WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 194 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: h(z, e(x)) -> h(c(z), d(z, x)) d(z, g(0, 0)) -> e(0) d(z, g(x, y)) -> g(e(x), d(z, y)) d(c(z), g(g(x, y), 0)) -> g(d(c(z), g(x, y)), d(z, g(x, y))) g(e(x), e(y)) -> e(g(x, y)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(e(x_1)) -> e(encArg(x_1)) encArg(c(x_1)) -> c(encArg(x_1)) encArg(0) -> 0 encArg(cons_h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) encArg(cons_d(x_1, x_2)) -> d(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) encode_e(x_1) -> e(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_d(x_1, x_2) -> d(encArg(x_1), encArg(x_2)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_0 -> 0 ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: h(z, e(x)) -> h(c(z), d(z, x)) d(z, g(0, 0)) -> e(0) d(z, g(x, y)) -> g(e(x), d(z, y)) d(c(z), g(g(x, y), 0)) -> g(d(c(z), g(x, y)), d(z, g(x, y))) g(e(x), e(y)) -> e(g(x, y)) The (relative) TRS S consists of the following rules: encArg(e(x_1)) -> e(encArg(x_1)) encArg(c(x_1)) -> c(encArg(x_1)) encArg(0) -> 0 encArg(cons_h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) encArg(cons_d(x_1, x_2)) -> d(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) encode_e(x_1) -> e(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_d(x_1, x_2) -> d(encArg(x_1), encArg(x_2)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_0 -> 0 Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: h(z, e(x)) -> h(c(z), d(z, x)) d(z, g(0, 0)) -> e(0) d(z, g(x, y)) -> g(e(x), d(z, y)) d(c(z), g(g(x, y), 0)) -> g(d(c(z), g(x, y)), d(z, g(x, y))) g(e(x), e(y)) -> e(g(x, y)) The (relative) TRS S consists of the following rules: encArg(e(x_1)) -> e(encArg(x_1)) encArg(c(x_1)) -> c(encArg(x_1)) encArg(0) -> 0 encArg(cons_h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) encArg(cons_d(x_1, x_2)) -> d(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) encode_e(x_1) -> e(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_d(x_1, x_2) -> d(encArg(x_1), encArg(x_2)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_0 -> 0 Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: h(z, e(x)) -> h(c(z), d(z, x)) d(z, g(0, 0)) -> e(0) d(z, g(x, y)) -> g(e(x), d(z, y)) d(c(z), g(g(x, y), 0)) -> g(d(c(z), g(x, y)), d(z, g(x, y))) g(e(x), e(y)) -> e(g(x, y)) The (relative) TRS S consists of the following rules: encArg(e(x_1)) -> e(encArg(x_1)) encArg(c(x_1)) -> c(encArg(x_1)) encArg(0) -> 0 encArg(cons_h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) encArg(cons_d(x_1, x_2)) -> d(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) encode_e(x_1) -> e(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_d(x_1, x_2) -> d(encArg(x_1), encArg(x_2)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_0 -> 0 Rewrite Strategy: INNERMOST ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence g(e(x), e(y)) ->^+ e(g(x, y)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [x / e(x), y / e(y)]. The result substitution is [ ]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: h(z, e(x)) -> h(c(z), d(z, x)) d(z, g(0, 0)) -> e(0) d(z, g(x, y)) -> g(e(x), d(z, y)) d(c(z), g(g(x, y), 0)) -> g(d(c(z), g(x, y)), d(z, g(x, y))) g(e(x), e(y)) -> e(g(x, y)) The (relative) TRS S consists of the following rules: encArg(e(x_1)) -> e(encArg(x_1)) encArg(c(x_1)) -> c(encArg(x_1)) encArg(0) -> 0 encArg(cons_h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) encArg(cons_d(x_1, x_2)) -> d(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) encode_e(x_1) -> e(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_d(x_1, x_2) -> d(encArg(x_1), encArg(x_2)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_0 -> 0 Rewrite Strategy: INNERMOST ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: h(z, e(x)) -> h(c(z), d(z, x)) d(z, g(0, 0)) -> e(0) d(z, g(x, y)) -> g(e(x), d(z, y)) d(c(z), g(g(x, y), 0)) -> g(d(c(z), g(x, y)), d(z, g(x, y))) g(e(x), e(y)) -> e(g(x, y)) The (relative) TRS S consists of the following rules: encArg(e(x_1)) -> e(encArg(x_1)) encArg(c(x_1)) -> c(encArg(x_1)) encArg(0) -> 0 encArg(cons_h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) encArg(cons_d(x_1, x_2)) -> d(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) encode_e(x_1) -> e(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_d(x_1, x_2) -> d(encArg(x_1), encArg(x_2)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_0 -> 0 Rewrite Strategy: INNERMOST