WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 159 ms] (4) CpxRelTRS (5) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (6) CpxTRS (7) CpxTrsMatchBoundsProof [FINISHED, 0 ms] (8) BOUNDS(1, n^1) (9) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (10) TRS for Loop Detection (11) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: c(a(b(a(b(x1))))) -> a(b(a(b(b(a(b(b(c(a(b(c(a(x1))))))))))))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(a(x_1)) -> a(encArg(x_1)) encArg(b(x_1)) -> b(encArg(x_1)) encArg(cons_c(x_1)) -> c(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: c(a(b(a(b(x1))))) -> a(b(a(b(b(a(b(b(c(a(b(c(a(x1))))))))))))) The (relative) TRS S consists of the following rules: encArg(a(x_1)) -> a(encArg(x_1)) encArg(b(x_1)) -> b(encArg(x_1)) encArg(cons_c(x_1)) -> c(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: c(a(b(a(b(x1))))) -> a(b(a(b(b(a(b(b(c(a(b(c(a(x1))))))))))))) The (relative) TRS S consists of the following rules: encArg(a(x_1)) -> a(encArg(x_1)) encArg(b(x_1)) -> b(encArg(x_1)) encArg(cons_c(x_1)) -> c(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: c(a(b(a(b(x1))))) -> a(b(a(b(b(a(b(b(c(a(b(c(a(x1))))))))))))) encArg(a(x_1)) -> a(encArg(x_1)) encArg(b(x_1)) -> b(encArg(x_1)) encArg(cons_c(x_1)) -> c(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (7) CpxTrsMatchBoundsProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match Bound [MATCHBOUNDS1,MATCHBOUNDS2] of 4. The certificate found is represented by the following graph. "[9, 10, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100] {(9,10,[c_1|0, encArg_1|0, encode_c_1|0, encode_a_1|0, encode_b_1|0]), (9,16,[a_1|1]), (9,28,[a_1|1, b_1|1, c_1|1]), (9,29,[a_1|2]), (10,10,[a_1|0, b_1|0, cons_c_1|0]), (16,17,[b_1|1]), (17,18,[a_1|1]), (18,19,[b_1|1]), (19,20,[b_1|1]), (20,21,[a_1|1]), (21,22,[b_1|1]), (22,23,[b_1|1]), (23,24,[c_1|1]), (23,41,[a_1|2]), (24,25,[a_1|1]), (25,26,[b_1|1]), (26,27,[c_1|1]), (26,16,[a_1|1]), (27,10,[a_1|1]), (28,10,[encArg_1|1]), (28,28,[a_1|1, b_1|1, c_1|1]), (28,29,[a_1|2]), (29,30,[b_1|2]), (30,31,[a_1|2]), (31,32,[b_1|2]), (32,33,[b_1|2]), (33,34,[a_1|2]), (34,35,[b_1|2]), (35,36,[b_1|2]), (36,37,[c_1|2]), (36,53,[a_1|3]), (37,38,[a_1|2]), (38,39,[b_1|2]), (39,40,[c_1|2]), (39,29,[a_1|2]), (39,65,[a_1|3]), (40,28,[a_1|2]), (40,30,[a_1|2]), (40,32,[a_1|2]), (41,42,[b_1|2]), (42,43,[a_1|2]), (43,44,[b_1|2]), (44,45,[b_1|2]), (45,46,[a_1|2]), (46,47,[b_1|2]), (47,48,[b_1|2]), (48,49,[c_1|2]), (49,50,[a_1|2]), (50,51,[b_1|2]), (51,52,[c_1|2]), (52,17,[a_1|2]), (53,54,[b_1|3]), (54,55,[a_1|3]), (55,56,[b_1|3]), (56,57,[b_1|3]), (57,58,[a_1|3]), (58,59,[b_1|3]), (59,60,[b_1|3]), (60,61,[c_1|3]), (61,62,[a_1|3]), (62,63,[b_1|3]), (63,64,[c_1|3]), (64,30,[a_1|3]), (64,66,[a_1|3]), (65,66,[b_1|3]), (66,67,[a_1|3]), (67,68,[b_1|3]), (68,69,[b_1|3]), (69,70,[a_1|3]), (70,71,[b_1|3]), (71,72,[b_1|3]), (72,73,[c_1|3]), (72,89,[a_1|4]), (73,74,[a_1|3]), (74,75,[b_1|3]), (75,76,[c_1|3]), (75,77,[a_1|3]), (76,35,[a_1|3]), (77,78,[b_1|3]), (78,79,[a_1|3]), (79,80,[b_1|3]), (80,81,[b_1|3]), (81,82,[a_1|3]), (82,83,[b_1|3]), (83,84,[b_1|3]), (84,85,[c_1|3]), (85,86,[a_1|3]), (86,87,[b_1|3]), (87,88,[c_1|3]), (88,54,[a_1|3]), (89,90,[b_1|4]), (90,91,[a_1|4]), (91,92,[b_1|4]), (92,93,[b_1|4]), (93,94,[a_1|4]), (94,95,[b_1|4]), (95,96,[b_1|4]), (96,97,[c_1|4]), (97,98,[a_1|4]), (98,99,[b_1|4]), (99,100,[c_1|4]), (100,78,[a_1|4])}" ---------------------------------------- (8) BOUNDS(1, n^1) ---------------------------------------- (9) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (10) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: c(a(b(a(b(x1))))) -> a(b(a(b(b(a(b(b(c(a(b(c(a(x1))))))))))))) The (relative) TRS S consists of the following rules: encArg(a(x_1)) -> a(encArg(x_1)) encArg(b(x_1)) -> b(encArg(x_1)) encArg(cons_c(x_1)) -> c(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (11) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence c(a(b(a(b(x1))))) ->^+ a(b(a(b(b(a(b(b(c(a(b(c(a(x1))))))))))))) gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0,0,0,0,0,0,0,0,0,0]. The pumping substitution is [x1 / b(a(b(x1)))]. The result substitution is [ ]. ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: c(a(b(a(b(x1))))) -> a(b(a(b(b(a(b(b(c(a(b(c(a(x1))))))))))))) The (relative) TRS S consists of the following rules: encArg(a(x_1)) -> a(encArg(x_1)) encArg(b(x_1)) -> b(encArg(x_1)) encArg(cons_c(x_1)) -> c(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: c(a(b(a(b(x1))))) -> a(b(a(b(b(a(b(b(c(a(b(c(a(x1))))))))))))) The (relative) TRS S consists of the following rules: encArg(a(x_1)) -> a(encArg(x_1)) encArg(b(x_1)) -> b(encArg(x_1)) encArg(cons_c(x_1)) -> c(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) Rewrite Strategy: INNERMOST