WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 40 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 1173 ms] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 89 ms] (18) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: dfib(s(s(x)), y) -> dfib(s(x), dfib(x, y)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_dfib(x_1, x_2)) -> dfib(encArg(x_1), encArg(x_2)) encode_dfib(x_1, x_2) -> dfib(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: dfib(s(s(x)), y) -> dfib(s(x), dfib(x, y)) The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_dfib(x_1, x_2)) -> dfib(encArg(x_1), encArg(x_2)) encode_dfib(x_1, x_2) -> dfib(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: dfib(s(s(x)), y) -> dfib(s(x), dfib(x, y)) The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_dfib(x_1, x_2)) -> dfib(encArg(x_1), encArg(x_2)) encode_dfib(x_1, x_2) -> dfib(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: dfib(s(s(x)), y) -> dfib(s(x), dfib(x, y)) The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_dfib(x_1, x_2)) -> dfib(encArg(x_1), encArg(x_2)) encode_dfib(x_1, x_2) -> dfib(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Innermost TRS: Rules: dfib(s(s(x)), y) -> dfib(s(x), dfib(x, y)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_dfib(x_1, x_2)) -> dfib(encArg(x_1), encArg(x_2)) encode_dfib(x_1, x_2) -> dfib(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) Types: dfib :: s:cons_dfib -> s:cons_dfib -> s:cons_dfib s :: s:cons_dfib -> s:cons_dfib encArg :: s:cons_dfib -> s:cons_dfib cons_dfib :: s:cons_dfib -> s:cons_dfib -> s:cons_dfib encode_dfib :: s:cons_dfib -> s:cons_dfib -> s:cons_dfib encode_s :: s:cons_dfib -> s:cons_dfib hole_s:cons_dfib1_0 :: s:cons_dfib gen_s:cons_dfib2_0 :: Nat -> s:cons_dfib ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: dfib, encArg They will be analysed ascendingly in the following order: dfib < encArg ---------------------------------------- (10) Obligation: Innermost TRS: Rules: dfib(s(s(x)), y) -> dfib(s(x), dfib(x, y)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_dfib(x_1, x_2)) -> dfib(encArg(x_1), encArg(x_2)) encode_dfib(x_1, x_2) -> dfib(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) Types: dfib :: s:cons_dfib -> s:cons_dfib -> s:cons_dfib s :: s:cons_dfib -> s:cons_dfib encArg :: s:cons_dfib -> s:cons_dfib cons_dfib :: s:cons_dfib -> s:cons_dfib -> s:cons_dfib encode_dfib :: s:cons_dfib -> s:cons_dfib -> s:cons_dfib encode_s :: s:cons_dfib -> s:cons_dfib hole_s:cons_dfib1_0 :: s:cons_dfib gen_s:cons_dfib2_0 :: Nat -> s:cons_dfib Generator Equations: gen_s:cons_dfib2_0(0) <=> hole_s:cons_dfib1_0 gen_s:cons_dfib2_0(+(x, 1)) <=> s(gen_s:cons_dfib2_0(x)) The following defined symbols remain to be analysed: dfib, encArg They will be analysed ascendingly in the following order: dfib < encArg ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: dfib(gen_s:cons_dfib2_0(+(2, *(2, n4_0))), gen_s:cons_dfib2_0(b)) -> *3_0, rt in Omega(n4_0) Induction Base: dfib(gen_s:cons_dfib2_0(+(2, *(2, 0))), gen_s:cons_dfib2_0(b)) Induction Step: dfib(gen_s:cons_dfib2_0(+(2, *(2, +(n4_0, 1)))), gen_s:cons_dfib2_0(b)) ->_R^Omega(1) dfib(s(gen_s:cons_dfib2_0(+(2, *(2, n4_0)))), dfib(gen_s:cons_dfib2_0(+(2, *(2, n4_0))), gen_s:cons_dfib2_0(b))) ->_IH dfib(s(gen_s:cons_dfib2_0(+(2, *(2, n4_0)))), *3_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: dfib(s(s(x)), y) -> dfib(s(x), dfib(x, y)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_dfib(x_1, x_2)) -> dfib(encArg(x_1), encArg(x_2)) encode_dfib(x_1, x_2) -> dfib(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) Types: dfib :: s:cons_dfib -> s:cons_dfib -> s:cons_dfib s :: s:cons_dfib -> s:cons_dfib encArg :: s:cons_dfib -> s:cons_dfib cons_dfib :: s:cons_dfib -> s:cons_dfib -> s:cons_dfib encode_dfib :: s:cons_dfib -> s:cons_dfib -> s:cons_dfib encode_s :: s:cons_dfib -> s:cons_dfib hole_s:cons_dfib1_0 :: s:cons_dfib gen_s:cons_dfib2_0 :: Nat -> s:cons_dfib Generator Equations: gen_s:cons_dfib2_0(0) <=> hole_s:cons_dfib1_0 gen_s:cons_dfib2_0(+(x, 1)) <=> s(gen_s:cons_dfib2_0(x)) The following defined symbols remain to be analysed: dfib, encArg They will be analysed ascendingly in the following order: dfib < encArg ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: Innermost TRS: Rules: dfib(s(s(x)), y) -> dfib(s(x), dfib(x, y)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_dfib(x_1, x_2)) -> dfib(encArg(x_1), encArg(x_2)) encode_dfib(x_1, x_2) -> dfib(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) Types: dfib :: s:cons_dfib -> s:cons_dfib -> s:cons_dfib s :: s:cons_dfib -> s:cons_dfib encArg :: s:cons_dfib -> s:cons_dfib cons_dfib :: s:cons_dfib -> s:cons_dfib -> s:cons_dfib encode_dfib :: s:cons_dfib -> s:cons_dfib -> s:cons_dfib encode_s :: s:cons_dfib -> s:cons_dfib hole_s:cons_dfib1_0 :: s:cons_dfib gen_s:cons_dfib2_0 :: Nat -> s:cons_dfib Lemmas: dfib(gen_s:cons_dfib2_0(+(2, *(2, n4_0))), gen_s:cons_dfib2_0(b)) -> *3_0, rt in Omega(n4_0) Generator Equations: gen_s:cons_dfib2_0(0) <=> hole_s:cons_dfib1_0 gen_s:cons_dfib2_0(+(x, 1)) <=> s(gen_s:cons_dfib2_0(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_s:cons_dfib2_0(+(1, n650_0))) -> *3_0, rt in Omega(0) Induction Base: encArg(gen_s:cons_dfib2_0(+(1, 0))) Induction Step: encArg(gen_s:cons_dfib2_0(+(1, +(n650_0, 1)))) ->_R^Omega(0) s(encArg(gen_s:cons_dfib2_0(+(1, n650_0)))) ->_IH s(*3_0) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (18) BOUNDS(1, INF)