WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 166 ms] (4) CpxRelTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (6) CdtProblem (7) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CdtProblem (9) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CdtProblem (13) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (14) CdtProblem (15) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CdtProblem (17) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 43 ms] (18) CdtProblem (19) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (20) BOUNDS(1, 1) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(0, 1, x) -> f(x, x, x) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(1) -> 1 encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_0 -> 0 encode_1 -> 1 ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(0, 1, x) -> f(x, x, x) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(1) -> 1 encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_0 -> 0 encode_1 -> 1 Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(0, 1, x) -> f(x, x, x) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(1) -> 1 encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_0 -> 0 encode_1 -> 1 Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(1) -> 1 encArg(cons_f(z0, z1, z2)) -> f(encArg(z0), encArg(z1), encArg(z2)) encode_f(z0, z1, z2) -> f(encArg(z0), encArg(z1), encArg(z2)) encode_0 -> 0 encode_1 -> 1 f(0, 1, z0) -> f(z0, z0, z0) Tuples: ENCARG(0) -> c ENCARG(1) -> c1 ENCARG(cons_f(z0, z1, z2)) -> c2(F(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCODE_F(z0, z1, z2) -> c3(F(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCODE_0 -> c4 ENCODE_1 -> c5 F(0, 1, z0) -> c6(F(z0, z0, z0)) S tuples: F(0, 1, z0) -> c6(F(z0, z0, z0)) K tuples:none Defined Rule Symbols: f_3, encArg_1, encode_f_3, encode_0, encode_1 Defined Pair Symbols: ENCARG_1, ENCODE_F_3, ENCODE_0, ENCODE_1, F_3 Compound Symbols: c, c1, c2_4, c3_4, c4, c5, c6_1 ---------------------------------------- (7) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 4 trailing nodes: ENCODE_1 -> c5 ENCARG(1) -> c1 ENCODE_0 -> c4 ENCARG(0) -> c ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(1) -> 1 encArg(cons_f(z0, z1, z2)) -> f(encArg(z0), encArg(z1), encArg(z2)) encode_f(z0, z1, z2) -> f(encArg(z0), encArg(z1), encArg(z2)) encode_0 -> 0 encode_1 -> 1 f(0, 1, z0) -> f(z0, z0, z0) Tuples: ENCARG(cons_f(z0, z1, z2)) -> c2(F(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCODE_F(z0, z1, z2) -> c3(F(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) F(0, 1, z0) -> c6(F(z0, z0, z0)) S tuples: F(0, 1, z0) -> c6(F(z0, z0, z0)) K tuples:none Defined Rule Symbols: f_3, encArg_1, encode_f_3, encode_0, encode_1 Defined Pair Symbols: ENCARG_1, ENCODE_F_3, F_3 Compound Symbols: c2_4, c3_4, c6_1 ---------------------------------------- (9) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing tuple parts ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(1) -> 1 encArg(cons_f(z0, z1, z2)) -> f(encArg(z0), encArg(z1), encArg(z2)) encode_f(z0, z1, z2) -> f(encArg(z0), encArg(z1), encArg(z2)) encode_0 -> 0 encode_1 -> 1 f(0, 1, z0) -> f(z0, z0, z0) Tuples: ENCARG(cons_f(z0, z1, z2)) -> c2(F(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCODE_F(z0, z1, z2) -> c3(F(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) F(0, 1, z0) -> c6 S tuples: F(0, 1, z0) -> c6 K tuples:none Defined Rule Symbols: f_3, encArg_1, encode_f_3, encode_0, encode_1 Defined Pair Symbols: ENCARG_1, ENCODE_F_3, F_3 Compound Symbols: c2_4, c3_4, c6 ---------------------------------------- (11) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(1) -> 