WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 36 ms] (4) CpxRelTRS (5) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (6) CpxTRS (7) CpxTrsMatchBoundsProof [FINISHED, 0 ms] (8) BOUNDS(1, n^1) (9) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxRelTRS (11) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (12) typed CpxTrs (13) OrderProof [LOWER BOUND(ID), 0 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 370 ms] (16) BEST (17) proven lower bound (18) LowerBoundPropagationProof [FINISHED, 0 ms] (19) BOUNDS(n^1, INF) (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 105 ms] (22) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(g(X)) -> f(X) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(g(X)) -> f(X) The (relative) TRS S consists of the following rules: encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(g(X)) -> f(X) The (relative) TRS S consists of the following rules: encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(g(X)) -> f(X) encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (7) CpxTrsMatchBoundsProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match Bound [MATCHBOUNDS1,MATCHBOUNDS2] of 2. The certificate found is represented by the following graph. "[5, 6, 11] {(5,6,[f_1|0, encArg_1|0, encode_f_1|0, encode_g_1|0, f_1|1]), (5,11,[g_1|1, f_1|1, f_1|2]), (6,6,[g_1|0, cons_f_1|0]), (11,6,[encArg_1|1]), (11,11,[g_1|1, f_1|1, f_1|2])}" ---------------------------------------- (8) BOUNDS(1, n^1) ---------------------------------------- (9) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (10) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(g(X)) -> f(X) The (relative) TRS S consists of the following rules: encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (11) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (12) Obligation: Innermost TRS: Rules: f(g(X)) -> f(X) encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) Types: f :: g:cons_f -> g:cons_f g :: g:cons_f -> g:cons_f encArg :: g:cons_f -> g:cons_f cons_f :: g:cons_f -> g:cons_f encode_f :: g:cons_f -> g:cons_f encode_g :: g:cons_f -> g:cons_f hole_g:cons_f1_0 :: g:cons_f gen_g:cons_f2_0 :: Nat -> g:cons_f ---------------------------------------- (13) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: f, encArg They will be analysed ascendingly in the following order: f < encArg ---------------------------------------- (14) Obligation: Innermost TRS: Rules: f(g(X)) -> f(X) encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) Types: f :: g:cons_f -> g:cons_f g :: g:cons_f -> g:cons_f encArg :: g:cons_f -> g:cons_f cons_f :: g:cons_f -> g:cons_f encode_f :: g:cons_f -> g:cons_f encode_g :: g:cons_f -> g:cons_f hole_g:cons_f1_0 :: g:cons_f gen_g:cons_f2_0 :: Nat -> g:cons_f Generator Equations: gen_g:cons_f2_0(0) <=> hole_g:cons_f1_0 gen_g:cons_f2_0(+(x, 1)) <=> g(gen_g:cons_f2_0(x)) The following defined symbols remain to be analysed: f, encArg They will be analysed ascendingly in the following order: f < encArg ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: f(gen_g:cons_f2_0(+(1, n4_0))) -> *3_0, rt in Omega(n4_0) Induction Base: f(gen_g:cons_f2_0(+(1, 0))) Induction Step: f(gen_g:cons_f2_0(+(1, +(n4_0, 1)))) ->_R^Omega(1) f(gen_g:cons_f2_0(+(1, n4_0))) ->_IH *3_0 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Complex Obligation (BEST) ---------------------------------------- (17) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: f(g(X)) -> f(X) encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) Types: f :: g:cons_f -> g:cons_f g :: g:cons_f -> g:cons_f encArg :: g:cons_f -> g:cons_f cons_f :: g:cons_f -> g:cons_f encode_f :: g:cons_f -> g:cons_f encode_g :: g:cons_f -> g:cons_f hole_g:cons_f1_0 :: g:cons_f gen_g:cons_f2_0 :: Nat -> g:cons_f Generator Equations: gen_g:cons_f2_0(0) <=> hole_g:cons_f1_0 gen_g:cons_f2_0(+(x, 1)) <=> g(gen_g:cons_f2_0(x)) The following defined symbols remain to be analysed: f, encArg They will be analysed ascendingly in the following order: f < encArg ---------------------------------------- (18) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (19) BOUNDS(n^1, INF) ---------------------------------------- (20) Obligation: Innermost TRS: Rules: f(g(X)) -> f(X) encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) Types: f :: g:cons_f -> g:cons_f g :: g:cons_f -> g:cons_f encArg :: g:cons_f -> g:cons_f cons_f :: g:cons_f -> g:cons_f encode_f :: g:cons_f -> g:cons_f encode_g :: g:cons_f -> g:cons_f hole_g:cons_f1_0 :: g:cons_f gen_g:cons_f2_0 :: Nat -> g:cons_f Lemmas: f(gen_g:cons_f2_0(+(1, n4_0))) -> *3_0, rt in Omega(n4_0) Generator Equations: gen_g:cons_f2_0(0) <=> hole_g:cons_f1_0 gen_g:cons_f2_0(+(x, 1)) <=> g(gen_g:cons_f2_0(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_g:cons_f2_0(+(1, n149_0))) -> *3_0, rt in Omega(0) Induction Base: encArg(gen_g:cons_f2_0(+(1, 0))) Induction Step: encArg(gen_g:cons_f2_0(+(1, +(n149_0, 1)))) ->_R^Omega(0) g(encArg(gen_g:cons_f2_0(+(1, n149_0)))) ->_IH g(*3_0) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (22) BOUNDS(1, INF)