WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 417 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 126 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 46 ms] (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 77 ms] (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 73 ms] (20) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(filter(cons(X, Y), 0, M)) -> mark(cons(0, filter(Y, M, M))) active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M))) active(sieve(cons(0, Y))) -> mark(cons(0, sieve(Y))) active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N)))) active(nats(N)) -> mark(cons(N, nats(s(N)))) active(zprimes) -> mark(sieve(nats(s(s(0))))) active(filter(X1, X2, X3)) -> filter(active(X1), X2, X3) active(filter(X1, X2, X3)) -> filter(X1, active(X2), X3) active(filter(X1, X2, X3)) -> filter(X1, X2, active(X3)) active(cons(X1, X2)) -> cons(active(X1), X2) active(s(X)) -> s(active(X)) active(sieve(X)) -> sieve(active(X)) active(nats(X)) -> nats(active(X)) filter(mark(X1), X2, X3) -> mark(filter(X1, X2, X3)) filter(X1, mark(X2), X3) -> mark(filter(X1, X2, X3)) filter(X1, X2, mark(X3)) -> mark(filter(X1, X2, X3)) cons(mark(X1), X2) -> mark(cons(X1, X2)) s(mark(X)) -> mark(s(X)) sieve(mark(X)) -> mark(sieve(X)) nats(mark(X)) -> mark(nats(X)) proper(filter(X1, X2, X3)) -> filter(proper(X1), proper(X2), proper(X3)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0) -> ok(0) proper(s(X)) -> s(proper(X)) proper(sieve(X)) -> sieve(proper(X)) proper(nats(X)) -> nats(proper(X)) proper(zprimes) -> ok(zprimes) filter(ok(X1), ok(X2), ok(X3)) -> ok(filter(X1, X2, X3)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) s(ok(X)) -> ok(s(X)) sieve(ok(X)) -> ok(sieve(X)) nats(ok(X)) -> ok(nats(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(filter(cons(X, Y), 0', M)) -> mark(cons(0', filter(Y, M, M))) active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M))) active(sieve(cons(0', Y))) -> mark(cons(0', sieve(Y))) active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N)))) active(nats(N)) -> mark(cons(N, nats(s(N)))) active(zprimes) -> mark(sieve(nats(s(s(0'))))) active(filter(X1, X2, X3)) -> filter(active(X1), X2, X3) active(filter(X1, X2, X3)) -> filter(X1, active(X2), X3) active(filter(X1, X2, X3)) -> filter(X1, X2, active(X3)) active(cons(X1, X2)) -> cons(active(X1), X2) active(s(X)) -> s(active(X)) active(sieve(X)) -> sieve(active(X)) active(nats(X)) -> nats(active(X)) filter(mark(X1), X2, X3) -> mark(filter(X1, X2, X3)) filter(X1, mark(X2), X3) -> mark(filter(X1, X2, X3)) filter(X1, X2, mark(X3)) -> mark(filter(X1, X2, X3)) cons(mark(X1), X2) -> mark(cons(X1, X2)) s(mark(X)) -> mark(s(X)) sieve(mark(X)) -> mark(sieve(X)) nats(mark(X)) -> mark(nats(X)) proper(filter(X1, X2, X3)) -> filter(proper(X1), proper(X2), proper(X3)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) proper(sieve(X)) -> sieve(proper(X)) proper(nats(X)) -> nats(proper(X)) proper(zprimes) -> ok(zprimes) filter(ok(X1), ok(X2), ok(X3)) -> ok(filter(X1, X2, X3)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) s(ok(X)) -> ok(s(X)) sieve(ok(X)) -> ok(sieve(X)) nats(ok(X)) -> ok(nats(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: active(filter(cons(X, Y), 