WORST_CASE(Omega(n^1), O(n^3)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^3). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 74 ms] (4) CpxRelTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (6) CdtProblem (7) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (8) CdtProblem (9) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (12) CdtProblem (13) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CdtProblem (15) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 89 ms] (16) CdtProblem (17) CdtRuleRemovalProof [UPPER BOUND(ADD(n^3)), 110 ms] (18) CdtProblem (19) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 12 ms] (20) CdtProblem (21) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (22) CdtProblem (23) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (24) CdtProblem (25) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (26) CdtProblem (27) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 62 ms] (28) CdtProblem (29) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (30) BOUNDS(1, 1) (31) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (32) TRS for Loop Detection (33) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (34) BEST (35) proven lower bound (36) LowerBoundPropagationProof [FINISHED, 0 ms] (37) BOUNDS(n^1, INF) (38) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: a__f(f(a)) -> a__f(g(f(a))) mark(f(X)) -> a__f(mark(X)) mark(a) -> a mark(g(X)) -> g(X) a__f(X) -> f(X) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(f(x_1)) -> f(encArg(x_1)) encArg(a) -> a encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_a__f(x_1)) -> a__f(encArg(x_1)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__f(x_1) -> a__f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: a__f(f(a)) -> a__f(g(f(a))) mark(f(X)) -> a__f(mark(X)) mark(a) -> a mark(g(X)) -> g(X) a__f(X) -> f(X) The (relative) TRS S consists of the following rules: encArg(f(x_1)) -> f(encArg(x_1)) encArg(a) -> a encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_a__f(x_1)) -> a__f(encArg(x_1)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__f(x_1) -> a__f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: a__f(f(a)) -> a__f(g(f(a))) mark(f(X)) -> a__f(mark(X)) mark(a) -> a mark(g(X)) -> g(X) a__f(X) -> f(X) The (relative) TRS S consists of the following rules: encArg(f(x_1)) -> f(encArg(x_1)) encArg(a) -> a encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_a__f(x_1)) -> a__f(encArg(x_1)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__f(x_1) -> a__f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: encArg(f(z0)) -> f(encArg(z0)) encArg(a) -> a encArg(g(z0)) -> g(encArg(z0)) encArg(cons_a__f(z0)) -> a__f(encArg(z0)) encArg(cons_mark(z0)) -> mark(encArg(z0)) encode_a__f(z0) -> a__f(encArg(z0)) encode_f(z0) -> f(encArg(z0)) encode_a -> a encode_g(z0) -> g(encArg(z0)) encode_mark(z0) -> mark(encArg(z0)) a__f(f(a)) -> a__f(g(f(a))) a__f(z0) -> f(z0) mark(f(z0)) -> a__f(mark(z0)) mark(a) -> a mark(g(z0)) -> g(z0) Tuples: ENCARG(f(z0)) -> c(ENCARG(z0)) ENCARG(a) -> c1 ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(cons_a__f(z0)) -> c3(A__F(encArg(z0)), ENCARG(z0)) ENCARG(cons_mark(z0)) -> c4(MARK(encArg(z0)), ENCARG(z0)) ENCODE_A__F(z0) -> c5(A__F(encArg(z0)), ENCARG(z0)) ENCODE_F(z0) -> c6(ENCARG(z0)) ENCODE_A -> c7 