WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 186 ms] (4) CpxRelTRS (5) NonCtorToCtorProof [UPPER BOUND(ID), 0 ms] (6) CpxRelTRS (7) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxWeightedTrs (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxTypedWeightedTrs (11) CompletionProof [UPPER BOUND(ID), 0 ms] (12) CpxTypedWeightedCompleteTrs (13) NarrowingProof [BOTH BOUNDS(ID, ID), 27 ms] (14) CpxTypedWeightedCompleteTrs (15) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (16) CpxRNTS (17) InliningProof [UPPER BOUND(ID), 682 ms] (18) CpxRNTS (19) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (20) CpxRNTS (21) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (22) CpxRNTS (23) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 213 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 75 ms] (28) CpxRNTS (29) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 107 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 32 ms] (34) CpxRNTS (35) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 142 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 52 ms] (40) CpxRNTS (41) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (42) CpxRNTS (43) IntTrsBoundProof [UPPER BOUND(ID), 52 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 11 ms] (46) CpxRNTS (47) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (48) CpxRNTS (49) IntTrsBoundProof [UPPER BOUND(ID), 96 ms] (50) CpxRNTS (51) IntTrsBoundProof [UPPER BOUND(ID), 32 ms] (52) CpxRNTS (53) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (54) CpxRNTS (55) IntTrsBoundProof [UPPER BOUND(ID), 595 ms] (56) CpxRNTS (57) IntTrsBoundProof [UPPER BOUND(ID), 322 ms] (58) CpxRNTS (59) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (60) CpxRNTS (61) IntTrsBoundProof [UPPER BOUND(ID), 409 ms] (62) CpxRNTS (63) IntTrsBoundProof [UPPER BOUND(ID), 80 ms] (64) CpxRNTS (65) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (66) CpxRNTS (67) IntTrsBoundProof [UPPER BOUND(ID), 157 ms] (68) CpxRNTS (69) IntTrsBoundProof [UPPER BOUND(ID), 73 ms] (70) CpxRNTS (71) FinalProof [FINISHED, 0 ms] (72) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(X, g(X), Y) -> f(Y, Y, Y) g(b) -> c b -> c S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(c) -> c encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_b) -> b encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1) -> g(encArg(x_1)) encode_b -> b encode_c -> c ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(X, g(X), Y) -> f(Y, Y, Y) g(b) -> c b -> c The (relative) TRS S consists of the following rules: encArg(c) -> c encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_b) -> b encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1) -> g(encArg(x_1)) encode_b -> b encode_c -> c Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(X, g(X), Y) -> f(Y, Y, Y) g(b) -> c b -> c The (relative) TRS S consists of the following rules: encArg(c) -> c encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_b) -> b encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1) -> g(encArg(x_1)) encode_b -> b encode_c -> c Rewrite Strategy: INNERMOST ---------------------------------------- (5) NonCtorToCtorProof (UPPER BOUND(ID)) transformed non-ctor to ctor-system ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: b -> c f(X, c_g(X), Y) -> f(Y, Y, Y) g(c_b) -> c The (relative) TRS S consists of the following rules: encArg(c) -> c encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_b) -> b encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1) -> g(encArg(x_1)) encode_b -> b encode_c -> c b -> c_b g(x0) -> c_g(x0) Rewrite Strategy: INNERMOST ---------------------------------------- (7) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: b -> c [1] f(X, c_g(X), Y) -> f(Y, Y, Y) [1] g(c_b) -> c [1] encArg(c) -> c [0] encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encArg(cons_g(x_1)) -> g(encArg(x_1)) [0] encArg(cons_b) -> b [0] encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_g(x_1) -> g(encArg(x_1)) [0] encode_b -> b [0] encode_c -> c [0] b -> c_b [0] g(x0) -> c_g(x0) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: b -> c [1] f(X, c_g(X), Y) -> f(Y, Y, Y) [1] g(c_b) -> c [1] encArg(c) -> c [0] encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encArg(cons_g(x_1)) -> g(encArg(x_1)) [0] encArg(cons_b) -> b [0] encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_g(x_1) -> g(encArg(x_1)) [0] encode_b -> b [0] encode_c -> c [0] b -> c_b [0] g(x0) -> c_g(x0) [0] The TRS has the following type information: b :: c:c_g:c_b:cons_f:cons_g:cons_b c :: c:c_g:c_b:cons_f:cons_g:cons_b f :: c:c_g:c_b:cons_f:cons_g:cons_b -> c:c_g:c_b:cons_f:cons_g:cons_b -> c:c_g:c_b:cons_f:cons_g:cons_b -> c:c_g:c_b:cons_f:cons_g:cons_b c_g :: c:c_g:c_b:cons_f:cons_g:cons_b -> c:c_g:c_b:cons_f:cons_g:cons_b g :: c:c_g:c_b:cons_f:cons_g:cons_b -> c:c_g:c_b:cons_f:cons_g:cons_b c_b :: c:c_g:c_b:cons_f:cons_g:cons_b encArg :: c:c_g:c_b:cons_f:cons_g:cons_b -> c:c_g:c_b:cons_f:cons_g:cons_b cons_f :: c:c_g:c_b:cons_f:cons_g:cons_b -> c:c_g:c_b:cons_f:cons_g:cons_b -> c:c_g:c_b:cons_f:cons_g:cons_b -> c:c_g:c_b:cons_f:cons_g:cons_b cons_g :: c:c_g:c_b:cons_f:cons_g:cons_b -> c:c_g:c_b:cons_f:cons_g:cons_b cons_b :: c:c_g:c_b:cons_f:cons_g:cons_b encode_f :: c:c_g:c_b:cons_f:cons_g:cons_b -> c:c_g:c_b:cons_f:cons_g:cons_b -> c:c_g:c_b:cons_f:cons_g:cons_b -> c:c_g:c_b:cons_f:cons_g:cons_b encode_g :: c:c_g:c_b:cons_f:cons_g:cons_b -> c:c_g:c_b:cons_f:cons_g:cons_b encode_b :: c:c_g:c_b:cons_f:cons_g:cons_b encode_c :: c:c_g:c_b:cons_f:cons_g:cons_b Rewrite Strategy: INNERMOST ---------------------------------------- (11) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: f_3 encArg_1 encode_f_3 encode_g_1 encode_b encode_c b g_1 Due to the following rules being added: encArg(v0) -> null_encArg [0] encode_f(v0, v1, v2) -> null_encode_f [0] encode_g(v0) -> null_encode_g [0] encode_b -> null_encode_b [0] encode_c -> null_encode_c [0] b -> null_b [0] g(v0) -> null_g [0] f(v0, v1, v2) -> null_f [0] And the following fresh constants: null_encArg, null_encode_f, null_encode_g, null_encode_b, null_encode_c, null_b, null_g, null_f ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: b -> c [1] f(X, c_g(X), Y) -> f(Y, Y, Y) [1] g(c_b) -> c [1] encArg(c) -> c [0] encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encArg(cons_g(x_1)) -> g(encArg(x_1)) [0] encArg(cons_b) -> b [0] encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_g(x_1) -> g(encArg(x_1)) [0] encode_b -> b [0] encode_c -> c [0] b -> c_b [0] g(x0) -> c_g(x0) [0] encArg(v0) -> null_encArg [0] encode_f(v0, v1, v2) -> null_encode_f [0] encode_g(v0) -> null_encode_g [0] encode_b -> null_encode_b [0] encode_c -> null_encode_c [0] b -> null_b [0] g(v0) -> null_g [0] f(v0, v1, v2) -> null_f [0] The TRS has the following type information: b :: c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f c :: c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f f :: c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f -> c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f -> c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f -> c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f c_g :: c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f -> c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f g :: c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f -> c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f c_b :: c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f encArg :: c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f -> c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f cons_f :: c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f -> c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f -> c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f -> c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f cons_g :: c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f -> c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f cons_b :: c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f encode_f :: c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f -> c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f -> c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f -> c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f encode_g :: c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f -> c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f encode_b :: c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f encode_c :: c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f null_encArg :: c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f null_encode_f :: c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f null_encode_g :: c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f null_encode_b :: c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f null_encode_c :: c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f null_b :: c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f null_g :: c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f null_f :: c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f Rewrite Strategy: INNERMOST ---------------------------------------- (13) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (14) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: b -> c [1] f(X, c_g(X), Y) -> f(Y, Y, Y) [1] g(c_b) -> c [1] encArg(c) -> c [0] encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encArg(cons_g(c)) -> g(c) [0] encArg(cons_g(cons_f(x_161, x_230, x_330))) -> g(f(encArg(x_161), encArg(x_230), encArg(x_330))) [0] encArg(cons_g(cons_g(x_162))) -> g(g(encArg(x_162))) [0] encArg(cons_g(cons_b)) -> g(b) [0] encArg(cons_g(x_1)) -> g(null_encArg) [0] encArg(cons_b) -> b [0] encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_g(c) -> g(c) [0] encode_g(cons_f(x_1125, x_262, x_362)) -> g(f(encArg(x_1125), encArg(x_262), encArg(x_362))) [0] encode_g(cons_g(x_1126)) -> g(g(encArg(x_1126))) [0] encode_g(cons_b) -> g(b) [0] encode_g(x_1) -> g(null_encArg) [0] encode_b -> b [0] encode_c -> c [0] b -> c_b [0] g(x0) -> c_g(x0) [0] encArg(v0) -> null_encArg [0] encode_f(v0, v1, v2) -> null_encode_f [0] encode_g(v0) -> null_encode_g [0] encode_b -> null_encode_b [0] encode_c -> null_encode_c [0] b -> null_b [0] g(v0) -> null_g [0] f(v0, v1, v2) -> null_f [0] The TRS has the following type information: b :: c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f c :: c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f f :: c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f -> c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f -> c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f -> c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f c_g :: c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f -> c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f g :: c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f -> c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f c_b :: c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f encArg :: c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f -> c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f cons_f :: c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f -> c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f -> c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f -> c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f cons_g :: c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f -> c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f cons_b :: c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f encode_f :: c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f -> c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f -> c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f -> c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f encode_g :: c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f -> c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f encode_b :: c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f encode_c :: c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f null_encArg :: c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f null_encode_f :: c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f null_encode_g :: c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f null_encode_b :: c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f null_encode_c :: c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f null_b :: c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f null_g :: c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f null_f :: c:c_g:c_b:cons_f:cons_g:cons_b:null_encArg:null_encode_f:null_encode_g:null_encode_b:null_encode_c:null_b:null_g:null_f Rewrite Strategy: INNERMOST ---------------------------------------- (15) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: c => 0 c_b => 1 cons_b => 2 null_encArg => 0 null_encode_f => 0 null_encode_g => 0 null_encode_b => 0 null_encode_c => 0 null_b => 0 null_g => 0 null_f => 0 ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: b -{ 0 }-> 1 :|: b -{ 1 }-> 0 :|: b -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> g(g(encArg(x_162))) :|: x_162 >= 0, z = 1 + (1 + x_162) encArg(z) -{ 0 }-> g(f(encArg(x_161), encArg(x_230), encArg(x_330))) :|: z = 1 + (1 + x_161 + x_230 + x_330), x_330 >= 0, x_161 >= 0, x_230 >= 0 encArg(z) -{ 0 }-> g(b) :|: z = 1 + 2 encArg(z) -{ 0 }-> g(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> g(0) :|: z = 1 + x_1, x_1 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> b :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_b -{ 0 }-> b :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, x_3 >= 0, x_2 >= 0, z = x_1, z' = x_2, z'' = x_3 encode_f(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 encode_g(z) -{ 0 }-> g(g(encArg(x_1126))) :|: x_1126 >= 0, z = 1 + x_1126 encode_g(z) -{ 0 }-> g(f(encArg(x_1125), encArg(x_262), encArg(x_362))) :|: x_362 >= 0, z = 1 + x_1125 + x_262 + x_362, x_1125 >= 0, x_262 >= 0 encode_g(z) -{ 0 }-> g(b) :|: z = 2 encode_g(z) -{ 0 }-> g(0) :|: z = 0 encode_g(z) -{ 0 }-> g(0) :|: x_1 >= 0, z = x_1 encode_g(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 f(z, z', z'') -{ 1 }-> f(Y, Y, Y) :|: Y >= 0, z'' = Y, z' = 1 + X, X >= 0, z = X f(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 g(z) -{ 1 }-> 0 :|: z = 1 g(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 g(z) -{ 0 }-> 1 + x0 :|: z = x0, x0 >= 0 ---------------------------------------- (17) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: b -{ 0 }-> 1 :|: b -{ 0 }-> 0 :|: b -{ 1 }-> 0 :|: g(z) -{ 1 }-> 0 :|: z = 1 g(z) -{ 0 }-> 1 + x0 :|: z = x0, x0 >= 0 