WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 36 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 449 ms] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 86 ms] (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 85 ms] (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 62 ms] (22) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a(p(x1)) -> p(a(A(x1))) a(A(x1)) -> A(a(x1)) p(A(A(x1))) -> a(p(x1)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(A(x_1)) -> A(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_p(x_1) -> p(encArg(x_1)) encode_A(x_1) -> A(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a(p(x1)) -> p(a(A(x1))) a(A(x1)) -> A(a(x1)) p(A(A(x1))) -> a(p(x1)) The (relative) TRS S consists of the following rules: encArg(A(x_1)) -> A(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_p(x_1) -> p(encArg(x_1)) encode_A(x_1) -> A(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a(p(x1)) -> p(a(A(x1))) a(A(x1)) -> A(a(x1)) p(A(A(x1))) -> a(p(x1)) The (relative) TRS S consists of the following rules: encArg(A(x_1)) -> A(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_p(x_1) -> p(encArg(x_1)) encode_A(x_1) -> A(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a(p(x1)) -> p(a(A(x1))) a(A(x1)) -> A(a(x1)) p(A(A(x1))) -> a(p(x1)) The (relative) TRS S consists of the following rules: encArg(A(x_1)) -> A(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_p(x_1) -> p(encArg(x_1)) encode_A(x_1) -> A(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Innermost TRS: Rules: a(p(x1)) -> p(a(A(x1))) a(A(x1)) -> A(a(x1)) p(A(A(x1))) -> a(p(x1)) encArg(A(x_1)) -> A(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_p(x_1) -> p(encArg(x_1)) encode_A(x_1) -> A(encArg(x_1)) Types: a :: A:cons_a:cons_p -> A:cons_a:cons_p p :: A:cons_a:cons_p -> A:cons_a:cons_p A :: A:cons_a:cons_p -> A:cons_a:cons_p encArg :: A:cons_a:cons_p -> A:cons_a:cons_p cons_a :: A:cons_a:cons_p -> A:cons_a:cons_p cons_p :: A:cons_a:cons_p -> A:cons_a:cons_p encode_a :: A:cons_a:cons_p -> A:cons_a:cons_p encode_p :: A:cons_a:cons_p -> A:cons_a:cons_p encode_A :: A:cons_a:cons_p -> A:cons_a:cons_p hole_A:cons_a:cons_p1_0 :: A:cons_a:cons_p gen_A:cons_a:cons_p2_0 :: Nat -> A:cons_a:cons_p ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: a, p, encArg They will be analysed ascendingly in the following order: a = p a < encArg p < encArg ---------------------------------------- (10) Obligation: Innermost TRS: Rules: a(p(x1)) -> p(a(A(x1))) a(A(x1)) -> A(a(x1)) p(A(A(x1))) -> a(p(x1)) encArg(A(x_1)) -> A(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_p(x_1) -> p(encArg(x_1)) encode_A(x_1) -> A(encArg(x_1)) Types: a :: A:cons_a:cons_p -> A:cons_a:cons_p p :: A:cons_a:cons_p -> A:cons_a:cons_p A :: A:cons_a:cons_p -> A:cons_a:cons_p encArg :: A:cons_a:cons_p -> A:cons_a:cons_p cons_a :: A:cons_a:cons_p -> A:cons_a:cons_p cons_p :: A:cons_a:cons_p -> A:cons_a:cons_p encode_a :: A:cons_a:cons_p -> A:cons_a:cons_p encode_p :: A:cons_a:cons_p -> A:cons_a:cons_p encode_A :: A:cons_a:cons_p -> A:cons_a:cons_p hole_A:cons_a:cons_p1_0 :: A:cons_a:cons_p gen_A:cons_a:cons_p2_0 :: Nat -> A:cons_a:cons_p Generator Equations: gen_A:cons_a:cons_p2_0(0) <=> hole_A:cons_a:cons_p1_0 gen_A:cons_a:cons_p2_0(+(x, 1)) <=> A(gen_A:cons_a:cons_p2_0(x)) The following defined symbols remain to be analysed: p, a, encArg They will be analysed ascendingly in the following order: a = p a < encArg p < encArg ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: p(gen_A:cons_a:cons_p2_0(+(2, *(2, n4_0)))) -> *3_0, rt in Omega(n4_0) Induction Base: p(gen_A:cons_a:cons_p2_0(+(2, *(2, 0)))) Induction Step: p(gen_A:cons_a:cons_p2_0(+(2, *(2, +(n4_0, 1))))) ->_R^Omega(1) a(p(gen_A:cons_a:cons_p2_0(+(2, *(2, n4_0))))) ->_IH a(*3_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: a(p(x1)) -> p(a(A(x1))) a(A(x1)) -> A(a(x1)) p(A(A(x1))) -> a(p(x1)) encArg(A(x_1)) -> A(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_p(x_1) -> p(encArg(x_1)) encode_A(x_1) -> A(encArg(x_1)) Types: a :: A:cons_a:cons_p -> A:cons_a:cons_p p :: A:cons_a:cons_p -> A:cons_a:cons_p A :: A:cons_a:cons_p -> A:cons_a:cons_p encArg :: A:cons_a:cons_p -> A:cons_a:cons_p cons_a :: A:cons_a:cons_p -> A:cons_a:cons_p cons_p :: A:cons_a:cons_p -> A:cons_a:cons_p encode_a :: A:cons_a:cons_p -> A:cons_a:cons_p encode_p :: A:cons_a:cons_p -> A:cons_a:cons_p encode_A :: A:cons_a:cons_p -> A:cons_a:cons_p hole_A:cons_a:cons_p1_0 :: A:cons_a:cons_p gen_A:cons_a:cons_p2_0 :: Nat -> A:cons_a:cons_p Generator Equations: gen_A:cons_a:cons_p2_0(0) <=> hole_A:cons_a:cons_p1_0 gen_A:cons_a:cons_p2_0(+(x, 1)) <=> A(gen_A:cons_a:cons_p2_0(x)) The following defined symbols remain to be analysed: p, a, encArg They will be analysed ascendingly in the following order: a = p a < encArg p < encArg ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: Innermost TRS: Rules: a(p(x1)) -> p(a(A(x1))) a(A(x1)) -> A(a(x1)) p(A(A(x1))) -> a(p(x1)) encArg(A(x_1)) -> A(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_p(x_1) -> p(encArg(x_1)) encode_A(x_1) -> A(encArg(x_1)) Types: a :: A:cons_a:cons_p -> A:cons_a:cons_p p :: A:cons_a:cons_p -> A:cons_a:cons_p A :: A:cons_a:cons_p -> A:cons_a:cons_p encArg :: A:cons_a:cons_p -> A:cons_a:cons_p cons_a :: A:cons_a:cons_p -> A:cons_a:cons_p cons_p :: A:cons_a:cons_p -> A:cons_a:cons_p encode_a :: A:cons_a:cons_p -> A:cons_a:cons_p encode_p :: A:cons_a:cons_p -> A:cons_a:cons_p encode_A :: A:cons_a:cons_p -> A:cons_a:cons_p hole_A:cons_a:cons_p1_0 :: A:cons_a:cons_p gen_A:cons_a:cons_p2_0 :: Nat -> A:cons_a:cons_p Lemmas: p(gen_A:cons_a:cons_p2_0(+(2, *(2, n4_0)))) -> *3_0, rt in Omega(n4_0) Generator Equations: gen_A:cons_a:cons_p2_0(0) <=> hole_A:cons_a:cons_p1_0 gen_A:cons_a:cons_p2_0(+(x, 1)) <=> A(gen_A:cons_a:cons_p2_0(x)) The following defined symbols remain to be analysed: a, encArg They will be analysed ascendingly in the following order: a = p a < encArg p < encArg ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: a(gen_A:cons_a:cons_p2_0(+(1, n416_0))) -> *3_0, rt in Omega(n416_0) Induction Base: a(gen_A:cons_a:cons_p2_0(+(1, 0))) Induction Step: a(gen_A:cons_a:cons_p2_0(+(1, +(n416_0, 