ENCODE_G(z0) -> c8(ENCARG(z0)) ENCODE_MARK(z0) -> c9(MARK(encArg(z0)), ENCARG(z0)) A__F(f(a)) -> c10(A__F(g(f(a)))) A__F(z0) -> c11 MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) MARK(a) -> c13 MARK(g(z0)) -> c14 S tuples: A__F(f(a)) -> c10(A__F(g(f(a)))) A__F(z0) -> c11 MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) MARK(a) -> c13 MARK(g(z0)) -> c14 K tuples:none Defined Rule Symbols: a__f_1, mark_1, encArg_1, encode_a__f_1, encode_f_1, encode_a, encode_g_1, encode_mark_1 Defined Pair Symbols: ENCARG_1, ENCODE_A__F_1, ENCODE_F_1, ENCODE_A, ENCODE_G_1, ENCODE_MARK_1, A__F_1, MARK_1 Compound Symbols: c_1, c1, c2_1, c3_2, c4_2, c5_2, c6_1, c7, c8_1, c9_2, c10_1, c11, c12_2, c13, c14 ---------------------------------------- (7) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 2 leading nodes: ENCODE_F(z0) -> c6(ENCARG(z0)) ENCODE_G(z0) -> c8(ENCARG(z0)) Removed 2 trailing nodes: ENCODE_A -> c7 ENCARG(a) -> c1 ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: encArg(f(z0)) -> f(encArg(z0)) encArg(a) -> a encArg(g(z0)) -> g(encArg(z0)) encArg(cons_a__f(z0)) -> a__f(encArg(z0)) encArg(cons_mark(z0)) -> mark(encArg(z0)) encode_a__f(z0) -> a__f(encArg(z0)) encode_f(z0) -> f(encArg(z0)) encode_a -> a encode_g(z0) -> g(encArg(z0)) encode_mark(z0) -> mark(encArg(z0)) a__f(f(a)) -> a__f(g(f(a))) a__f(z0) -> f(z0) mark(f(z0)) -> a__f(mark(z0)) mark(a) -> a mark(g(z0)) -> g(z0) Tuples: ENCARG(f(z0)) -> c(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(cons_a__f(z0)) -> c3(A__F(encArg(z0)), ENCARG(z0)) ENCARG(cons_mark(z0)) -> c4(MARK(encArg(z0)), ENCARG(z0)) ENCODE_A__F(z0) -> c5(A__F(encArg(z0)), ENCARG(z0)) ENCODE_MARK(z0) -> c9(MARK(encArg(z0)), ENCARG(z0)) A__F(f(a)) -> c10(A__F(g(f(a)))) A__F(z0) -> c11 MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) MARK(a) -> c13 MARK(g(z0)) -> c14 S tuples: A__F(f(a)) -> c10(A__F(g(f(a)))) A__F(z0) -> c11 MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) MARK(a) -> c13 MARK(g(z0)) -> c14 K tuples:none Defined Rule Symbols: a__f_1, mark_1, encArg_1, encode_a__f_1, encode_f_1, encode_a, encode_g_1, encode_mark_1 Defined Pair Symbols: ENCARG_1, ENCODE_A__F_1, ENCODE_MARK_1, A__F_1, MARK_1 Compound Symbols: c_1, c2_1, c3_2, c4_2, c5_2, c9_2, c10_1, c11, c12_2, c13, c14 ---------------------------------------- (9) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(f(z0)) -> f(encArg(z0)) encArg(a) -> a encArg(g(z0)) -> g(encArg(z0)) encArg(cons_a__f(z0)) -> a__f(encArg(z0)) encArg(cons_mark(z0)) -> mark(encArg(z0)) encode_a__f(z0) -> a__f(encArg(z0)) encode_f(z0) -> f(encArg(z0)) encode_a -> a encode_g(z0) -> g(encArg(z0)) encode_mark(z0) -> mark(encArg(z0)) a__f(f(a)) -> a__f(g(f(a))) a__f(z0) -> f(z0) mark(f(z0)) -> a__f(mark(z0)) mark(a) -> a mark(g(z0)) -> g(z0) Tuples: ENCARG(f(z0)) -> c(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(cons_a__f(z0)) -> c3(A__F(encArg(z0)), ENCARG(z0)) ENCARG(cons_mark(z0)) -> c4(MARK(encArg(z0)), ENCARG(z0)) A__F(f(a)) -> c10(A__F(g(f(a)))) A__F(z0) -> c11 MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) MARK(a) -> c13 MARK(g(z0)) -> c14 ENCODE_A__F(z0) -> c1(A__F(encArg(z0))) ENCODE_A__F(z0) -> c1(ENCARG(z0)) ENCODE_MARK(z0) -> c1(MARK(encArg(z0))) ENCODE_MARK(z0) -> c1(ENCARG(z0)) S tuples: A__F(f(a)) -> c10(A__F(g(f(a)))) A__F(z0) -> c11 MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) MARK(a) -> c13 MARK(g(z0)) -> c14 