0', M)) -> mark(cons(0', filter(Y, M, M))) active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M))) active(sieve(cons(0', Y))) -> mark(cons(0', sieve(Y))) active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N)))) active(nats(N)) -> mark(cons(N, nats(s(N)))) active(zprimes) -> mark(sieve(nats(s(s(0'))))) active(filter(X1, X2, X3)) -> filter(active(X1), X2, X3) active(filter(X1, X2, X3)) -> filter(X1, active(X2), X3) active(filter(X1, X2, X3)) -> filter(X1, X2, active(X3)) active(cons(X1, X2)) -> cons(active(X1), X2) active(s(X)) -> s(active(X)) active(sieve(X)) -> sieve(active(X)) active(nats(X)) -> nats(active(X)) filter(mark(X1), X2, X3) -> mark(filter(X1, X2, X3)) filter(X1, mark(X2), X3) -> mark(filter(X1, X2, X3)) filter(X1, X2, mark(X3)) -> mark(filter(X1, X2, X3)) cons(mark(X1), X2) -> mark(cons(X1, X2)) s(mark(X)) -> mark(s(X)) sieve(mark(X)) -> mark(sieve(X)) nats(mark(X)) -> mark(nats(X)) proper(filter(X1, X2, X3)) -> filter(proper(X1), proper(X2), proper(X3)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) proper(sieve(X)) -> sieve(proper(X)) proper(nats(X)) -> nats(proper(X)) proper(zprimes) -> ok(zprimes) filter(ok(X1), ok(X2), ok(X3)) -> ok(filter(X1, X2, X3)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) s(ok(X)) -> ok(s(X)) sieve(ok(X)) -> ok(sieve(X)) nats(ok(X)) -> ok(nats(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok filter :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok cons :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok 0' :: 0':mark:zprimes:ok mark :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok s :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok sieve :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok nats :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok zprimes :: 0':mark:zprimes:ok proper :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok ok :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok top :: 0':mark:zprimes:ok -> top hole_0':mark:zprimes:ok1_0 :: 0':mark:zprimes:ok hole_top2_0 :: top gen_0':mark:zprimes:ok3_0 :: Nat -> 0':mark:zprimes:ok ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: active, cons, filter, sieve, s, nats, proper, top They will be analysed ascendingly in the following order: cons < active filter < active sieve < active s < active nats < active active < top cons < proper filter < proper sieve < proper s < proper nats < proper proper < top ---------------------------------------- (6) Obligation: TRS: Rules: active(filter(cons(X, Y), 0', M)) -> mark(cons(0', filter(Y, M, M))) active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M))) active(sieve(cons(0', Y))) -> mark(cons(0', sieve(Y))) active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N)))) active(nats(N)) -> mark(cons(N, nats(s(N)))) active(zprimes) -> mark(sieve(nats(s(s(0'))))) active(filter(X1, X2, X3)) -> filter(active(X1), X2, X3) active(filter(X1, X2, X3)) -> filter(X1, active(X2), X3) active(filter(X1, X2, X3)) -> filter(X1, X2, active(X3)) active(cons(X1, X2)) -> cons(active(X1), X2) active(s(X)) -> s(active(X)) active(sieve(X)) -> sieve(active(X)) active(nats(X)) -> nats(active(X)) filter(mark(X1), X2, X3) -> mark(filter(X1, X2, X3)) filter(X1, mark(X2), X3) -> mark(filter(X1, X2, X3)) filter(X1, X2, mark(X3)) -> mark(filter(X1, X2, X3)) cons(mark(X1), X2) -> mark(cons(X1, X2)) s(mark(X)) -> mark(s(X)) sieve(mark(X)) -> mark(sieve(X)) nats(mark(X)) -> mark(nats(X)) proper(filter(X1, X2, X3)) -> filter(proper(X1), proper(X2), proper(X3)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) proper(sieve(X)) -> sieve(proper(X)) proper(nats(X)) -> nats(proper(X)) proper(zprimes) -> ok(zprimes) filter(ok(X1), ok(X2), ok(X3)) -> ok(filter(X1, X2, X3)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) s(ok(X)) -> ok(s(X)) sieve(ok(X)) -> ok(sieve(X)) nats(ok(X)) -> ok(nats(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok filter :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok cons :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok 0' :: 0':mark:zprimes:ok mark :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok s :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok sieve :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok nats :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok zprimes :: 0':mark:zprimes:ok proper :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok ok :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok top :: 0':mark:zprimes:ok -> top hole_0':mark:zprimes:ok1_0 :: 0':mark:zprimes:ok hole_top2_0 :: top gen_0':mark:zprimes:ok3_0 :: Nat -> 0':mark:zprimes:ok Generator Equations: gen_0':mark:zprimes:ok3_0(0) <=> 0' gen_0':mark:zprimes:ok3_0(+(x, 1)) <=> mark(gen_0':mark:zprimes:ok3_0(x)) The following defined symbols remain to be analysed: cons, active, filter, sieve, s, nats, proper, top They will be analysed ascendingly in the following order: cons < active filter < active sieve < active s < active nats < active active < top cons < proper filter < proper sieve < proper s < proper nats < proper proper < top ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: cons(gen_0':mark:zprimes:ok3_0(+(1, n5_0)), gen_0':mark:zprimes:ok3_0(b)) -> *4_0, rt in Omega(n5_0) Induction Base: cons(gen_0':mark:zprimes:ok3_0(+(1, 0)), gen_0':mark:zprimes:ok3_0(b)) Induction Step: cons(gen_0':mark:zprimes:ok3_0(+(1, +(n5_0, 1))), gen_0':mark:zprimes:ok3_0(b)) ->_R^Omega(1) mark(cons(gen_0':mark:zprimes:ok3_0(+(1, n5_0)), gen_0':mark:zprimes:ok3_0(b))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: active(filter(cons(X, Y), 0', M)) -> mark(cons(0', filter(Y, M, M))) active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M))) active(sieve(cons(0', Y))) -> mark(cons(0', sieve(Y))) active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N)))) active(nats(N)) -> mark(cons(N, nats(s(N)))) active(zprimes) -> mark(sieve(nats(s(s(0'))))) active(filter(X1, X2, X3)) -> filter(active(X1), X2, X3) active(filter(X1, X2, X3)) -> filter(X1, active(X2), X3) active(filter(X1, X2, X3)) -> filter(X1, X2, active(X3)) active(cons(X1, X2)) -> cons(active(X1), X2) active(s(X)) -> s(active(X)) active(sieve(X)) -> sieve(active(X)) active(nats(X)) -> nats(active(X)) filter(mark(X1), X2, X3) -> mark(filter(X1, X2, X3)) filter(X1, mark(X2), X3) -> mark(filter(X1, X2, X3)) filter(X1, X2, mark(X3)) -> mark(filter(X1, X2, X3)) cons(mark(X1), X2) -> mark(cons(X1, X2)) s(mark(X)) -> mark(s(X)) sieve(mark(X)) -> mark(sieve(X)) nats(mark(X)) -> mark(nats(X)) proper(filter(X1, X2, X3)) -> filter(proper(X1), proper(X2), proper(X3)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) proper(sieve(X)) -> sieve(proper(X)) proper(nats(X)) -> nats(proper(X)) proper(zprimes) -> ok(zprimes) filter(ok(X1), ok(X2), ok(X3)) -> ok(filter(X1, X2, X3)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) s(ok(X)) -> ok(s(X)) sieve(ok(X)) -> ok(sieve(X)) nats(ok(X)) -> ok(nats(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok filter :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok cons :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok 0' :: 0':mark:zprimes:ok mark :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok s :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok sieve :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok nats :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok zprimes :: 0':mark:zprimes:ok proper :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok ok :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok top :: 0':mark:zprimes:ok -> top