WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 169 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: div(x, s(y)) -> d(x, s(y), 0) d(x, s(y), z) -> cond(ge(x, z), x, y, z) cond(true, x, y, z) -> s(d(x, s(y), plus(s(y), z))) cond(false, x, y, z) -> 0 ge(u, 0) -> true ge(0, s(v)) -> false ge(s(u), s(v)) -> ge(u, v) plus(n, 0) -> n plus(n, s(m)) -> s(plus(n, m)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(true) -> true encArg(false) -> false encArg(cons_div(x_1, x_2)) -> div(encArg(x_1), encArg(x_2)) encArg(cons_d(x_1, x_2, x_3)) -> d(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_cond(x_1, x_2, x_3, x_4)) -> cond(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encArg(cons_ge(x_1, x_2)) -> ge(encArg(x_1), encArg(x_2)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encode_div(x_1, x_2) -> div(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_d(x_1, x_2, x_3) -> d(encArg(x_1), encArg(x_2), encArg(x_3)) encode_0 -> 0 encode_cond(x_1, x_2, x_3, x_4) -> cond(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_ge(x_1, x_2) -> ge(encArg(x_1), encArg(x_2)) encode_true -> true encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_false -> false ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: div(x, s(y)) -> d(x, s(y), 0) d(x, s(y), z) -> cond(ge(x, z), x, y, z) cond(true, x, y, z) -> s(d(x, s(y), plus(s(y), z))) cond(false, x, y, z) -> 0 ge(u, 0) -> true ge(0, s(v)) -> false ge(s(u), s(v)) -> ge(u, v) plus(n, 0) -> n plus(n, s(m)) -> s(plus(n, m)) The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(true) -> true encArg(false) -> false encArg(cons_div(x_1, x_2)) -> div(encArg(x_1), encArg(x_2)) encArg(cons_d(x_1, x_2, x_3)) -> d(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_cond(x_1, x_2, x_3, x_4)) -> cond(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encArg(cons_ge(x_1, x_2)) -> ge(encArg(x_1), encArg(x_2)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encode_div(x_1, x_2) -> div(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_d(x_1, x_2, x_3) -> d(encArg(x_1), encArg(x_2), encArg(x_3)) encode_0 -> 0 encode_cond(x_1, x_2, x_3, x_4) -> cond(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_ge(x_1, x_2) -> ge(encArg(x_1), encArg(x_2)) encode_true -> true encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_false -> false Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: div(x, s(y)) -> d(x, s(y), 0) d(x, s(y), z) -> cond(ge(x, z), x, y, z) cond(true, x, y, z) -> s(d(x, s(y), plus(s(y), z))) cond(false, x, y, z) -> 0 ge(u, 0) -> true ge(0, s(v)) -> false ge(s(u), s(v)) -> ge(u, v) plus(n, 0) -> n plus(n, s(m)) -> s(plus(n, m)) The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(true) -> true encArg(false) -> false encArg(cons_div(x_1, x_2)) -> div(encArg(x_1), encArg(x_2)) encArg(cons_d(x_1, x_2, x_3)) -> d(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_cond(x_1, x_2, x_3, x_4)) -> cond(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encArg(cons_ge(x_1, x_2)) -> ge(encArg(x_1), encArg(x_2)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encode_div(x_1, x_2) -> div(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_d(x_1, x_2, x_3) -> d(encArg(x_1), encArg(x_2), encArg(x_3)) encode_0 -> 0 encode_cond(x_1, x_2, x_3, x_4) -> cond(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_ge(x_1, x_2) -> ge(encArg(x_1), encArg(x_2)) encode_true -> true encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_false -> false Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: div(x, s(y)) -> d(x, s(y), 0) d(x, s(y), z) -> cond(ge(x, z), x, y, z) cond(true, x, y, z) -> s(d(x, s(y), plus(s(y), z))) cond(false, x, y, z) -> 0 ge(u, 0) -> true ge(0, s(v)) -> false ge(s(u), s(v)) -> ge(u, v) plus(n, 0) -> n plus(n, s(m)) -> s(plus(n, m)) The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(true) -> true encArg(false) -> false encArg(cons_div(x_1, x_2)) -> div(encArg(x_1), encArg(x_2)) encArg(cons_d(x_1, x_2, x_3)) -> d(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_cond(x_1, x_2, x_3, x_4)) -> cond(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encArg(cons_ge(x_1, x_2)) -> ge(encArg(x_1), encArg(x_2)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encode_div(x_1, x_2) -> div(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_d(x_1, x_2, x_3) -> d(encArg(x_1), encArg(x_2), encArg(x_3)) encode_0 -> 0 encode_cond(x_1, x_2, x_3, x_4) -> cond(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_ge(x_1, x_2) -> ge(encArg(x_1), encArg(x_2)) encode_true -> true encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_false -> false Rewrite Strategy: INNERMOST ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence plus(n, s(m)) ->^+ s(plus(n, m)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [m / s(m)]. The result substitution is [ ]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: div(x, s(y)) -> d(x, s(y), 0) d(x, s(y), z) -> cond(ge(x, z), x, y, z) cond(true, x, y, z) -> s(d(x, s(y), plus(s(y), z))) cond(false, x, y, z) -> 0 ge(u, 0) -> true ge(0, s(v)) -> false ge(s(u), s(v)) -> ge(u, v) plus(n, 0) -> n plus(n, s(m)) -> s(plus(n, m)) The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(true) -> true encArg(false) -> false encArg(cons_div(x_1, x_2)) -> div(encArg(x_1), encArg(x_2)) encArg(cons_d(x_1, x_2, x_3)) -> d(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_cond(x_1, x_2, x_3, x_4)) -> cond(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encArg(cons_ge(x_1, x_2)) -> ge(encArg(x_1), encArg(x_2)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encode_div(x_1, x_2) -> div(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_d(x_1, x_2, x_3) -> d(encArg(x_1), encArg(x_2), encArg(x_3)) encode_0 -> 0 encode_cond(x_1, x_2, x_3, x_4) -> cond(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_ge(x_1, x_2) -> ge(encArg(x_1), encArg(x_2)) encode_true -> true encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_false -> false Rewrite Strategy: INNERMOST ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: div(x, s(y)) -> d(x, s(y), 0) d(x, s(y), z) -> cond(ge(x, z), x, y, z) cond(true, x, y, z) -> s(d(x, s(y), plus(s(y), z))) cond(false, x, y, z) -> 0 ge(u, 0) -> true ge(0, s(v)) -> false ge(s(u), s(v)) -> ge(u, v) plus(n, 0) -> n plus(n, s(m)) -> s(plus(n, m)) The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(true) -> true encArg(false) -> false encArg(cons_div(x_1, x_2)) -> div(encArg(x_1), encArg(x_2)) encArg(cons_d(x_1, x_2, x_3)) -> d(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_cond(x_1, x_2, x_3, x_4)) -> cond(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encArg(cons_ge(x_1, x_2)) -> ge(encArg(x_1), encArg(x_2)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encode_div(x_1, x_2) -> div(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_d(x_1, x_2, x_3) -> d(encArg(x_1), encArg(x_2), encArg(x_3)) encode_0 -> 0 encode_cond(x_1, x_2, x_3, x_4) -> cond(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_ge(x_1, x_2) -> ge(encArg(x_1), encArg(x_2)) encode_true -> true encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_false -> false Rewrite Strategy: INNERMOST