K tuples:none Defined Rule Symbols: a__f_1, mark_1, encArg_1, encode_a__f_1, encode_f_1, encode_a, encode_g_1, encode_mark_1 Defined Pair Symbols: ENCARG_1, A__F_1, MARK_1, ENCODE_A__F_1, ENCODE_MARK_1 Compound Symbols: c_1, c2_1, c3_2, c4_2, c10_1, c11, c12_2, c13, c14, c1_1 ---------------------------------------- (11) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 2 leading nodes: ENCODE_A__F(z0) -> c1(ENCARG(z0)) ENCODE_MARK(z0) -> c1(ENCARG(z0)) ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(f(z0)) -> f(encArg(z0)) encArg(a) -> a encArg(g(z0)) -> g(encArg(z0)) encArg(cons_a__f(z0)) -> a__f(encArg(z0)) encArg(cons_mark(z0)) -> mark(encArg(z0)) encode_a__f(z0) -> a__f(encArg(z0)) encode_f(z0) -> f(encArg(z0)) encode_a -> a encode_g(z0) -> g(encArg(z0)) encode_mark(z0) -> mark(encArg(z0)) a__f(f(a)) -> a__f(g(f(a))) a__f(z0) -> f(z0) mark(f(z0)) -> a__f(mark(z0)) mark(a) -> a mark(g(z0)) -> g(z0) Tuples: ENCARG(f(z0)) -> c(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(cons_a__f(z0)) -> c3(A__F(encArg(z0)), ENCARG(z0)) ENCARG(cons_mark(z0)) -> c4(MARK(encArg(z0)), ENCARG(z0)) A__F(f(a)) -> c10(A__F(g(f(a)))) A__F(z0) -> c11 MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) MARK(a) -> c13 MARK(g(z0)) -> c14 ENCODE_A__F(z0) -> c1(A__F(encArg(z0))) ENCODE_MARK(z0) -> c1(MARK(encArg(z0))) S tuples: A__F(f(a)) -> c10(A__F(g(f(a)))) A__F(z0) -> c11 MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) MARK(a) -> c13 MARK(g(z0)) -> c14 K tuples:none Defined Rule Symbols: a__f_1, mark_1, encArg_1, encode_a__f_1, encode_f_1, encode_a, encode_g_1, encode_mark_1 Defined Pair Symbols: ENCARG_1, A__F_1, MARK_1, ENCODE_A__F_1, ENCODE_MARK_1 Compound Symbols: c_1, c2_1, c3_2, c4_2, c10_1, c11, c12_2, c13, c14, c1_1 ---------------------------------------- (13) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_a__f(z0) -> a__f(encArg(z0)) encode_f(z0) -> f(encArg(z0)) encode_a -> a encode_g(z0) -> g(encArg(z0)) encode_mark(z0) -> mark(encArg(z0)) ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: encArg(f(z0)) -> f(encArg(z0)) encArg(a) -> a encArg(g(z0)) -> g(encArg(z0)) encArg(cons_a__f(z0)) -> a__f(encArg(z0)) encArg(cons_mark(z0)) -> mark(encArg(z0)) a__f(f(a)) -> a__f(g(f(a))) a__f(z0) -> f(z0) mark(f(z0)) -> a__f(mark(z0)) mark(a) -> a mark(g(z0)) -> g(z0) Tuples: ENCARG(f(z0)) -> c(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(cons_a__f(z0)) -> c3(A__F(encArg(z0)), ENCARG(z0)) ENCARG(cons_mark(z0)) -> c4(MARK(encArg(z0)), ENCARG(z0)) A__F(f(a)) -> c10(A__F(g(f(a)))) A__F(z0) -> c11 MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) MARK(a) -> c13 MARK(g(z0)) -> c14 ENCODE_A__F(z0) -> c1(A__F(encArg(z0))) ENCODE_MARK(z0) -> c1(MARK(encArg(z0))) S tuples: A__F(f(a)) -> c10(A__F(g(f(a)))) A__F(z0) -> c11 MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) MARK(a) -> c13 MARK(g(z0)) -> c14 K tuples:none Defined Rule Symbols: encArg_1, a__f_1, mark_1 Defined Pair Symbols: ENCARG_1, A__F_1, MARK_1, ENCODE_A__F_1, ENCODE_MARK_1 Compound Symbols: c_1, c2_1, c3_2, c4_2, c10_1, c11, c12_2, c13, c14, c1_1 ---------------------------------------- (15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. MARK(a) -> c13 MARK(g(z0)) -> c14 We considered the (Usable) Rules:none And the Tuples: ENCARG(f(z0)) -> c(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(cons_a__f(z0)) -> c3(A__F(encArg(z0)), ENCARG(z0)) ENCARG(cons_mark(z0)) -> c4(MARK(encArg(z0)), ENCARG(z0)) A__F(f(a)) -> c10(A__F(g(f(a)))) A__F(z0) -> c11 MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) MARK(a) -> c13 MARK(g(z0)) -> c14 ENCODE_A__F(z0) -> c1(A__F(encArg(z0))) ENCODE_MARK(z0) -> c1(MARK(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(A__F(x_1)) = 0 POL(ENCARG(x_1)) = x_1 POL(ENCODE_A__F(x_1)) = [1] POL(ENCODE_MARK(x_1)) = [1] + x_1 POL(MARK(x_1)) = [1] POL(a) = 0 POL(a__f(x_1)) = [3] POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c10(x_1)) = x_1 POL(c11) = 0 POL(c12(x_1, x_2)) = x_1 + x_2 POL(c13) = 0 POL(c14) = 0 POL(c2(x_1)) = x_1 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c4(x_1, x_2)) = x_1 + x_2 POL(cons_a__f(x_1)) = x_1 POL(cons_mark(x_1)) = [1] + x_1 POL(encArg(x_1)) = 0 POL(f(x_1)) = x_1 POL(g(x_1)) = x_1 POL(mark(x_1)) = 0 ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: encArg(f(z0)) -> f(encArg(z0)) encArg(a) -> a encArg(g(z0)) -> g(encArg(z0)) encArg(cons_a__f(z0)) -> a__f(encArg(z0)) encArg(cons_mark(z0)) -> mark(encArg(z0)) a__f(f(a)) -> a__f(g(f(a))) a__f(z0) -> f(z0) mark(f(z0)) -> a__f(mark(z0)) mark(a) -> a mark(g(z0)) -> g(z0) Tuples: ENCARG(f(z0)) -> c(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(cons_a__f(z0)) -> c3(A__F(encArg(z0)), ENCARG(z0)) ENCARG(cons_mark(z0)) -> c4(MARK(encArg(z0)), ENCARG(z0)) A__F(f(a)) -> c10(A__F(g(f(a)))) A__F(z0) -> c11 MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) MARK(a) -> c13 MARK(g(z0)) -> c14 ENCODE_A__F(z0) -> c1(A__F(encArg(z0))) ENCODE_MARK(z0) -> c1(MARK(encArg(z0))) S tuples: A__F(f(a)) -> c10(A__F(g(f(a)))) A__F(z0) -> c11 MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) K tuples: MARK(a) -> c13 MARK(g(z0)) -> c14 Defined Rule Symbols: encArg_1, a__f_1, mark_1 Defined Pair Symbols: ENCARG_1, A__F_1, MARK_1, ENCODE_A__F_1, ENCODE_MARK_1 Compound Symbols: c_1, c2_1, c3_2, c4_2, c10_1, c11, c12_2, c13, c14, c1_1 ---------------------------------------- (17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^3))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) We considered the (Usable) Rules: encArg(cons_a__f(z0)) -> a__f(encArg(z0)) mark(a) -> a a__f(f(a)) -> a__f(g(f(a))) a__f(z0) -> f(z0) encArg(cons_mark(z0)) -> mark(encArg(z0)) mark(f(z0)) -> a__f(mark(z0)) encArg(a) -> a encArg(g(z0)) -> g(encArg(z0)) mark(g(z0)) -> g(z0) encArg(f(z0)) -> f(encArg(z0)) And the Tuples: ENCARG(f(z0)) -> c(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(cons_a__f(z0)) -> c3(A__F(encArg(z0)), ENCARG(z0)) ENCARG(cons_mark(z0)) -> c4(MARK(encArg(z0)), ENCARG(z0)) A__F(f(a)) -> c10(A__F(g(f(a)))) A__F(z0) -> c11 MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) MARK(a) -> c13 MARK(g(z0)) -> c14 ENCODE_A__F(z0) -> c1(A__F(encArg(z0))) ENCODE_MARK(z0) -> c1(MARK(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(A__F(x_1)) = 0 POL(ENCARG(x_1)) = x_1^3 POL(ENCODE_A__F(x_1)) = 0 POL(ENCODE_MARK(x_1)) = [1] + x_1 POL(MARK(x_1)) = [1] + x_1 POL(a) = 0 POL(a__f(x_1)) = [1] + x_1 POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c10(x_1)) = x_1 POL(c11) = 0 POL(c12(x_1, x_2)) = x_1 + x_2 POL(c13) = 0 POL(c14) = 0 POL(c2(x_1)) = x_1 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c4(x_1, x_2)) = x_1 + x_2 POL(cons_a__f(x_1)) = [1] + x_1 POL(cons_mark(x_1)) = [1] + x_1 POL(encArg(x_1)) = x_1 