1 encArg(cons_f(z0, z1, z2)) -> f(encArg(z0), encArg(z1), encArg(z2)) encode_f(z0, z1, z2) -> f(encArg(z0), encArg(z1), encArg(z2)) encode_0 -> 0 encode_1 -> 1 f(0, 1, z0) -> f(z0, z0, z0) Tuples: ENCARG(cons_f(z0, z1, z2)) -> c2(F(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) F(0, 1, z0) -> c6 ENCODE_F(z0, z1, z2) -> c(F(encArg(z0), encArg(z1), encArg(z2))) ENCODE_F(z0, z1, z2) -> c(ENCARG(z0)) ENCODE_F(z0, z1, z2) -> c(ENCARG(z1)) ENCODE_F(z0, z1, z2) -> c(ENCARG(z2)) S tuples: F(0, 1, z0) -> c6 K tuples:none Defined Rule Symbols: f_3, encArg_1, encode_f_3, encode_0, encode_1 Defined Pair Symbols: ENCARG_1, F_3, ENCODE_F_3 Compound Symbols: c2_4, c6, c_1 ---------------------------------------- (13) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 3 leading nodes: ENCODE_F(z0, z1, z2) -> c(ENCARG(z0)) ENCODE_F(z0, z1, z2) -> c(ENCARG(z1)) ENCODE_F(z0, z1, z2) -> c(ENCARG(z2)) ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(1) -> 1 encArg(cons_f(z0, z1, z2)) -> f(encArg(z0), encArg(z1), encArg(z2)) encode_f(z0, z1, z2) -> f(encArg(z0), encArg(z1), encArg(z2)) encode_0 -> 0 encode_1 -> 1 f(0, 1, z0) -> f(z0, z0, z0) Tuples: ENCARG(cons_f(z0, z1, z2)) -> c2(F(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) F(0, 1, z0) -> c6 ENCODE_F(z0, z1, z2) -> c(F(encArg(z0), encArg(z1), encArg(z2))) S tuples: F(0, 1, z0) -> c6 K tuples:none Defined Rule Symbols: f_3, encArg_1, encode_f_3, encode_0, encode_1 Defined Pair Symbols: ENCARG_1, F_3, ENCODE_F_3 Compound Symbols: c2_4, c6, c_1 ---------------------------------------- (15) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_f(z0, z1, z2) -> f(encArg(z0), encArg(z1), encArg(z2)) encode_0 -> 0 encode_1 -> 1 ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(1) -> 1 encArg(cons_f(z0, z1, z2)) -> f(encArg(z0), encArg(z1), encArg(z2)) f(0, 1, z0) -> f(z0, z0, z0) Tuples: ENCARG(cons_f(z0, z1, z2)) -> c2(F(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) F(0, 1, z0) -> c6 ENCODE_F(z0, z1, z2) -> c(F(encArg(z0), encArg(z1), encArg(z2))) S tuples: F(0, 1, z0) -> c6 K tuples:none Defined Rule Symbols: encArg_1, f_3 Defined Pair Symbols: ENCARG_1, F_3, ENCODE_F_3 Compound Symbols: c2_4, c6, c_1 ---------------------------------------- (17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. F(0, 1, z0) -> c6 We considered the (Usable) Rules:none And the Tuples: ENCARG(cons_f(z0, z1, z2)) -> c2(F(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) F(0, 1, z0) -> c6 ENCODE_F(z0, z1, z2) -> c(F(encArg(z0), encArg(z1), encArg(z2))) The order we found is given by the following interpretation: Polynomial interpretation : POL(0) = [1] POL(1) = [1] POL(ENCARG(x_1)) = x_1 POL(ENCODE_F(x_1, x_2, x_3)) = [1] POL(F(x_1, x_2, x_3)) = [1] POL(c(x_1)) = x_1 POL(c2(x_1, x_2, x_3, x_4)) = x_1 + x_2 + x_3 + x_4 POL(c6) = 0 POL(cons_f(x_1, x_2, x_3)) = [1] + x_1 + x_2 + x_3 POL(encArg(x_1)) = [1] + x_1 POL(f(x_1, x_2, x_3)) = [1] + x_3 ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(1) -> 1 encArg(cons_f(z0, z1, z2)) -> f(encArg(z0), encArg(z1), encArg(z2)) f(0, 1, z0) -> f(z0, z0, z0) Tuples: ENCARG(cons_f(z0, z1, z2)) -> c2(F(encArg(z0), encArg(z1), encArg(z2)), ENCARG(z0), ENCARG(z1), ENCARG(z2)) F(0, 1, z0) -> c6 ENCODE_F(z0, z1, z2) -> c(F(encArg(z0), encArg(z1), encArg(z2))) S tuples:none K tuples: F(0, 1, z0) -> c6 Defined Rule Symbols: encArg_1, f_3 Defined Pair Symbols: ENCARG_1, F_3, ENCODE_F_3 Compound Symbols: c2_4, c6, c_1 ---------------------------------------- (19) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (20) BOUNDS(1, 1)