g(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: b -{ 0 }-> 1 :|: b -{ 1 }-> 0 :|: b -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> g(g(encArg(x_162))) :|: x_162 >= 0, z = 1 + (1 + x_162) encArg(z) -{ 0 }-> g(f(encArg(x_161), encArg(x_230), encArg(x_330))) :|: z = 1 + (1 + x_161 + x_230 + x_330), x_330 >= 0, x_161 >= 0, x_230 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + x_1, x_1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, 1 = 1 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + x_1, x_1 >= 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 1 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encArg(z) -{ 1 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, x_3 >= 0, x_2 >= 0, z = x_1, z' = x_2, z'' = x_3 encode_f(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 encode_g(z) -{ 0 }-> g(g(encArg(x_1126))) :|: x_1126 >= 0, z = 1 + x_1126 encode_g(z) -{ 0 }-> g(f(encArg(x_1125), encArg(x_262), encArg(x_362))) :|: x_362 >= 0, z = 1 + x_1125 + x_262 + x_362, x_1125 >= 0, x_262 >= 0 encode_g(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_g(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 0 :|: x_1 >= 0, z = x_1, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, 1 = 1 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 1 = v0 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: x_1 >= 0, z = x_1, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 1 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 encode_g(z) -{ 1 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 f(z, z', z'') -{ 1 }-> f(Y, Y, Y) :|: Y >= 0, z'' = Y, z' = 1 + X, X >= 0, z = X f(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 g(z) -{ 1 }-> 0 :|: z = 1 g(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 g(z) -{ 0 }-> 1 + x0 :|: z = x0, x0 >= 0 ---------------------------------------- (19) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: b -{ 0 }-> 1 :|: b -{ 1 }-> 0 :|: b -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_161), encArg(x_230), encArg(x_330))) :|: z = 1 + (1 + x_161 + x_230 + x_330), x_330 >= 0, x_161 >= 0, x_230 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, 1 = 1 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 1 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encArg(z) -{ 1 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_1125), encArg(x_262), encArg(x_362))) :|: x_362 >= 0, z = 1 + x_1125 + x_262 + x_362, x_1125 >= 0, x_262 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, 1 = 1 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 1 = v0 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 1 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 encode_g(z) -{ 1 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 f(z, z', z'') -{ 1 }-> f(z'', z'', z'') :|: z'' >= 0, z' - 1 >= 0, z = z' - 1 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z) -{ 1 }-> 0 :|: z = 1 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 ---------------------------------------- (21) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { f } { b } { g } { encode_c } { encode_b } { encArg } { encode_g } { encode_f } ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: b -{ 0 }-> 1 :|: b -{ 1 }-> 0 :|: b -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_161), encArg(x_230), encArg(x_330))) :|: z = 1 + (1 + x_161 + x_230 + x_330), x_330 >= 0, x_161 >= 0, x_230 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, 1 = 1 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 1 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encArg(z) -{ 1 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_1125), encArg(x_262), encArg(x_362))) :|: x_362 >= 0, z = 1 + x_1125 + x_262 + x_362, x_1125 >= 0, x_262 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, 1 = 1 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 1 = v0 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 1 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 encode_g(z) -{ 1 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 f(z, z', z'') -{ 1 }-> f(z'', z'', z'') :|: z'' >= 0, z' - 1 >= 0, z = z' - 1 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z) -{ 1 }-> 0 :|: z = 1 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {f}, {b}, {g}, {encode_c}, {encode_b}, {encArg}, {encode_g}, {encode_f} ---------------------------------------- (23) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: b -{ 0 }-> 1 :|: b -{ 1 }-> 0 :|: b -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_161), encArg(x_230), encArg(x_330))) :|: z = 1 + (1 + x_161 + x_230 + x_330), x_330 >= 0, x_161 >= 0, x_230 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, 1 = 1 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 1 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encArg(z) -{ 1 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_1125), encArg(x_262), encArg(x_362))) :|: x_362 >= 0, z = 1 + x_1125 + x_262 + x_362, x_1125 >= 0, x_262 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, 1 = 1 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 1 = v0 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 1 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 encode_g(z) -{ 1 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 f(z, z', z'') -{ 1 }-> f(z'', z'', z'') :|: z'' >= 0, z' - 1 >= 0, z = z' - 1 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z) -{ 1 }-> 0 :|: z = 1 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {f}, {b}, {g}, {encode_c}, {encode_b}, {encArg}, {encode_g}, {encode_f} ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: b -{ 0 }-> 1 :|: b -{ 1 }-> 0 :|: b -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_161), encArg(x_230), encArg(x_330))) :|: z = 1 + (1 + x_161 + x_230 + x_330), x_330 >= 0, x_161 >= 0, x_230 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, 1 = 1 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 1 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encArg(z) -{ 1 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_1125), encArg(x_262), encArg(x_362))) :|: x_362 >= 0, z = 1 + x_1125 + x_262 + x_362, x_1125 >= 0, x_262 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, 1 = 1 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 1 = v0 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 1 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 encode_g(z) -{ 1 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 f(z, z', z'') -{ 1 }-> f(z'', z'', z'') :|: z'' >= 0, z' - 1 >= 0, z = z' - 1 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z) -{ 1 }-> 0 :|: z = 1 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {f}, {b}, {g}, {encode_c}, {encode_b}, {encArg}, {encode_g}, {encode_f} Previous analysis results are: f: runtime: ?, size: O(1) [0] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: b -{ 0 }-> 1 :|: b -{ 1 }-> 0 :|: b -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_161), encArg(x_230), encArg(x_330))) :|: z = 1 + (1 + x_161 + x_230 + x_330), x_330 >= 0, x_161 >= 0, x_230 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, 1 = 1 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 1 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encArg(z) -{ 1 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_1125), encArg(x_262), encArg(x_362))) :|: x_362 >= 0, z = 1 + x_1125 + x_262 + x_362, x_1125 >= 0, x_262 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, 1 = 1 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 1 = v0 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 1 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 encode_g(z) -{ 1 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 f(z, z', z'') -{ 1 }-> f(z'', z'', z'') :|: z'' >= 0, z' - 1 >= 0, z = z' - 1 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z) -{ 1 }-> 0 :|: z = 1 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {b}, {g}, {encode_c}, {encode_b}, {encArg}, {encode_g}, {encode_f} Previous analysis results are: f: runtime: O(1) [1], size: O(1) [0] ---------------------------------------- (29) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: b -{ 0 }-> 1 :|: b -{ 1 }-> 0 :|: b -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_161), encArg(x_230), encArg(x_330))) :|: z = 1 + (1 + x_161 + x_230 + x_330), x_330 >= 0, x_161 >= 0, x_230 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, 1 = 1 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 1 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encArg(z) -{ 1 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_1125), encArg(x_262), encArg(x_362))) :|: x_362 >= 0, z = 1 + x_1125 + x_262 + x_362, x_1125 >= 0, x_262 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, 1 = 1 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 1 = v0 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 1 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 encode_g(z) -{ 1 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 f(z, z', z'') -{ 2 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' - 1 >= 0, z = z' - 1 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z) -{ 1 }-> 0 :|: z = 1 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {b}, {g}, {encode_c}, {encode_b}, {encArg}, {encode_g}, {encode_f} Previous analysis results are: f: runtime: O(1) [1], size: O(1) [0] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: b after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: b -{ 0 }-> 1 :|: b -{ 1 }-> 0 :|: b -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_161), encArg(x_230), encArg(x_330))) :|: z = 1 + (1 + x_161 + x_230 + x_330), x_330 >= 0, x_161 >= 0, x_230 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, 1 = 1 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 1 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encArg(z) -{ 1 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_1125), encArg(x_262), encArg(x_362))) :|: x_362 >= 0, z = 1 + x_1125 + x_262 + x_362, x_1125 >= 0, x_262 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, 1 = 1 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 1 = v0 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 1 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 encode_g(z) -{ 1 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 f(z, z', z'') -{ 2 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' - 1 >= 0, z = z' - 1 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z) -{ 1 }-> 0 :|: z = 1 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {b}, {g}, {encode_c}, {encode_b}, {encArg}, {encode_g}, {encode_f} Previous analysis results are: f: runtime: O(1) [1], size: O(1) [0] b: runtime: ?, size: O(1) [1] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: b after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: b -{ 0 }-> 1 :|: b -{ 1 }-> 0 :|: b -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_161), encArg(x_230), encArg(x_330))) :|: z = 1 + (1 + x_161 + x_230 + x_330), x_330 >= 0, x_161 >= 0, x_230 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, 1 = 1 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 1 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encArg(z) -{ 1 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_1125), encArg(x_262), encArg(x_362))) :|: x_362 >= 0, z = 1 + x_1125 + x_262 + x_362, x_1125 >= 0, x_262 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, 1 = 1 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 1 = v0 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 1 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 encode_g(z) -{ 1 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 f(z, z', z'') -{ 2 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' - 1 >= 0, z = z' - 1 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z) -{ 1 }-> 0 :|: z = 1 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {g}, {encode_c}, {encode_b}, {encArg}, {encode_g}, {encode_f} Previous analysis results are: f: runtime: O(1) [1], size: O(1) [0] b: runtime: O(1) [1], size: O(1) [1] ---------------------------------------- (35) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: b -{ 0 }-> 1 :|: b -{ 1 }-> 0 :|: b -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_161), encArg(x_230), encArg(x_330))) :|: z = 1 + (1 + x_161 + x_230 + x_330), x_330 >= 0, x_161 >= 0, x_230 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, 1 = 1 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 1 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encArg(z) -{ 1 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_1125), encArg(x_262), encArg(x_362))) :|: x_362 >= 0, z = 1 + x_1125 + x_262 + x_362, x_1125 >= 0, x_262 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, 1 = 1 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 1 = v0 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 1 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 encode_g(z) -{ 1 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 f(z, z', z'') -{ 2 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' - 1 >= 0, z = z' - 1 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z) -{ 1 }-> 0 :|: z = 1 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {g}, {encode_c}, {encode_b}, {encArg}, {encode_g}, {encode_f} Previous analysis results are: f: runtime: O(1) [1], size: O(1) [0] b: runtime: O(1) [1], size: O(1) [1] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: g after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: b -{ 0 }-> 1 :|: b -{ 1 }-> 0 :|: b -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_161), encArg(x_230), encArg(x_330))) :|: z = 1 + (1 + x_161 + x_230 + x_330), x_330 >= 0, x_161 >= 0, x_230 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, 1 = 1 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 1 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encArg(z) -{ 1 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_1125), encArg(x_262), encArg(x_362))) :|: x_362 >= 0, z = 1 + x_1125 + x_262 + x_362, x_1125 >= 0, x_262 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, 1 = 1 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 1 = v0 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 1 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 encode_g(z) -{ 1 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 f(z, z', z'') -{ 2 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' - 1 >= 0, z = z' - 1 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z) -{ 1 }-> 0 :|: z = 1 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {g}, {encode_c}, {encode_b}, {encArg}, {encode_g}, {encode_f} Previous analysis results are: f: runtime: O(1) [1], size: O(1) [0] b: runtime: O(1) [1], size: O(1) [1] g: runtime: ?, size: O(n^1) [1 + z] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: g after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: b -{ 0 }-> 1 :|: b -{ 1 }-> 0 :|: b -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_161), encArg(x_230), encArg(x_330))) :|: z = 1 + (1 + x_161 + x_230 + x_330), x_330 >= 0, x_161 >= 0, x_230 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, 1 = 1 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 1 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encArg(z) -{ 1 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_1125), encArg(x_262), encArg(x_362))) :|: x_362 >= 0, z = 1 + x_1125 + x_262 + x_362, x_1125 >= 0, x_262 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, 1 = 1 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 1 = v0 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 1 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 encode_g(z) -{ 1 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 f(z, z', z'') -{ 2 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' - 1 >= 0, z = z' - 1 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z) -{ 1 }-> 0 :|: z = 1 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encode_c}, {encode_b}, {encArg}, {encode_g}, {encode_f} Previous analysis results are: f: runtime: O(1) [1], size: O(1) [0] b: runtime: O(1) [1], size: O(1) [1] g: runtime: O(1) [1], size: O(n^1) [1 + z] ---------------------------------------- (41) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: b -{ 0 }-> 1 :|: b -{ 1 }-> 0 :|: b -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_161), encArg(x_230), encArg(x_330))) :|: z = 1 + (1 + x_161 + x_230 + x_330), x_330 >= 0, x_161 >= 0, x_230 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, 1 = 1 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 1 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encArg(z) -{ 1 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_1125), encArg(x_262), encArg(x_362))) :|: x_362 >= 0, z = 1 + x_1125 + x_262 + x_362, x_1125 >= 0, x_262 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, 1 = 1 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 1 = v0 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 1 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 encode_g(z) -{ 1 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 f(z, z', z'') -{ 2 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' - 1 >= 0, z = z' - 1 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z) -{ 1 }-> 0 :|: z = 1 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encode_c}, {encode_b}, {encArg}, {encode_g}, {encode_f} Previous analysis results are: f: runtime: O(1) [1], size: O(1) [0] b: runtime: O(1) [1], size: O(1) [1] g: runtime: O(1) [1], size: O(n^1) [1 + z] ---------------------------------------- (43) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_c after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: b -{ 0 }-> 1 :|: b -{ 1 }-> 0 :|: b -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_161), encArg(x_230), encArg(x_330))) :|: z = 1 + (1 + x_161 + x_230 + x_330), x_330 >= 0, x_161 >= 0, x_230 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, 1 = 1 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 1 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encArg(z) -{ 1 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_1125), encArg(x_262), encArg(x_362))) :|: x_362 >= 0, z = 1 + x_1125 + x_262 + x_362, x_1125 >= 0, x_262 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, 1 = 1 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 1 = v0 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 1 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 encode_g(z) -{ 1 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 f(z, z', z'') -{ 2 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' - 1 >= 0, z = z' - 1 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z) -{ 1 }-> 0 :|: z = 1 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encode_c}, {encode_b}, {encArg}, {encode_g}, {encode_f} Previous analysis results are: f: runtime: O(1) [1], size: O(1) [0] b: runtime: O(1) [1], size: O(1) [1] g: runtime: O(1) [1], size: O(n^1) [1 + z] encode_c: runtime: ?, size: O(1) [0] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_c after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: b -{ 0 }-> 1 :|: b -{ 1 }-> 0 :|: b -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_161), encArg(x_230), encArg(x_330))) :|: z = 1 + (1 + x_161 + x_230 + x_330), x_330 >= 0, x_161 >= 0, x_230 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, 1 = 1 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 1 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encArg(z) -{ 1 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_1125), encArg(x_262), encArg(x_362))) :|: x_362 >= 0, z = 1 + x_1125 + x_262 + x_362, x_1125 >= 0, x_262 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, 1 = 1 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 1 = v0 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 1 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 encode_g(z) -{ 1 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 f(z, z', z'') -{ 2 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' - 1 >= 0, z = z' - 1 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z) -{ 1 }-> 0 :|: z = 1 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encode_b}, {encArg}, {encode_g}, {encode_f} Previous analysis results are: f: runtime: O(1) [1], size: O(1) [0] b: runtime: O(1) [1], size: O(1) [1] g: runtime: O(1) [1], size: O(n^1) [1 + z] encode_c: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (47) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: b -{ 0 }-> 1 :|: b -{ 1 }-> 0 :|: b -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_161), encArg(x_230), encArg(x_330))) :|: z = 1 + (1 + x_161 + x_230 + x_330), x_330 >= 0, x_161 >= 0, x_230 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, 1 = 1 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 1 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encArg(z) -{ 1 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_1125), encArg(x_262), encArg(x_362))) :|: x_362 >= 0, z = 1 + x_1125 + x_262 + x_362, x_1125 >= 0, x_262 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, 1 = 1 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 1 = v0 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 1 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 encode_g(z) -{ 1 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 f(z, z', z'') -{ 2 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' - 1 >= 0, z = z' - 1 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z) -{ 1 }-> 0 :|: z = 1 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encode_b}, {encArg}, {encode_g}, {encode_f} Previous analysis results are: f: runtime: O(1) [1], size: O(1) [0] b: runtime: O(1) [1], size: O(1) [1] g: runtime: O(1) [1], size: O(n^1) [1 + z] encode_c: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (49) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_b after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: b -{ 0 }-> 1 :|: b -{ 1 }-> 0 :|: b -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_161), encArg(x_230), encArg(x_330))) :|: z = 1 + (1 + x_161 + x_230 + x_330), x_330 >= 0, x_161 >= 0, x_230 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, 1 = 1 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 1 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encArg(z) -{ 1 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_1125), encArg(x_262), encArg(x_362))) :|: x_362 >= 0, z = 1 + x_1125 + x_262 + x_362, x_1125 >= 0, x_262 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, 1 = 1 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 1 = v0 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 1 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 encode_g(z) -{ 1 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 f(z, z', z'') -{ 2 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' - 1 >= 0, z = z' - 1 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z) -{ 1 }-> 0 :|: z = 1 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encode_b}, {encArg}, {encode_g}, {encode_f} Previous analysis results are: f: runtime: O(1) [1], size: O(1) [0] b: runtime: O(1) [1], size: O(1) [1] g: runtime: O(1) [1], size: O(n^1) [1 + z] encode_c: runtime: O(1) [0], size: O(1) [0] encode_b: runtime: ?, size: O(1) [1] ---------------------------------------- (51) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_b after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: b -{ 0 }-> 1 :|: b -{ 1 }-> 0 :|: b -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_161), encArg(x_230), encArg(x_330))) :|: z = 1 + (1 + x_161 + x_230 + x_330), x_330 >= 0, x_161 >= 0, x_230 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, 1 = 1 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 1 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encArg(z) -{ 1 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_1125), encArg(x_262), encArg(x_362))) :|: x_362 >= 0, z = 1 + x_1125 + x_262 + x_362, x_1125 >= 0, x_262 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, 1 = 1 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 1 = v0 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 1 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 encode_g(z) -{ 1 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 f(z, z', z'') -{ 2 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' - 1 >= 0, z = z' - 1 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z) -{ 1 }-> 0 :|: z = 1 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encArg}, {encode_g}, {encode_f} Previous analysis results are: f: runtime: O(1) [1], size: O(1) [0] b: runtime: O(1) [1], size: O(1) [1] g: runtime: O(1) [1], size: O(n^1) [1 + z] encode_c: runtime: O(1) [0], size: O(1) [0] encode_b: runtime: O(1) [1], size: O(1) [1] ---------------------------------------- (53) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (54) Obligation: Complexity RNTS consisting of the following rules: b -{ 0 }-> 1 :|: b -{ 1 }-> 0 :|: b -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_161), encArg(x_230), encArg(x_330))) :|: z = 1 + (1 + x_161 + x_230 + x_330), x_330 >= 0, x_161 >= 0, x_230 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, 1 = 1 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 1 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encArg(z) -{ 1 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_1125), encArg(x_262), encArg(x_362))) :|: x_362 >= 0, z = 1 + x_1125 + x_262 + x_362, x_1125 >= 0, x_262 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, 1 = 1 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 1 = v0 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 1 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 encode_g(z) -{ 1 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 f(z, z', z'') -{ 2 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' - 1 >= 0, z = z' - 1 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z) -{ 1 }-> 0 :|: z = 1 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encArg}, {encode_g}, {encode_f} Previous analysis results are: f: runtime: O(1) [1], size: O(1) [0] b: runtime: O(1) [1], size: O(1) [1] g: runtime: O(1) [1], size: O(n^1) [1 + z] encode_c: runtime: O(1) [0], size: O(1) [0] encode_b: runtime: O(1) [1], size: O(1) [1] ---------------------------------------- (55) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (56) Obligation: Complexity RNTS consisting of the following rules: b -{ 0 }-> 1 :|: b -{ 1 }-> 0 :|: b -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_161), encArg(x_230), encArg(x_330))) :|: z = 1 + (1 + x_161 + x_230 + x_330), x_330 >= 0, x_161 >= 0, x_230 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, 1 = 1 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 1 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encArg(z) -{ 1 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_1125), encArg(x_262), encArg(x_362))) :|: x_362 >= 0, z = 1 + x_1125 + x_262 + x_362, x_1125 >= 0, x_262 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, 1 = 1 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 1 = v0 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 1 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 encode_g(z) -{ 1 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 f(z, z', z'') -{ 2 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' - 1 >= 0, z = z' - 1 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z) -{ 1 }-> 0 :|: z = 1 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encArg}, {encode_g}, {encode_f} Previous analysis results are: f: runtime: O(1) [1], size: O(1) [0] b: runtime: O(1) [1], size: O(1) [1] g: runtime: O(1) [1], size: O(n^1) [1 + z] encode_c: runtime: O(1) [0], size: O(1) [0] encode_b: runtime: O(1) [1], size: O(1) [1] encArg: runtime: ?, size: O(n^1) [z] ---------------------------------------- (57) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + 2*z ---------------------------------------- (58) Obligation: Complexity RNTS consisting of the following rules: b -{ 0 }-> 1 :|: b -{ 1 }-> 0 :|: b -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_161), encArg(x_230), encArg(x_330))) :|: z = 1 + (1 + x_161 + x_230 + x_330), x_330 >= 0, x_161 >= 0, x_230 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, 1 = 1 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 1 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encArg(z) -{ 1 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_1125), encArg(x_262), encArg(x_362))) :|: x_362 >= 0, z = 1 + x_1125 + x_262 + x_362, x_1125 >= 0, x_262 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, 1 = 1 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 1 = v0 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 1 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 encode_g(z) -{ 1 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 f(z, z', z'') -{ 2 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' - 1 >= 0, z = z' - 1 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z) -{ 1 }-> 0 :|: z = 1 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encode_g}, {encode_f} Previous analysis results are: f: runtime: O(1) [1], size: O(1) [0] b: runtime: O(1) [1], size: O(1) [1] g: runtime: O(1) [1], size: O(n^1) [1 + z] encode_c: runtime: O(1) [0], size: O(1) [0] encode_b: runtime: O(1) [1], size: O(1) [1] encArg: runtime: O(n^1) [1 + 2*z], size: O(n^1) [z] ---------------------------------------- (59) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (60) Obligation: Complexity RNTS consisting of the following rules: b -{ 0 }-> 1 :|: b -{ 1 }-> 0 :|: b -{ 0 }-> 0 :|: encArg(z) -{ 5 + 2*x_161 + 2*x_230 + 2*x_330 }-> s11 :|: s7 >= 0, s7 <= x_161, s8 >= 0, s8 <= x_230, s9 >= 0, s9 <= x_330, s10 >= 0, s10 <= 0, s11 >= 0, s11 <= s10 + 1, z = 1 + (1 + x_161 + x_230 + x_330), x_330 >= 0, x_161 >= 0, x_230 >= 0 encArg(z) -{ -1 + 2*z }-> s14 :|: s12 >= 0, s12 <= z - 2, s13 >= 0, s13 <= s12 + 1, s14 >= 0, s14 <= s13 + 1, z - 2 >= 0 encArg(z) -{ 4 + 2*x_1 + 2*x_2 + 2*x_3 }-> s2 :|: s' >= 0, s' <= x_1, s'' >= 0, s'' <= x_2, s1 >= 0, s1 <= x_3, s2 >= 0, s2 <= 0, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, 1 = 1 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 1 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encArg(z) -{ 1 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 4 + 2*z + 2*z' + 2*z'' }-> s6 :|: s3 >= 0, s3 <= z, s4 >= 0, s4 <= z', s5 >= 0, s5 <= z'', s6 >= 0, s6 <= 0, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 5 + 2*x_1125 + 2*x_262 + 2*x_362 }-> s19 :|: s15 >= 0, s15 <= x_1125, s16 >= 0, s16 <= x_262, s17 >= 0, s17 <= x_362, s18 >= 0, s18 <= 0, s19 >= 0, s19 <= s18 + 1, x_362 >= 0, z = 1 + x_1125 + x_262 + x_362, x_1125 >= 0, x_262 >= 0 encode_g(z) -{ 1 + 2*z }-> s22 :|: s20 >= 0, s20 <= z - 1, s21 >= 0, s21 <= s20 + 1, s22 >= 0, s22 <= s21 + 1, z - 1 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, 1 = 1 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 1 = v0 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 1 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 encode_g(z) -{ 1 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 f(z, z', z'') -{ 2 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' - 1 >= 0, z = z' - 1 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z) -{ 1 }-> 0 :|: z = 1 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encode_g}, {encode_f} Previous analysis results are: f: runtime: O(1) [1], size: O(1) [0] b: runtime: O(1) [1], size: O(1) [1] g: runtime: O(1) [1], size: O(n^1) [1 + z] encode_c: runtime: O(1) [0], size: O(1) [0] encode_b: runtime: O(1) [1], size: O(1) [1] encArg: runtime: O(n^1) [1 + 2*z], size: O(n^1) [z] ---------------------------------------- (61) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_g after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (62) Obligation: Complexity RNTS consisting of the following rules: b -{ 0 }-> 1 :|: b -{ 1 }-> 0 :|: b -{ 0 }-> 0 :|: encArg(z) -{ 5 + 2*x_161 + 2*x_230 + 2*x_330 }-> s11 :|: s7 >= 0, s7 <= x_161, s8 >= 0, s8 <= x_230, s9 >= 0, s9 <= x_330, s10 >= 0, s10 <= 0, s11 >= 0, s11 <= s10 + 1, z = 1 + (1 + x_161 + x_230 + x_330), x_330 >= 0, x_161 >= 0, x_230 >= 0 encArg(z) -{ -1 + 2*z }-> s14 :|: s12 >= 0, s12 <= z - 2, s13 >= 0, s13 <= s12 + 1, s14 >= 0, s14 <= s13 + 1, z - 2 >= 0 encArg(z) -{ 4 + 2*x_1 + 2*x_2 + 2*x_3 }-> s2 :|: s' >= 0, s' <= x_1, s'' >= 0, s'' <= x_2, s1 >= 0, s1 <= x_3, s2 >= 0, s2 <= 0, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, 1 = 1 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 1 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encArg(z) -{ 1 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 4 + 2*z + 2*z' + 2*z'' }-> s6 :|: s3 >= 0, s3 <= z, s4 >= 0, s4 <= z', s5 >= 0, s5 <= z'', s6 >= 0, s6 <= 0, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 5 + 2*x_1125 + 2*x_262 + 2*x_362 }-> s19 :|: s15 >= 0, s15 <= x_1125, s16 >= 0, s16 <= x_262, s17 >= 0, s17 <= x_362, s18 >= 0, s18 <= 0, s19 >= 0, s19 <= s18 + 1, x_362 >= 0, z = 1 + x_1125 + x_262 + x_362, x_1125 >= 0, x_262 >= 0 encode_g(z) -{ 1 + 2*z }-> s22 :|: s20 >= 0, s20 <= z - 1, s21 >= 0, s21 <= s20 + 1, s22 >= 0, s22 <= s21 + 1, z - 1 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, 1 = 1 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 1 = v0 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 1 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 encode_g(z) -{ 1 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 f(z, z', z'') -{ 2 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' - 1 >= 0, z = z' - 1 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z) -{ 1 }-> 0 :|: z = 1 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encode_g}, {encode_f} Previous analysis results are: f: runtime: O(1) [1], size: O(1) [0] b: runtime: O(1) [1], size: O(1) [1] g: runtime: O(1) [1], size: O(n^1) [1 + z] encode_c: runtime: O(1) [0], size: O(1) [0] encode_b: runtime: O(1) [1], size: O(1) [1] encArg: runtime: O(n^1) [1 + 2*z], size: O(n^1) [z] encode_g: runtime: ?, size: O(n^1) [1 + z] ---------------------------------------- (63) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_g after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 3 + 2*z ---------------------------------------- (64) Obligation: Complexity RNTS consisting of the following rules: b -{ 0 }-> 1 :|: b -{ 1 }-> 0 :|: b -{ 0 }-> 0 :|: encArg(z) -{ 5 + 2*x_161 + 2*x_230 + 2*x_330 }-> s11 :|: s7 >= 0, s7 <= x_161, s8 >= 0, s8 <= x_230, s9 >= 0, s9 <= x_330, s10 >= 0, s10 <= 0, s11 >= 0, s11 <= s10 + 1, z = 1 + (1 + x_161 + x_230 + x_330), x_330 >= 0, x_161 >= 0, x_230 >= 0 encArg(z) -{ -1 + 2*z }-> s14 :|: s12 >= 0, s12 <= z - 2, s13 >= 0, s13 <= s12 + 1, s14 >= 0, s14 <= s13 + 1, z - 2 >= 0 encArg(z) -{ 4 + 2*x_1 + 2*x_2 + 2*x_3 }-> s2 :|: s' >= 0, s' <= x_1, s'' >= 0, s'' <= x_2, s1 >= 0, s1 <= x_3, s2 >= 0, s2 <= 0, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, 1 = 1 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 1 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encArg(z) -{ 1 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 4 + 2*z + 2*z' + 2*z'' }-> s6 :|: s3 >= 0, s3 <= z, s4 >= 0, s4 <= z', s5 >= 0, s5 <= z'', s6 >= 0, s6 <= 0, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 5 + 2*x_1125 + 2*x_262 + 2*x_362 }-> s19 :|: s15 >= 0, s15 <= x_1125, s16 >= 0, s16 <= x_262, s17 >= 0, s17 <= x_362, s18 >= 0, s18 <= 0, s19 >= 0, s19 <= s18 + 1, x_362 >= 0, z = 1 + x_1125 + x_262 + x_362, x_1125 >= 0, x_262 >= 0 encode_g(z) -{ 1 + 2*z }-> s22 :|: s20 >= 0, s20 <= z - 1, s21 >= 0, s21 <= s20 + 1, s22 >= 0, s22 <= s21 + 1, z - 1 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, 1 = 1 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 1 = v0 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 1 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 encode_g(z) -{ 1 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 f(z, z', z'') -{ 2 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' - 1 >= 0, z = z' - 1 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z) -{ 1 }-> 0 :|: z = 1 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encode_f} Previous analysis results are: f: runtime: O(1) [1], size: O(1) [0] b: runtime: O(1) [1], size: O(1) [1] g: runtime: O(1) [1], size: O(n^1) [1 + z] encode_c: runtime: O(1) [0], size: O(1) [0] encode_b: runtime: O(1) [1], size: O(1) [1] encArg: runtime: O(n^1) [1 + 2*z], size: O(n^1) [z] encode_g: runtime: O(n^1) [3 + 2*z], size: O(n^1) [1 + z] ---------------------------------------- (65) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (66) Obligation: Complexity RNTS consisting of the following rules: b -{ 0 }-> 1 :|: b -{ 1 }-> 0 :|: b -{ 0 }-> 0 :|: encArg(z) -{ 5 + 2*x_161 + 2*x_230 + 2*x_330 }-> s11 :|: s7 >= 0, s7 <= x_161, s8 >= 0, s8 <= x_230, s9 >= 0, s9 <= x_330, s10 >= 0, s10 <= 0, s11 >= 0, s11 <= s10 + 1, z = 1 + (1 + x_161 + x_230 + x_330), x_330 >= 0, x_161 >= 0, x_230 >= 0 encArg(z) -{ -1 + 2*z }-> s14 :|: s12 >= 0, s12 <= z - 2, s13 >= 0, s13 <= s12 + 1, s14 >= 0, s14 <= s13 + 1, z - 2 >= 0 encArg(z) -{ 4 + 2*x_1 + 2*x_2 + 2*x_3 }-> s2 :|: s' >= 0, s' <= x_1, s'' >= 0, s'' <= x_2, s1 >= 0, s1 <= x_3, s2 >= 0, s2 <= 0, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, 1 = 1 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 1 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encArg(z) -{ 1 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 4 + 2*z + 2*z' + 2*z'' }-> s6 :|: s3 >= 0, s3 <= z, s4 >= 0, s4 <= z', s5 >= 0, s5 <= z'', s6 >= 0, s6 <= 0, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 5 + 2*x_1125 + 2*x_262 + 2*x_362 }-> s19 :|: s15 >= 0, s15 <= x_1125, s16 >= 0, s16 <= x_262, s17 >= 0, s17 <= x_362, s18 >= 0, s18 <= 0, s19 >= 0, s19 <= s18 + 1, x_362 >= 0, z = 1 + x_1125 + x_262 + x_362, x_1125 >= 0, x_262 >= 0 encode_g(z) -{ 1 + 2*z }-> s22 :|: s20 >= 0, s20 <= z - 1, s21 >= 0, s21 <= s20 + 1, s22 >= 0, s22 <= s21 + 1, z - 1 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, 1 = 1 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 1 = v0 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 1 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 encode_g(z) -{ 1 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 f(z, z', z'') -{ 2 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' - 1 >= 0, z = z' - 1 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z) -{ 1 }-> 0 :|: z = 1 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encode_f} Previous analysis results are: f: runtime: O(1) [1], size: O(1) [0] b: runtime: O(1) [1], size: O(1) [1] g: runtime: O(1) [1], size: O(n^1) [1 + z] encode_c: runtime: O(1) [0], size: O(1) [0] encode_b: runtime: O(1) [1], size: O(1) [1] encArg: runtime: O(n^1) [1 + 2*z], size: O(n^1) [z] encode_g: runtime: O(n^1) [3 + 2*z], size: O(n^1) [1 + z] ---------------------------------------- (67) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_f after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (68) Obligation: Complexity RNTS consisting of the following rules: b -{ 0 }-> 1 :|: b -{ 1 }-> 0 :|: b -{ 0 }-> 0 :|: encArg(z) -{ 5 + 2*x_161 + 2*x_230 + 2*x_330 }-> s11 :|: s7 >= 0, s7 <= x_161, s8 >= 0, s8 <= x_230, s9 >= 0, s9 <= x_330, s10 >= 0, s10 <= 0, s11 >= 0, s11 <= s10 + 1, z = 1 + (1 + x_161 + x_230 + x_330), x_330 >= 0, x_161 >= 0, x_230 >= 0 encArg(z) -{ -1 + 2*z }-> s14 :|: s12 >= 0, s12 <= z - 2, s13 >= 0, s13 <= s12 + 1, s14 >= 0, s14 <= s13 + 1, z - 2 >= 0 encArg(z) -{ 4 + 2*x_1 + 2*x_2 + 2*x_3 }-> s2 :|: s' >= 0, s' <= x_1, s'' >= 0, s'' <= x_2, s1 >= 0, s1 <= x_3, s2 >= 0, s2 <= 0, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, 1 = 1 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 1 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encArg(z) -{ 1 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 4 + 2*z + 2*z' + 2*z'' }-> s6 :|: s3 >= 0, s3 <= z, s4 >= 0, s4 <= z', s5 >= 0, s5 <= z'', s6 >= 0, s6 <= 0, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 5 + 2*x_1125 + 2*x_262 + 2*x_362 }-> s19 :|: s15 >= 0, s15 <= x_1125, s16 >= 0, s16 <= x_262, s17 >= 0, s17 <= x_362, s18 >= 0, s18 <= 0, s19 >= 0, s19 <= s18 + 1, x_362 >= 0, z = 1 + x_1125 + x_262 + x_362, x_1125 >= 0, x_262 >= 0 encode_g(z) -{ 1 + 2*z }-> s22 :|: s20 >= 0, s20 <= z - 1, s21 >= 0, s21 <= s20 + 1, s22 >= 0, s22 <= s21 + 1, z - 1 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, 1 = 1 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 1 = v0 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 1 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 encode_g(z) -{ 1 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 f(z, z', z'') -{ 2 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' - 1 >= 0, z = z' - 1 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z) -{ 1 }-> 0 :|: z = 1 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encode_f} Previous analysis results are: f: runtime: O(1) [1], size: O(1) [0] b: runtime: O(1) [1], size: O(1) [1] g: runtime: O(1) [1], size: O(n^1) [1 + z] encode_c: runtime: O(1) [0], size: O(1) [0] encode_b: runtime: O(1) [1], size: O(1) [1] encArg: runtime: O(n^1) [1 + 2*z], size: O(n^1) [z] encode_g: runtime: O(n^1) [3 + 2*z], size: O(n^1) [1 + z] encode_f: runtime: ?, size: O(1) [0] ---------------------------------------- (69) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 4 + 2*z + 2*z' + 2*z'' ---------------------------------------- (70) Obligation: Complexity RNTS consisting of the following rules: b -{ 0 }-> 1 :|: b -{ 1 }-> 0 :|: b -{ 0 }-> 0 :|: encArg(z) -{ 5 + 2*x_161 + 2*x_230 + 2*x_330 }-> s11 :|: s7 >= 0, s7 <= x_161, s8 >= 0, s8 <= x_230, s9 >= 0, s9 <= x_330, s10 >= 0, s10 <= 0, s11 >= 0, s11 <= s10 + 1, z = 1 + (1 + x_161 + x_230 + x_330), x_330 >= 0, x_161 >= 0, x_230 >= 0 encArg(z) -{ -1 + 2*z }-> s14 :|: s12 >= 0, s12 <= z - 2, s13 >= 0, s13 <= s12 + 1, s14 >= 0, s14 <= s13 + 1, z - 2 >= 0 encArg(z) -{ 4 + 2*x_1 + 2*x_2 + 2*x_3 }-> s2 :|: s' >= 0, s' <= x_1, s'' >= 0, s'' <= x_2, s1 >= 0, s1 <= x_3, s2 >= 0, s2 <= 0, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 2 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, 1 = 1 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 + 2, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 1 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encArg(z) -{ 1 }-> 1 + x0 :|: z = 1 + 2, 0 = x0, x0 >= 0 encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 4 + 2*z + 2*z' + 2*z'' }-> s6 :|: s3 >= 0, s3 <= z, s4 >= 0, s4 <= z', s5 >= 0, s5 <= z'', s6 >= 0, s6 <= 0, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_g(z) -{ 5 + 2*x_1125 + 2*x_262 + 2*x_362 }-> s19 :|: s15 >= 0, s15 <= x_1125, s16 >= 0, s16 <= x_262, s17 >= 0, s17 <= x_362, s18 >= 0, s18 <= 0, s19 >= 0, s19 <= s18 + 1, x_362 >= 0, z = 1 + x_1125 + x_262 + x_362, x_1125 >= 0, x_262 >= 0 encode_g(z) -{ 1 + 2*z }-> s22 :|: s20 >= 0, s20 <= z - 1, s21 >= 0, s21 <= s20 + 1, s22 >= 0, s22 <= s21 + 1, z - 1 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, 1 = 1 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 1 = v0 encode_g(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 0 :|: z = 2, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 1 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 encode_g(z) -{ 1 }-> 1 + x0 :|: z = 2, 0 = x0, x0 >= 0 f(z, z', z'') -{ 2 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' - 1 >= 0, z = z' - 1 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 g(z) -{ 1 }-> 0 :|: z = 1 g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: Previous analysis results are: f: runtime: O(1) [1], size: O(1) [0] b: runtime: O(1) [1], size: O(1) [1] g: runtime: O(1) [1], size: O(n^1) [1 + z] encode_c: runtime: O(1) [0], size: O(1) [0] encode_b: runtime: O(1) [1], size: O(1) [1] encArg: runtime: O(n^1) [1 + 2*z], size: O(n^1) [z] encode_g: runtime: O(n^1) [3 + 2*z], size: O(n^1) [1 + z] encode_f: runtime: O(n^1) [4 + 2*z + 2*z' + 2*z''], size: O(1) [0] ---------------------------------------- (71) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (72) BOUNDS(1, n^1)