POL(f(x_1)) = [1] + x_1 POL(g(x_1)) = x_1 POL(mark(x_1)) = x_1 ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: encArg(f(z0)) -> f(encArg(z0)) encArg(a) -> a encArg(g(z0)) -> g(encArg(z0)) encArg(cons_a__f(z0)) -> a__f(encArg(z0)) encArg(cons_mark(z0)) -> mark(encArg(z0)) a__f(f(a)) -> a__f(g(f(a))) a__f(z0) -> f(z0) mark(f(z0)) -> a__f(mark(z0)) mark(a) -> a mark(g(z0)) -> g(z0) Tuples: ENCARG(f(z0)) -> c(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(cons_a__f(z0)) -> c3(A__F(encArg(z0)), ENCARG(z0)) ENCARG(cons_mark(z0)) -> c4(MARK(encArg(z0)), ENCARG(z0)) A__F(f(a)) -> c10(A__F(g(f(a)))) A__F(z0) -> c11 MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) MARK(a) -> c13 MARK(g(z0)) -> c14 ENCODE_A__F(z0) -> c1(A__F(encArg(z0))) ENCODE_MARK(z0) -> c1(MARK(encArg(z0))) S tuples: A__F(f(a)) -> c10(A__F(g(f(a)))) A__F(z0) -> c11 K tuples: MARK(a) -> c13 MARK(g(z0)) -> c14 MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) Defined Rule Symbols: encArg_1, a__f_1, mark_1 Defined Pair Symbols: ENCARG_1, A__F_1, MARK_1, ENCODE_A__F_1, ENCODE_MARK_1 Compound Symbols: c_1, c2_1, c3_2, c4_2, c10_1, c11, c12_2, c13, c14, c1_1 ---------------------------------------- (19) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. A__F(z0) -> c11 We considered the (Usable) Rules: encArg(cons_a__f(z0)) -> a__f(encArg(z0)) mark(a) -> a a__f(f(a)) -> a__f(g(f(a))) a__f(z0) -> f(z0) encArg(cons_mark(z0)) -> mark(encArg(z0)) mark(f(z0)) -> a__f(mark(z0)) encArg(a) -> a encArg(g(z0)) -> g(encArg(z0)) mark(g(z0)) -> g(z0) encArg(f(z0)) -> f(encArg(z0)) And the Tuples: ENCARG(f(z0)) -> c(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(cons_a__f(z0)) -> c3(A__F(encArg(z0)), ENCARG(z0)) ENCARG(cons_mark(z0)) -> c4(MARK(encArg(z0)), ENCARG(z0)) A__F(f(a)) -> c10(A__F(g(f(a)))) A__F(z0) -> c11 MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) MARK(a) -> c13 MARK(g(z0)) -> c14 ENCODE_A__F(z0) -> c1(A__F(encArg(z0))) ENCODE_MARK(z0) -> c1(MARK(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(A__F(x_1)) = [1] POL(ENCARG(x_1)) = x_1^2 POL(ENCODE_A__F(x_1)) = [1] + [2]x_1^2 POL(ENCODE_MARK(x_1)) = [1] + [2]x_1 + [2]x_1^2 POL(MARK(x_1)) = [2]x_1 POL(a) = 0 POL(a__f(x_1)) = [2] + x_1 POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c10(x_1)) = x_1 POL(c11) = 0 POL(c12(x_1, x_2)) = x_1 + x_2 POL(c13) = 0 POL(c14) = 0 POL(c2(x_1)) = x_1 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c4(x_1, x_2)) = x_1 + x_2 POL(cons_a__f(x_1)) = [2] + x_1 POL(cons_mark(x_1)) = [1] + x_1 POL(encArg(x_1)) = x_1 POL(f(x_1)) = [2] + x_1 POL(g(x_1)) = x_1 POL(mark(x_1)) = x_1 ---------------------------------------- (20) Obligation: Complexity Dependency Tuples Problem Rules: encArg(f(z0)) -> f(encArg(z0)) encArg(a) -> a encArg(g(z0)) -> g(encArg(z0)) encArg(cons_a__f(z0)) -> a__f(encArg(z0)) encArg(cons_mark(z0)) -> mark(encArg(z0)) a__f(f(a)) -> a__f(g(f(a))) a__f(z0) -> f(z0) mark(f(z0)) -> a__f(mark(z0)) mark(a) -> a mark(g(z0)) -> g(z0) Tuples: ENCARG(f(z0)) -> c(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(cons_a__f(z0)) -> c3(A__F(encArg(z0)), ENCARG(z0)) ENCARG(cons_mark(z0)) -> c4(MARK(encArg(z0)), ENCARG(z0)) A__F(f(a)) -> c10(A__F(g(f(a)))) A__F(z0) -> c11 MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) MARK(a) -> c13 MARK(g(z0)) -> c14 ENCODE_A__F(z0) -> c1(A__F(encArg(z0))) ENCODE_MARK(z0) -> c1(MARK(encArg(z0))) S