1)))) ->_R^Omega(1) A(a(gen_A:cons_a:cons_p2_0(+(1, n416_0)))) ->_IH A(*3_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (18) Obligation: Innermost TRS: Rules: a(p(x1)) -> p(a(A(x1))) a(A(x1)) -> A(a(x1)) p(A(A(x1))) -> a(p(x1)) encArg(A(x_1)) -> A(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_p(x_1) -> p(encArg(x_1)) encode_A(x_1) -> A(encArg(x_1)) Types: a :: A:cons_a:cons_p -> A:cons_a:cons_p p :: A:cons_a:cons_p -> A:cons_a:cons_p A :: A:cons_a:cons_p -> A:cons_a:cons_p encArg :: A:cons_a:cons_p -> A:cons_a:cons_p cons_a :: A:cons_a:cons_p -> A:cons_a:cons_p cons_p :: A:cons_a:cons_p -> A:cons_a:cons_p encode_a :: A:cons_a:cons_p -> A:cons_a:cons_p encode_p :: A:cons_a:cons_p -> A:cons_a:cons_p encode_A :: A:cons_a:cons_p -> A:cons_a:cons_p hole_A:cons_a:cons_p1_0 :: A:cons_a:cons_p gen_A:cons_a:cons_p2_0 :: Nat -> A:cons_a:cons_p Lemmas: p(gen_A:cons_a:cons_p2_0(+(2, *(2, n4_0)))) -> *3_0, rt in Omega(n4_0) a(gen_A:cons_a:cons_p2_0(+(1, n416_0))) -> *3_0, rt in Omega(n416_0) Generator Equations: gen_A:cons_a:cons_p2_0(0) <=> hole_A:cons_a:cons_p1_0 gen_A:cons_a:cons_p2_0(+(x, 1)) <=> A(gen_A:cons_a:cons_p2_0(x)) The following defined symbols remain to be analysed: p, encArg They will be analysed ascendingly in the following order: a = p a < encArg p < encArg ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: p(gen_A:cons_a:cons_p2_0(+(2, *(2, n840_0)))) -> *3_0, rt in Omega(n840_0) Induction Base: p(gen_A:cons_a:cons_p2_0(+(2, *(2, 0)))) Induction Step: p(gen_A:cons_a:cons_p2_0(+(2, *(2, +(n840_0, 1))))) ->_R^Omega(1) a(p(gen_A:cons_a:cons_p2_0(+(2, *(2, n840_0))))) ->_IH a(*3_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (20) Obligation: Innermost TRS: Rules: a(p(x1)) -> p(a(A(x1))) a(A(x1)) -> A(a(x1)) p(A(A(x1))) -> a(p(x1)) encArg(A(x_1)) -> A(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_p(x_1) -> p(encArg(x_1)) encode_A(x_1) -> A(encArg(x_1)) Types: a :: A:cons_a:cons_p -> A:cons_a:cons_p p :: A:cons_a:cons_p -> A:cons_a:cons_p A :: A:cons_a:cons_p -> A:cons_a:cons_p encArg :: A:cons_a:cons_p -> A:cons_a:cons_p cons_a :: A:cons_a:cons_p -> A:cons_a:cons_p cons_p :: A:cons_a:cons_p -> A:cons_a:cons_p encode_a :: A:cons_a:cons_p -> A:cons_a:cons_p encode_p :: A:cons_a:cons_p -> A:cons_a:cons_p encode_A :: A:cons_a:cons_p -> A:cons_a:cons_p hole_A:cons_a:cons_p1_0 :: A:cons_a:cons_p gen_A:cons_a:cons_p2_0 :: Nat -> A:cons_a:cons_p Lemmas: p(gen_A:cons_a:cons_p2_0(+(2, *(2, n840_0)))) -> *3_0, rt in Omega(n840_0) a(gen_A:cons_a:cons_p2_0(+(1, n416_0))) -> *3_0, rt in Omega(n416_0) Generator Equations: gen_A:cons_a:cons_p2_0(0) <=> hole_A:cons_a:cons_p1_0 gen_A:cons_a:cons_p2_0(+(x, 1)) <=> A(gen_A:cons_a:cons_p2_0(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_A:cons_a:cons_p2_0(+(1, n1480_0))) -> *3_0, rt in Omega(0) Induction Base: encArg(gen_A:cons_a:cons_p2_0(+(1, 0))) Induction Step: encArg(gen_A:cons_a:cons_p2_0(+(1, +(n1480_0, 1)))) ->_R^Omega(0) A(encArg(gen_A:cons_a:cons_p2_0(+(1, n1480_0)))) ->_IH A(*3_0) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (22) BOUNDS(1, INF)