hole_0':mark:zprimes:ok1_0 :: 0':mark:zprimes:ok hole_top2_0 :: top gen_0':mark:zprimes:ok3_0 :: Nat -> 0':mark:zprimes:ok Generator Equations: gen_0':mark:zprimes:ok3_0(0) <=> 0' gen_0':mark:zprimes:ok3_0(+(x, 1)) <=> mark(gen_0':mark:zprimes:ok3_0(x)) The following defined symbols remain to be analysed: cons, active, filter, sieve, s, nats, proper, top They will be analysed ascendingly in the following order: cons < active filter < active sieve < active s < active nats < active active < top cons < proper filter < proper sieve < proper s < proper nats < proper proper < top ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: active(filter(cons(X, Y), 0', M)) -> mark(cons(0', filter(Y, M, M))) active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M))) active(sieve(cons(0', Y))) -> mark(cons(0', sieve(Y))) active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N)))) active(nats(N)) -> mark(cons(N, nats(s(N)))) active(zprimes) -> mark(sieve(nats(s(s(0'))))) active(filter(X1, X2, X3)) -> filter(active(X1), X2, X3) active(filter(X1, X2, X3)) -> filter(X1, active(X2), X3) active(filter(X1, X2, X3)) -> filter(X1, X2, active(X3)) active(cons(X1, X2)) -> cons(active(X1), X2) active(s(X)) -> s(active(X)) active(sieve(X)) -> sieve(active(X)) active(nats(X)) -> nats(active(X)) filter(mark(X1), X2, X3) -> mark(filter(X1, X2, X3)) filter(X1, mark(X2), X3) -> mark(filter(X1, X2, X3)) filter(X1, X2, mark(X3)) -> mark(filter(X1, X2, X3)) cons(mark(X1), X2) -> mark(cons(X1, X2)) s(mark(X)) -> mark(s(X)) sieve(mark(X)) -> mark(sieve(X)) nats(mark(X)) -> mark(nats(X)) proper(filter(X1, X2, X3)) -> filter(proper(X1), proper(X2), proper(X3)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) proper(sieve(X)) -> sieve(proper(X)) proper(nats(X)) -> nats(proper(X)) proper(zprimes) -> ok(zprimes) filter(ok(X1), ok(X2), ok(X3)) -> ok(filter(X1, X2, X3)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) s(ok(X)) -> ok(s(X)) sieve(ok(X)) -> ok(sieve(X)) nats(ok(X)) -> ok(nats(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok filter :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok cons :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok 0' :: 0':mark:zprimes:ok mark :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok s :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok sieve :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok nats :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok zprimes :: 0':mark:zprimes:ok proper :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok ok :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok top :: 0':mark:zprimes:ok -> top hole_0':mark:zprimes:ok1_0 :: 0':mark:zprimes:ok hole_top2_0 :: top gen_0':mark:zprimes:ok3_0 :: Nat -> 0':mark:zprimes:ok Lemmas: cons(gen_0':mark:zprimes:ok3_0(+(1, n5_0)), gen_0':mark:zprimes:ok3_0(b)) -> *4_0, rt in Omega(n5_0) Generator Equations: gen_0':mark:zprimes:ok3_0(0) <=> 0' gen_0':mark:zprimes:ok3_0(+(x, 1)) <=> mark(gen_0':mark:zprimes:ok3_0(x)) The following defined symbols remain to be analysed: filter, active, sieve, s, nats, proper, top They will be analysed ascendingly in the following order: filter < active sieve < active s < active nats < active active < top filter < proper sieve < proper s < proper nats < proper proper < top ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: filter(gen_0':mark:zprimes:ok3_0(+(1, n916_0)), gen_0':mark:zprimes:ok3_0(b), gen_0':mark:zprimes:ok3_0(c)) -> *4_0, rt in Omega(n916_0) Induction Base: filter(gen_0':mark:zprimes:ok3_0(+(1, 0)), gen_0':mark:zprimes:ok3_0(b), gen_0':mark:zprimes:ok3_0(c)) Induction Step: filter(gen_0':mark:zprimes:ok3_0(+(1, +(n916_0, 1))), gen_0':mark:zprimes:ok3_0(b), gen_0':mark:zprimes:ok3_0(c)) ->_R^Omega(1) mark(filter(gen_0':mark:zprimes:ok3_0(+(1, n916_0)), gen_0':mark:zprimes:ok3_0(b), gen_0':mark:zprimes:ok3_0(c))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: active(filter(cons(X, Y), 0', M)) -> mark(cons(0', filter(Y, M, M))) active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M))) active(sieve(cons(0', Y))) -> mark(cons(0', sieve(Y))) active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N)))) active(nats(N)) -> mark(cons(N, nats(s(N)))) active(zprimes) -> mark(sieve(nats(s(s(0'))))) active(filter(X1, X2, X3)) -> filter(active(X1), X2, X3) active(filter(X1, X2, X3)) -> filter(X1, active(X2), X3) active(filter(X1, X2, X3)) -> filter(X1, X2, active(X3)) active(cons(X1, X2)) -> cons(active(X1), X2) active(s(X)) -> s(active(X)) active(sieve(X)) -> sieve(active(X)) active(nats(X)) -> nats(active(X)) filter(mark(X1), X2, X3) -> mark(filter(X1, X2, X3)) filter(X1, mark(X2), X3) -> mark(filter(X1, X2, X3)) filter(X1, X2, mark(X3)) -> mark(filter(X1, X2, X3)) cons(mark(X1), X2) -> mark(cons(X1, X2)) s(mark(X)) -> mark(s(X)) sieve(mark(X)) -> mark(sieve(X)) nats(mark(X)) -> mark(nats(X)) proper(filter(X1, X2, X3)) -> filter(proper(X1), proper(X2), proper(X3)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) proper(sieve(X)) -> sieve(proper(X)) proper(nats(X)) -> nats(proper(X)) proper(zprimes) -> ok(zprimes) filter(ok(X1), ok(X2), ok(X3)) -> ok(filter(X1, X2, X3)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) s(ok(X)) -> ok(s(X)) sieve(ok(X)) -> ok(sieve(X)) nats(ok(X)) -> ok(nats(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok filter :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok cons :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok 0' :: 0':mark:zprimes:ok mark :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok s :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok sieve :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok nats :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok zprimes :: 0':mark:zprimes:ok proper :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok ok :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok top :: 0':mark:zprimes:ok -> top hole_0':mark:zprimes:ok1_0 :: 0':mark:zprimes:ok hole_top2_0 :: top gen_0':mark:zprimes:ok3_0 :: Nat -> 0':mark:zprimes:ok Lemmas: cons(gen_0':mark:zprimes:ok3_0(+(1, n5_0)), gen_0':mark:zprimes:ok3_0(b)) -> *4_0, rt in Omega(n5_0) filter(gen_0':mark:zprimes:ok3_0(+(1, n916_0)), gen_0':mark:zprimes:ok3_0(b), gen_0':mark:zprimes:ok3_0(c)) -> *4_0, rt in Omega(n916_0) Generator Equations: gen_0':mark:zprimes:ok3_0(0) <=> 0' gen_0':mark:zprimes:ok3_0(+(x, 1)) <=> mark(gen_0':mark:zprimes:ok3_0(x)) The following defined symbols remain to be analysed: sieve, active, s, nats, proper, top They will be analysed ascendingly in the following order: sieve < active s < active nats < active active < top sieve < proper s < proper nats < proper proper < top ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: sieve(gen_0':mark:zprimes:ok3_0(+(1, n3572_0))) -> *4_0, rt in Omega(n3572_0) Induction Base: sieve(gen_0':mark:zprimes:ok3_0(+(1, 0))) Induction Step: sieve(gen_0':mark:zprimes:ok3_0(+(1, +(n3572_0, 1)))) ->_R^Omega(1) mark(sieve(gen_0':mark:zprimes:ok3_0(+(1, n3572_0)))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Obligation: TRS: Rules: active(filter(cons(X, Y), 