WORST_CASE(?, O(n^2)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^2). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 148 ms] (4) CpxRelTRS (5) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxWeightedTrs (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedTrs (9) CompletionProof [UPPER BOUND(ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxTypedWeightedCompleteTrs (13) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (14) CpxRNTS (15) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxRNTS (19) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 259 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 108 ms] (24) CpxRNTS (25) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 201 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 176 ms] (30) CpxRNTS (31) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 162 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (36) CpxRNTS (37) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 138 ms] (40) CpxRNTS (41) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (42) CpxRNTS (43) FinalProof [FINISHED, 0 ms] (44) BOUNDS(1, n^2) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(g(x), y, y) -> g(f(x, x, y)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1) -> g(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(g(x), y, y) -> g(f(x, x, y)) The (relative) TRS S consists of the following rules: encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1) -> g(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(g(x), y, y) -> g(f(x, x, y)) The (relative) TRS S consists of the following rules: encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1) -> g(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(g(x), y, y) -> g(f(x, x, y)) [1] encArg(g(x_1)) -> g(encArg(x_1)) [0] encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_g(x_1) -> g(encArg(x_1)) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(g(x), y, y) -> g(f(x, x, y)) [1] encArg(g(x_1)) -> g(encArg(x_1)) [0] encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_g(x_1) -> g(encArg(x_1)) [0] The TRS has the following type information: f :: g:cons_f -> g:cons_f -> g:cons_f -> g:cons_f g :: g:cons_f -> g:cons_f encArg :: g:cons_f -> g:cons_f cons_f :: g:cons_f -> g:cons_f -> g:cons_f -> g:cons_f encode_f :: g:cons_f -> g:cons_f -> g:cons_f -> g:cons_f encode_g :: g:cons_f -> g:cons_f Rewrite Strategy: INNERMOST ---------------------------------------- (9) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: f_3 encArg_1 encode_f_3 encode_g_1 Due to the following rules being added: encArg(v0) -> const [0] encode_f(v0, v1, v2) -> const [0] encode_g(v0) -> const [0] f(v0, v1, v2) -> const [0] And the following fresh constants: const ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(g(x), y, y) -> g(f(x, x, y)) [1] encArg(g(x_1)) -> g(encArg(x_1)) [0] encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_g(x_1) -> g(encArg(x_1)) [0] encArg(v0) -> const [0] encode_f(v0, v1, v2) -> const [0] encode_g(v0) -> const [0] f(v0, v1, v2) -> const [0] The TRS has the following type information: f :: g:cons_f:const -> g:cons_f:const -> g:cons_f:const -> g:cons_f:const g :: g:cons_f:const -> g:cons_f:const encArg :: g:cons_f:const -> g:cons_f:const cons_f :: g:cons_f:const -> g:cons_f:const -> g:cons_f:const -> g:cons_f:const encode_f :: g:cons_f:const -> g:cons_f:const -> g:cons_f:const -> g:cons_f:const encode_g :: g:cons_f:const -> g:cons_f:const const :: g:cons_f:const Rewrite Strategy: INNERMOST ---------------------------------------- (11) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(g(x), y, y) -> g(f(x, x, y)) [1] encArg(g(x_1)) -> g(encArg(x_1)) [0] encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_g(x_1) -> g(encArg(x_1)) [0] encArg(v0) -> const [0] encode_f(v0, v1, v2) -> const [0] encode_g(v0) -> const [0] f(v0, v1, v2) -> const [0] The TRS has the following type information: f :: g:cons_f:const -> g:cons_f:const -> g:cons_f:const -> g:cons_f:const g :: g:cons_f:const -> g:cons_f:const encArg :: g:cons_f:const -> g:cons_f:const cons_f :: g:cons_f:const -> g:cons_f:const -> g:cons_f:const -> g:cons_f:const encode_f :: g:cons_f:const -> g:cons_f:const -> g:cons_f:const -> g:cons_f:const encode_g :: g:cons_f:const -> g:cons_f:const const :: g:cons_f:const Rewrite Strategy: INNERMOST ---------------------------------------- (13) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: const => 0 ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encArg(z) -{ 0 }-> 1 + encArg(x_1) :|: z = 1 + x_1, x_1 >= 0 encode_f(z, z', z'') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, x_3 >= 0, x_2 >= 0, z = x_1, z' = x_2, z'' = x_3 encode_f(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 encode_g(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_g(z) -{ 0 }-> 1 + encArg(x_1) :|: x_1 >= 0, z = x_1 f(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 f(z, z', z'') -{ 1 }-> 1 + f(x, x, y) :|: z'' = y, x >= 0, y >= 0, z = 1 + x, z' = y ---------------------------------------- (15) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 f(z, z', z'') -{ 1 }-> 1 + f(z - 1, z - 1, z'') :|: z - 1 >= 0, z'' >= 0, z' = z'' ---------------------------------------- (17) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { f } { encArg } { encode_f } { encode_g } ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 f(z, z', z'') -{ 1 }-> 1 + f(z - 1, z - 1, z'') :|: z - 1 >= 0, z'' >= 0, z' = z'' Function symbols to be analyzed: {f}, {encArg}, {encode_f}, {encode_g} ---------------------------------------- (19) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 f(z, z', z'') -{ 1 }-> 1 + f(z - 1, z - 1, z'') :|: z - 1 >= 0, z'' >= 0, z' = z'' Function symbols to be analyzed: {f}, {encArg}, {encode_f}, {encode_g} ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 f(z, z', z'') -{ 1 }-> 1 + f(z - 1, z - 1, z'') :|: z - 1 >= 0, z'' >= 0, z' = z'' Function symbols to be analyzed: {f}, {encArg}, {encode_f}, {encode_g} Previous analysis results are: f: runtime: ?, size: O(n^1) [z] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 f(z, z', z'') -{ 1 }-> 1 + f(z - 1, z - 1, z'') :|: z - 1 >= 0, z'' >= 0, z' = z'' Function symbols to be analyzed: {encArg}, {encode_f}, {encode_g} Previous analysis results are: f: runtime: O(n^1) [z], size: O(n^1) [z] ---------------------------------------- (25) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 f(z, z', z'') -{ z }-> 1 + s :|: s >= 0, s <= z - 1, z - 1 >= 0, z'' >= 0, z' = z'' Function symbols to be analyzed: {encArg}, {encode_f}, {encode_g} Previous analysis results are: f: runtime: O(n^1) [z], size: O(n^1) [z] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 f(z, z', z'') -{ z }-> 1 + s :|: s >= 0, s <= z - 1, z - 1 >= 0, z'' >= 