tuples: A__F(f(a)) -> c10(A__F(g(f(a)))) K tuples: MARK(a) -> c13 MARK(g(z0)) -> c14 MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) A__F(z0) -> c11 Defined Rule Symbols: encArg_1, a__f_1, mark_1 Defined Pair Symbols: ENCARG_1, A__F_1, MARK_1, ENCODE_A__F_1, ENCODE_MARK_1 Compound Symbols: c_1, c2_1, c3_2, c4_2, c10_1, c11, c12_2, c13, c14, c1_1 ---------------------------------------- (21) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace ENCARG(cons_mark(z0)) -> c4(MARK(encArg(z0)), ENCARG(z0)) by ENCARG(cons_mark(f(z0))) -> c4(MARK(f(encArg(z0))), ENCARG(f(z0))) ENCARG(cons_mark(a)) -> c4(MARK(a), ENCARG(a)) ENCARG(cons_mark(g(z0))) -> c4(MARK(g(encArg(z0))), ENCARG(g(z0))) ENCARG(cons_mark(cons_a__f(z0))) -> c4(MARK(a__f(encArg(z0))), ENCARG(cons_a__f(z0))) ENCARG(cons_mark(cons_mark(z0))) -> c4(MARK(mark(encArg(z0))), ENCARG(cons_mark(z0))) ---------------------------------------- (22) Obligation: Complexity Dependency Tuples Problem Rules: encArg(f(z0)) -> f(encArg(z0)) encArg(a) -> a encArg(g(z0)) -> g(encArg(z0)) encArg(cons_a__f(z0)) -> a__f(encArg(z0)) encArg(cons_mark(z0)) -> mark(encArg(z0)) a__f(f(a)) -> a__f(g(f(a))) a__f(z0) -> f(z0) mark(f(z0)) -> a__f(mark(z0)) mark(a) -> a mark(g(z0)) -> g(z0) Tuples: ENCARG(f(z0)) -> c(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(cons_a__f(z0)) -> c3(A__F(encArg(z0)), ENCARG(z0)) A__F(f(a)) -> c10(A__F(g(f(a)))) A__F(z0) -> c11 MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) MARK(a) -> c13 MARK(g(z0)) -> c14 ENCODE_A__F(z0) -> c1(A__F(encArg(z0))) ENCODE_MARK(z0) -> c1(MARK(encArg(z0))) ENCARG(cons_mark(f(z0))) -> c4(MARK(f(encArg(z0))), ENCARG(f(z0))) ENCARG(cons_mark(a)) -> c4(MARK(a), ENCARG(a)) ENCARG(cons_mark(g(z0))) -> c4(MARK(g(encArg(z0))), ENCARG(g(z0))) ENCARG(cons_mark(cons_a__f(z0))) -> c4(MARK(a__f(encArg(z0))), ENCARG(cons_a__f(z0))) ENCARG(cons_mark(cons_mark(z0))) -> c4(MARK(mark(encArg(z0))), ENCARG(cons_mark(z0))) S tuples: A__F(f(a)) -> c10(A__F(g(f(a)))) K tuples: MARK(a) -> c13 MARK(g(z0)) -> c14 MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) A__F(z0) -> c11 Defined Rule Symbols: encArg_1, a__f_1, mark_1 Defined Pair Symbols: ENCARG_1, A__F_1, MARK_1, ENCODE_A__F_1, ENCODE_MARK_1 Compound Symbols: c_1, c2_1, c3_2, c10_1, c11, c12_2, c13, c14, c1_1, c4_2 ---------------------------------------- (23) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 4 trailing nodes: MARK(g(z0)) -> c14 ENCARG(cons_mark(a)) -> c4(MARK(a), ENCARG(a)) MARK(a) -> c13 A__F(z0) -> c11 ---------------------------------------- (24) Obligation: Complexity Dependency Tuples Problem Rules: encArg(f(z0)) -> f(encArg(z0)) encArg(a) -> a encArg(g(z0)) -> g(encArg(z0)) encArg(cons_a__f(z0)) -> a__f(encArg(z0)) encArg(cons_mark(z0)) -> mark(encArg(z0)) a__f(f(a)) -> a__f(g(f(a))) a__f(z0) -> f(z0) mark(f(z0)) -> a__f(mark(z0)) mark(a) -> a mark(g(z0)) -> g(z0) Tuples: ENCARG(f(z0)) -> c(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(cons_a__f(z0)) -> c3(A__F(encArg(z0)), ENCARG(z0)) A__F(f(a)) -> c10(A__F(g(f(a)))) MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) ENCODE_A__F(z0) -> c1(A__F(encArg(z0))) ENCODE_MARK(z0) -> c1(MARK(encArg(z0))) ENCARG(cons_mark(f(z0))) -> c4(MARK(f(encArg(z0))), ENCARG(f(z0))) ENCARG(cons_mark(g(z0))) -> c4(MARK(g(encArg(z0))), ENCARG(g(z0))) ENCARG(cons_mark(cons_a__f(z0))) -> c4(MARK(a__f(encArg(z0))), ENCARG(cons_a__f(z0))) ENCARG(cons_mark(cons_mark(z0))) -> c4(MARK(mark(encArg(z0))), ENCARG(cons_mark(z0))) S