) -> +(encArg(z0), encArg(z1)) encArg(cons_*(z0, z1)) -> *(encArg(z0), encArg(z1)) encode_+(z0, z1) -> +(encArg(z0), encArg(z1)) encode_*(z0, z1) -> *(encArg(z0), encArg(z1)) encode_a -> a +(*(z0, z1), *(a, z1)) -> *(+(z0, a), z1) *(*(z0, z1), z2) -> *(z0, *(z1, z2)) Tuples: ENCARG(cons_+(z0, z1)) -> c1(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_*(z0, z1)) -> c2(*'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) *'(*(z0, z1), z2) -> c7(*'(z0, *(z1, z2)), *'(z1, z2)) +'(*(z0, z1), *(a, z1)) -> c6 ENCODE_+(z0, z1) -> c(+'(encArg(z0), encArg(z1))) ENCODE_+(z0, z1) -> c(ENCARG(z0)) ENCODE_+(z0, z1) -> c(ENCARG(z1)) ENCODE_*(z0, z1) -> c(*'(encArg(z0), encArg(z1))) ENCODE_*(z0, z1) -> c(ENCARG(z0)) ENCODE_*(z0, z1) -> c(ENCARG(z1)) S tuples: *'(*(z0, z1), z2) -> c7(*'(z0, *(z1, z2)), *'(z1, z2)) +'(*(z0, z1), *(a, z1)) -> c6 K tuples:none Defined Rule Symbols: +_2, *_2, encArg_1, encode_+_2, encode_*_2, encode_a Defined Pair Symbols: ENCARG_1, *'_2, +'_2, ENCODE_+_2, ENCODE_*_2 Compound Symbols: c1_3, c2_3, c7_2, c6, c_1 ---------------------------------------- (13) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 4 leading nodes: ENCODE_+(z0, z1) -> c(ENCARG(z0)) ENCODE_+(z0, z1) -> c(ENCARG(z1)) ENCODE_*(z0, z1) -> c(ENCARG(z0)) ENCODE_*(z0, z1) -> c(ENCARG(z1)) ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: encArg(a) -> a encArg(cons_+(z0, z1)) -> +(encArg(z0), encArg(z1)) encArg(cons_*(z0, z1)) -> *(encArg(z0), encArg(z1)) encode_+(z0, z1) -> +(encArg(z0), encArg(z1)) encode_*(z0, z1) -> *(encArg(z0), encArg(z1)) encode_a -> a +(*(z0, z1), *(a, z1)) -> *(+(z0, a), z1) *(*(z0, z1), z2) -> *(z0, *(z1, z2)) Tuples: ENCARG(cons_+(z0, z1)) -> c1(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_*(z0, z1)) -> c2(*'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) *'(*(z0, z1), z2) -> c7(*'(z0, *(z1, z2)), *'(z1, z2)) +'(*(z0, z1), *(a, z1)) -> c6 ENCODE_+(z0, z1) -> c(+'(encArg(z0), encArg(z1))) ENCODE_*(z0, z1) -> c(*'(encArg(z0), encArg(z1))) S tuples: *'(*(z0, z1), z2) -> c7(*'(z0, *(z1, z2)), *'(z1, z2)) +'(*(z0, z1), *(a, z1)) -> c6 K tuples:none Defined Rule Symbols: +_2, *_2, encArg_1, encode_+_2, encode_*_2, encode_a Defined Pair Symbols: ENCARG_1, *'_2, +'_2, ENCODE_+_2, ENCODE_*_2 Compound Symbols: c1_3, c2_3, c7_2, c6, c_1 ---------------------------------------- (15) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_+(z0, z1) -> +(encArg(z0), encArg(z1)) encode_*(z0, z1) -> *(encArg(z0), encArg(z1)) encode_a -> a ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: encArg(a) -> a encArg(cons_+(z0, z1)) -> +(encArg(z0), encArg(z1)) encArg(cons_*(z0, z1)) -> *(encArg(z0), encArg(z1)) +(*(z0, z1), *(a, z1)) -> *(+(z0, a), z1) *(*(z0, z1), z2) -> *(z0, *(z1, z2)) Tuples: ENCARG(cons_+(z0, z1)) -> c1(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_*(z0, z1)) -> c2(*'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) *'(*(z0, z1), z2) -> c7(*'(z0, *(z1, z2)), *'(z1, z2)) +'(*(z0, z1), *(a, z1)) -> c6 ENCODE_+(z0, z1) -> c(+'(encArg(z0), encArg(z1))) ENCODE_*(z0, z1) -> c(*'(encArg(z0), encArg(z1))) S tuples: *'(*(z0, z1), z2) -> c7(*'(z0, *(z1, z2)), *'(z1, z2)) +'(*(z0, z1), *(a, z1)) -> c6 K tuples:none Defined Rule Symbols: encArg_1, +_2, *_2 Defined Pair Symbols: ENCARG_1, *'_2, +'_2, ENCODE_+_2, ENCODE_*_2 Compound Symbols: c1_3, c2_3, c7_2, c6, c_1 ---------------------------------------- (17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. +'(*(z0, z1), *(a, z1)) -> c6 We considered the (Usable) Rules:none And the Tuples: ENCARG(cons_+(z0, z1)) -> c1(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_*(z0, z1)) -> c2(*'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) *'(*(z0, z1), z2) -> c7(*'(z0, *(z1, z2)), *'(z1, z2)) +'(*(z0, z1), *(a, z1)) -> c6 ENCODE_+(z0, z1) -> c(+'(encArg(z0), encArg(z1))) ENCODE_*(z0, z1) -> c(*'(encArg(z0), encArg(z1))) The