0, z' = z'' Function symbols to be analyzed: {encArg}, {encode_f}, {encode_g} Previous analysis results are: f: runtime: O(n^1) [z], size: O(n^1) [z] encArg: runtime: ?, size: O(n^1) [z] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: z + z^2 ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 f(z, z', z'') -{ z }-> 1 + s :|: s >= 0, s <= z - 1, z - 1 >= 0, z'' >= 0, z' = z'' Function symbols to be analyzed: {encode_f}, {encode_g} Previous analysis results are: f: runtime: O(n^1) [z], size: O(n^1) [z] encArg: runtime: O(n^2) [z + z^2], size: O(n^1) [z] ---------------------------------------- (31) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ s'' + x_1 + x_1^2 + x_2 + x_2^2 + x_3 + x_3^2 }-> s3 :|: s'' >= 0, s'' <= x_1, s1 >= 0, s1 <= x_2, s2 >= 0, s2 <= x_3, s3 >= 0, s3 <= s'', x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -1*z + z^2 }-> 1 + s' :|: s' >= 0, s' <= z - 1, z - 1 >= 0 encode_f(z, z', z'') -{ s4 + z + z^2 + z' + z'^2 + z'' + z''^2 }-> s7 :|: s4 >= 0, s4 <= z, s5 >= 0, s5 <= z', s6 >= 0, s6 <= z'', s7 >= 0, s7 <= s4, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ z + z^2 }-> 1 + s8 :|: s8 >= 0, s8 <= z, z >= 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 f(z, z', z'') -{ z }-> 1 + s :|: s >= 0, s <= z - 1, z - 1 >= 0, z'' >= 0, z' = z'' Function symbols to be analyzed: {encode_f}, {encode_g} Previous analysis results are: f: runtime: O(n^1) [z], size: O(n^1) [z] encArg: runtime: O(n^2) [z + z^2], size: O(n^1) [z] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ s'' + x_1 + x_1^2 + x_2 + x_2^2 + x_3 + x_3^2 }-> s3 :|: s'' >= 0, s'' <= x_1, s1 >= 0, s1 <= x_2, s2 >= 0, s2 <= x_3, s3 >= 0, s3 <= s'', x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -1*z + z^2 }-> 1 + s' :|: s' >= 0, s' <= z - 1, z - 1 >= 0 encode_f(z, z', z'') -{ s4 + z + z^2 + z' + z'^2 + z'' + z''^2 }-> s7 :|: s4 >= 0, s4 <= z, s5 >= 0, s5 <= z', s6 >= 0, s6 <= z'', s7 >= 0, s7 <= s4, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ z + z^2 }-> 1 + s8 :|: s8 >= 0, s8 <= z, z >= 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 f(z, z', z'') -{ z }-> 1 + s :|: s >= 0, s <= z - 1, z - 1 >= 0, z'' >= 0, z' = z'' Function symbols to be analyzed: {encode_f}, {encode_g} Previous analysis results are: f: runtime: O(n^1) [z], size: O(n^1) [z] encArg: runtime: O(n^2) [z + z^2], size: O(n^1) [z] encode_f: runtime: ?, size: O(n^1) [z] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_f after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 2*z + z^2 + z' + z'^2 + z'' + z''^2 ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ s'' + x_1 + x_1^2 + x_2 + x_2^2 + x_3 + x_3^2 }-> s3 :|: s'' >= 0, s'' <= x_1, s1 >= 0, s1 <= x_2, s2 >= 0, s2 <= x_3, s3 >= 0, s3 <= s'', x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -1*z + z^2 }-> 1 + s' :|: s' >= 0, s' <= z - 1, z - 1 >= 0 encode_f(z, z', z'') -{ s4 + z + z^2 + z' + z'^2 + z'' + z''^2 }-> s7 :|: s4 >= 0, s4 <= z, s5 >= 0, s5 <= z', s6 >= 0, s6 <= z'', s7 >= 0, s7 <= s4, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ z + z^2 }-> 1 + s8 :|: s8 >= 0, s8 <= z, z >= 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 f(z, z', z'') -{ z }-> 1 + s :|: s >= 0, s <= z - 1, z - 1 >= 0, z'' >= 0, z' = z'' Function symbols to be analyzed: {encode_g} Previous analysis results are: f: runtime: O(n^1) [z], size: O(n^1) [z] encArg: runtime: O(n^2) [z + z^2], size: O(n^1) [z] encode_f: runtime: O(n^2) [2*z + z^2 + z' + z'^2 + z'' + z''^2], size: O(n^1) [z] ---------------------------------------- (37) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ s'' + x_1 + x_1^2 + x_2 + x_2^2 + x_3 + x_3^2 }-> s3 :|: s'' >= 0, s'' <= x_1, s1 >= 0, s1 <= x_2, s2 >= 0, s2 <= x_3, s3 >= 0, s3 <= s'', x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -1*z + z^2 }-> 1 + s' :|: s' >= 0, s' <= z - 1, z - 1 >= 0 encode_f(z, z', z'') -{ s4 + z + z^2 + z' + z'^2 + z'' + z''^2 }-> s7 :|: s4 >= 0, s4 <= z, s5 >= 0, s5 <= z', s6 >= 0, s6 <= z'', s7 >= 0, s7 <= s4, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ z + z^2 }-> 1 + s8 :|: s8 >= 0, s8 <= z, z >= 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 f(z, z', z'') -{ z }-> 1 + s :|: s >= 0, s <= z - 1, z - 1 >= 0, z'' >= 0, z' = z'' Function symbols to be analyzed: {encode_g} Previous analysis results are: f: runtime: O(n^1) [z], size: O(n^1) [z] encArg: runtime: O(n^2) [z + z^2], size: O(n^1) [z] encode_f: runtime: O(n^2) [2*z + z^2 + z' + z'^2 + z'' + z''^2], size: O(n^1) [z] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_g after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ s'' + x_1 + x_1^2 + x_2 + x_2^2 + x_3 + x_3^2 }-> s3 :|: s'' >= 0, s'' <= x_1, s1 >= 0, s1 <= x_2, s2 >= 0, s2 <= x_3, s3 >= 0, s3 <= s'', x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -1*z + z^2 }-> 1 + s' :|: s' >= 0, s' <= z - 1, z - 1 >= 0 encode_f(z, z', z'') -{ s4 + z + z^2 + z' + z'^2 + z'' + z''^2 }-> s7 :|: s4 >= 0, s4 <= z, s5 >= 0, s5 <= z', s6 >= 0, s6 <= z'', s7 >= 0, s7 <= s4, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ z + z^2 }-> 1 + s8 :|: s8 >= 0, s8 <= z, z >= 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 f(z, z', z'') -{ z }-> 1 + s :|: s >= 0, s <= z - 1, z - 1 >= 0, z'' >= 0, z' = z'' Function symbols to be analyzed: {encode_g} Previous analysis results are: f: runtime: O(n^1) [z], size: O(n^1) [z] encArg: runtime: O(n^2) [z + z^2], size: O(n^1) [z] encode_f: runtime: O(n^2) [2*z + z^2 + z' + z'^2 + z'' + z''^2], size: O(n^1) [z] encode_g: runtime: ?, size: O(n^1) [1 + z] ---------------------------------------- (41) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_g after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: z + z^2 ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ s'' + x_1 + x_1^2 + x_2 + x_2^2 + x_3 + x_3^2 }-> s3 :|: s'' >= 0, s'' <= x_1, s1 >= 0, s1 <= x_2, s2 >= 0, s2 <= x_3, s3 >= 0, s3 <= s'', x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -1*z + z^2 }-> 1 + s' :|: s' >= 0, s' <= z - 1, z - 1 >= 0 encode_f(z, z', z'') -{ s4 + z + z^2 + z' + z'^2 + z'' + z''^2 }-> s7 :|: s4 >= 0, s4 <= z, s5 >= 0, s5 <= z', s6 >= 0, s6 <= z'', s7 >= 0, s7 <= s4, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ z + z^2 }-> 1 + s8 :|: s8 >= 0, s8 <= z, z >= 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 f(z, z', z'') -{ z }-> 1 + s :|: s >= 0, s <= z - 1, z - 1 >= 0, z'' >= 0, z' = z'' Function symbols to be analyzed: Previous analysis results are: f: runtime: O(n^1) [z], size: O(n^1) [z] encArg: runtime: O(n^2) [z + z^2], size: O(n^1) [z] encode_f: runtime: O(n^2) [2*z + z^2 + z' + z'^2 + z'' + z''^2], size: O(n^1) [z] encode_g: runtime: O(n^2) [z + z^2], size: O(n^1) [1 + z] ---------------------------------------- (43) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (44) BOUNDS(1, n^2)