tuples: A__F(f(a)) -> c10(A__F(g(f(a)))) K tuples: MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) Defined Rule Symbols: encArg_1, a__f_1, mark_1 Defined Pair Symbols: ENCARG_1, A__F_1, MARK_1, ENCODE_A__F_1, ENCODE_MARK_1 Compound Symbols: c_1, c2_1, c3_2, c10_1, c12_2, c1_1, c4_2 ---------------------------------------- (25) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 2 trailing tuple parts ---------------------------------------- (26) Obligation: Complexity Dependency Tuples Problem Rules: encArg(f(z0)) -> f(encArg(z0)) encArg(a) -> a encArg(g(z0)) -> g(encArg(z0)) encArg(cons_a__f(z0)) -> a__f(encArg(z0)) encArg(cons_mark(z0)) -> mark(encArg(z0)) a__f(f(a)) -> a__f(g(f(a))) a__f(z0) -> f(z0) mark(f(z0)) -> a__f(mark(z0)) mark(a) -> a mark(g(z0)) -> g(z0) Tuples: ENCARG(f(z0)) -> c(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(cons_a__f(z0)) -> c3(A__F(encArg(z0)), ENCARG(z0)) MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) ENCODE_A__F(z0) -> c1(A__F(encArg(z0))) ENCODE_MARK(z0) -> c1(MARK(encArg(z0))) ENCARG(cons_mark(f(z0))) -> c4(MARK(f(encArg(z0))), ENCARG(f(z0))) ENCARG(cons_mark(cons_a__f(z0))) -> c4(MARK(a__f(encArg(z0))), ENCARG(cons_a__f(z0))) ENCARG(cons_mark(cons_mark(z0))) -> c4(MARK(mark(encArg(z0))), ENCARG(cons_mark(z0))) A__F(f(a)) -> c10 ENCARG(cons_mark(g(z0))) -> c4(ENCARG(g(z0))) S tuples: A__F(f(a)) -> c10 K tuples: MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) Defined Rule Symbols: encArg_1, a__f_1, mark_1 Defined Pair Symbols: ENCARG_1, MARK_1, ENCODE_A__F_1, ENCODE_MARK_1, A__F_1 Compound Symbols: c_1, c2_1, c3_2, c12_2, c1_1, c4_2, c10, c4_1 ---------------------------------------- (27) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. A__F(f(a)) -> c10 We considered the (Usable) Rules: encArg(cons_a__f(z0)) -> a__f(encArg(z0)) mark(a) -> a a__f(f(a)) -> a__f(g(f(a))) a__f(z0) -> f(z0) encArg(cons_mark(z0)) -> mark(encArg(z0)) mark(f(z0)) -> a__f(mark(z0)) encArg(a) -> a encArg(g(z0)) -> g(encArg(z0)) mark(g(z0)) -> g(z0) encArg(f(z0)) -> f(encArg(z0)) And the Tuples: ENCARG(f(z0)) -> c(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(cons_a__f(z0)) -> c3(A__F(encArg(z0)), ENCARG(z0)) MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) ENCODE_A__F(z0) -> c1(A__F(encArg(z0))) ENCODE_MARK(z0) -> c1(MARK(encArg(z0))) ENCARG(cons_mark(f(z0))) -> c4(MARK(f(encArg(z0))), ENCARG(f(z0))) ENCARG(cons_mark(cons_a__f(z0))) -> c4(MARK(a__f(encArg(z0))), ENCARG(cons_a__f(z0))) ENCARG(cons_mark(cons_mark(z0))) -> c4(MARK(mark(encArg(z0))), ENCARG(cons_mark(z0))) A__F(f(a)) -> c10 ENCARG(cons_mark(g(z0))) -> c4(ENCARG(g(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(A__F(x_1)) = [1] POL(ENCARG(x_1)) = x_1^2 POL(ENCODE_A__F(x_1)) = [2] + [2]x_1 + [2]x_1^2 POL(ENCODE_MARK(x_1)) = [2] + [2]x_1 + [2]x_1^2 POL(MARK(x_1)) = [2] + x_1 POL(a) = 0 POL(a__f(x_1)) = [2] + x_1 POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c10) = 0 POL(c12(x_1, x_2)) = x_1 + x_2 POL(c2(x_1)) = x_1 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c4(x_1)) = x_1 POL(c4(x_1, x_2)) = x_1 + x_2 POL(cons_a__f(x_1)) = [2] + x_1 POL(cons_mark(x_1)) = [2] + x_1 POL(encArg(x_1)) = [2]x_1 