order we found is given by the following interpretation: Polynomial interpretation : POL(*(x_1, x_2)) = [1] + x_2 POL(*'(x_1, x_2)) = 0 POL(+(x_1, x_2)) = [1] + x_2 POL(+'(x_1, x_2)) = [1] POL(ENCARG(x_1)) = x_1 POL(ENCODE_*(x_1, x_2)) = x_1 + x_2 POL(ENCODE_+(x_1, x_2)) = [1] + x_2 POL(a) = [1] POL(c(x_1)) = x_1 POL(c1(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c2(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c6) = 0 POL(c7(x_1, x_2)) = x_1 + x_2 POL(cons_*(x_1, x_2)) = [1] + x_1 + x_2 POL(cons_+(x_1, x_2)) = [1] + x_1 + x_2 POL(encArg(x_1)) = [1] + x_1 ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: encArg(a) -> a encArg(cons_+(z0, z1)) -> +(encArg(z0), encArg(z1)) encArg(cons_*(z0, z1)) -> *(encArg(z0), encArg(z1)) +(*(z0, z1), *(a, z1)) -> *(+(z0, a), z1) *(*(z0, z1), z2) -> *(z0, *(z1, z2)) Tuples: ENCARG(cons_+(z0, z1)) -> c1(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_*(z0, z1)) -> c2(*'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) *'(*(z0, z1), z2) -> c7(*'(z0, *(z1, z2)), *'(z1, z2)) +'(*(z0, z1), *(a, z1)) -> c6 ENCODE_+(z0, z1) -> c(+'(encArg(z0), encArg(z1))) ENCODE_*(z0, z1) -> c(*'(encArg(z0), encArg(z1))) S tuples: *'(*(z0, z1), z2) -> c7(*'(z0, *(z1, z2)), *'(z1, z2)) K tuples: +'(*(z0, z1), *(a, z1)) -> c6 Defined Rule Symbols: encArg_1, +_2, *_2 Defined Pair Symbols: ENCARG_1, *'_2, +'_2, ENCODE_+_2, ENCODE_*_2 Compound Symbols: c1_3, c2_3, c7_2, c6, c_1 ---------------------------------------- (19) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. *'(*(z0, z1), z2) -> c7(*'(z0, *(z1, z2)), *'(z1, z2)) We considered the (Usable) Rules: encArg(cons_+(z0, z1)) -> +(encArg(z0), encArg(z1)) encArg(cons_*(z0, z1)) -> *(encArg(z0), encArg(z1)) +(*(z0, z1), *(a, z1)) -> *(+(z0, a), z1) *(*(z0, z1), z2) -> *(z0, *(z1, z2)) encArg(a) -> a And the Tuples: ENCARG(cons_+(z0, z1)) -> c1(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_*(z0, z1)) -> c2(*'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) *'(*(z0, z1), z2) -> c7(*'(z0, *(z1, z2)), *'(z1, z2)) +'(*(z0, z1), *(a, z1)) -> c6 ENCODE_+(z0, z1) -> c(+'(encArg(z0), encArg(z1))) ENCODE_*(z0, z1) -> c(*'(encArg(z0), encArg(z1))) The order we found is given by the following interpretation: Polynomial interpretation : POL(*(x_1, x_2)) = [2] + x_1 + x_2 POL(*'(x_1, x_2)) = [2]x_1 POL(+(x_1, x_2)) = x_1 POL(+'(x_1, x_2)) = 0 POL(ENCARG(x_1)) = [2]x_1 + x_1^2 POL(ENCODE_*(x_1, x_2)) = [1] + [2]x_1 + x_2 + [2]x_2^2 + [2]x_1*x_2 + [2]x_1^2 POL(ENCODE_+(x_1, x_2)) = [1] + x_1 + [2]x_2^2 + [2]x_1*x_2 + [2]x_1^2 POL(a) = 0 POL(c(x_1)) = x_1 POL(c1(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c2(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c6) = 0 POL(c7(x_1, x_2)) = x_1 + x_2 POL(cons_*(x_1, x_2)) = [2] + x_1 + x_2 POL(cons_+(x_1, x_2)) = x_1 + x_2 POL(encArg(x_1)) = x_1 ---------------------------------------- (20) Obligation: Complexity Dependency Tuples Problem Rules: encArg(a) -> a encArg(cons_+(z0, z1)) -> +(encArg(z0), encArg(z1)) encArg(cons_*(z0, z1)) -> *(encArg(z0), encArg(z1)) +(*(z0, z1), *(a, z1)) -> *(+(z0, a), z1) *(*(z0, z1), z2) -> *(z0, *(z1, z2)) Tuples: ENCARG(cons_+(z0, z1)) -> c1(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_*(z0, z1)) -> c2(*'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) *'(*(z0, z1), z2) -> c7(*'(z0, *(z1, z2)), *'(z1, z2)) +'(*(z0, z1), *(a, z1)) -> c6 ENCODE_+(z0, z1) -> c(+'(encArg(z0), encArg(z1))) ENCODE_*(z0, z1) -> c(*'(encArg(z0), encArg(z1))) S tuples:none K tuples: +'(*(z0, z1), *(a, z1)) -> c6 *'(*(z0, z1), z2) -> c7(*'(z0, *(z1, z2)), *'(z1, z2)) Defined Rule Symbols: encArg_1, +_2, *_2 Defined Pair Symbols: ENCARG_1, *'_2, +'_2, ENCODE_+_2, ENCODE_*_2 Compound Symbols: c1_3, c2_3, c7_2, c6, c_1 ---------------------------------------- (21) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (22) BOUNDS(1, 1)