POL(f(x_1)) = [2] + x_1 POL(g(x_1)) = x_1 POL(mark(x_1)) = x_1 ---------------------------------------- (28) Obligation: Complexity Dependency Tuples Problem Rules: encArg(f(z0)) -> f(encArg(z0)) encArg(a) -> a encArg(g(z0)) -> g(encArg(z0)) encArg(cons_a__f(z0)) -> a__f(encArg(z0)) encArg(cons_mark(z0)) -> mark(encArg(z0)) a__f(f(a)) -> a__f(g(f(a))) a__f(z0) -> f(z0) mark(f(z0)) -> a__f(mark(z0)) mark(a) -> a mark(g(z0)) -> g(z0) Tuples: ENCARG(f(z0)) -> c(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(cons_a__f(z0)) -> c3(A__F(encArg(z0)), ENCARG(z0)) MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) ENCODE_A__F(z0) -> c1(A__F(encArg(z0))) ENCODE_MARK(z0) -> c1(MARK(encArg(z0))) ENCARG(cons_mark(f(z0))) -> c4(MARK(f(encArg(z0))), ENCARG(f(z0))) ENCARG(cons_mark(cons_a__f(z0))) -> c4(MARK(a__f(encArg(z0))), ENCARG(cons_a__f(z0))) ENCARG(cons_mark(cons_mark(z0))) -> c4(MARK(mark(encArg(z0))), ENCARG(cons_mark(z0))) A__F(f(a)) -> c10 ENCARG(cons_mark(g(z0))) -> c4(ENCARG(g(z0))) S tuples:none K tuples: MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) A__F(f(a)) -> c10 Defined Rule Symbols: encArg_1, a__f_1, mark_1 Defined Pair Symbols: ENCARG_1, MARK_1, ENCODE_A__F_1, ENCODE_MARK_1, A__F_1 Compound Symbols: c_1, c2_1, c3_2, c12_2, c1_1, c4_2, c10, c4_1 ---------------------------------------- (29) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (30) BOUNDS(1, 1) ---------------------------------------- (31) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (32) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: a__f(f(a)) -> a__f(g(f(a))) mark(f(X)) -> a__f(mark(X)) mark(a) -> a mark(g(X)) -> g(X) a__f(X) -> f(X) The (relative) TRS S consists of the following rules: encArg(f(x_1)) -> f(encArg(x_1)) encArg(a) -> a encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_a__f(x_1)) -> a__f(encArg(x_1)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__f(x_1) -> a__f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (33) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence mark(f(X)) ->^+ a__f(mark(X)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [X / f(X)]. The result substitution is [ ]. ---------------------------------------- (34) Complex Obligation (BEST) ---------------------------------------- (35) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: a__f(f(a)) -> a__f(g(f(a))) mark(f(X)) -> a__f(mark(X)) mark(a) -> a mark(g(X)) -> g(X) a__f(X) -> f(X) The (relative) TRS S consists of the following rules: encArg(f(x_1)) -> f(encArg(x_1)) encArg(a) -> a encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_a__f(x_1)) -> a__f(encArg(x_1)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__f(x_1) -> a__f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (36) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (37) BOUNDS(n^1, INF) ---------------------------------------- (38) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: a__f(f(a)) -> a__f(g(f(a))) mark(f(X)) -> a__f(mark(X)) mark(a) -> a mark(g(X)) -> g(X) a__f(X) -> f(X) The (relative) TRS S consists of the following rules: encArg(f(x_1)) -> f(encArg(x_1)) encArg(a) -> a encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_a__f(x_1)) -> a__f(encArg(x_1)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__f(x_1) -> a__f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) Rewrite Strategy: INNERMOST