0', M)) -> mark(cons(0', filter(Y, M, M))) active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M))) active(sieve(cons(0', Y))) -> mark(cons(0', sieve(Y))) active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N)))) active(nats(N)) -> mark(cons(N, nats(s(N)))) active(zprimes) -> mark(sieve(nats(s(s(0'))))) active(filter(X1, X2, X3)) -> filter(active(X1), X2, X3) active(filter(X1, X2, X3)) -> filter(X1, active(X2), X3) active(filter(X1, X2, X3)) -> filter(X1, X2, active(X3)) active(cons(X1, X2)) -> cons(active(X1), X2) active(s(X)) -> s(active(X)) active(sieve(X)) -> sieve(active(X)) active(nats(X)) -> nats(active(X)) filter(mark(X1), X2, X3) -> mark(filter(X1, X2, X3)) filter(X1, mark(X2), X3) -> mark(filter(X1, X2, X3)) filter(X1, X2, mark(X3)) -> mark(filter(X1, X2, X3)) cons(mark(X1), X2) -> mark(cons(X1, X2)) s(mark(X)) -> mark(s(X)) sieve(mark(X)) -> mark(sieve(X)) nats(mark(X)) -> mark(nats(X)) proper(filter(X1, X2, X3)) -> filter(proper(X1), proper(X2), proper(X3)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) proper(sieve(X)) -> sieve(proper(X)) proper(nats(X)) -> nats(proper(X)) proper(zprimes) -> ok(zprimes) filter(ok(X1), ok(X2), ok(X3)) -> ok(filter(X1, X2, X3)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) s(ok(X)) -> ok(s(X)) sieve(ok(X)) -> ok(sieve(X)) nats(ok(X)) -> ok(nats(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok filter :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok cons :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok 0' :: 0':mark:zprimes:ok mark :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok s :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok sieve :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok nats :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok zprimes :: 0':mark:zprimes:ok proper :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok ok :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok top :: 0':mark:zprimes:ok -> top hole_0':mark:zprimes:ok1_0 :: 0':mark:zprimes:ok hole_top2_0 :: top gen_0':mark:zprimes:ok3_0 :: Nat -> 0':mark:zprimes:ok Lemmas: cons(gen_0':mark:zprimes:ok3_0(+(1, n5_0)), gen_0':mark:zprimes:ok3_0(b)) -> *4_0, rt in Omega(n5_0) filter(gen_0':mark:zprimes:ok3_0(+(1, n916_0)), gen_0':mark:zprimes:ok3_0(b), gen_0':mark:zprimes:ok3_0(c)) -> *4_0, rt in Omega(n916_0) sieve(gen_0':mark:zprimes:ok3_0(+(1, n3572_0))) -> *4_0, rt in Omega(n3572_0) Generator Equations: gen_0':mark:zprimes:ok3_0(0) <=> 0' gen_0':mark:zprimes:ok3_0(+(x, 1)) <=> mark(gen_0':mark:zprimes:ok3_0(x)) The following defined symbols remain to be analysed: s, active, nats, proper, top They will be analysed ascendingly in the following order: s < active nats < active active < top s < proper nats < proper proper < top ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: s(gen_0':mark:zprimes:ok3_0(+(1, n4290_0))) -> *4_0, rt in Omega(n4290_0) Induction Base: s(gen_0':mark:zprimes:ok3_0(+(1, 0))) Induction Step: s(gen_0':mark:zprimes:ok3_0(+(1, +(n4290_0, 1)))) ->_R^Omega(1) mark(s(gen_0':mark:zprimes:ok3_0(+(1, n4290_0)))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (18) Obligation: TRS: Rules: active(filter(cons(X, Y), 0', M)) -> mark(cons(0', filter(Y, M, M))) active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M))) active(sieve(cons(0', Y))) -> mark(cons(0', sieve(Y))) active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N)))) active(nats(N)) -> mark(cons(N, nats(s(N)))) active(zprimes) -> mark(sieve(nats(s(s(0'))))) active(filter(X1, X2, X3)) -> filter(active(X1), X2, X3) active(filter(X1, X2, X3)) -> filter(X1, active(X2), X3) active(filter(X1, X2, X3)) -> filter(X1, X2, active(X3)) active(cons(X1, X2)) -> cons(active(X1), X2) active(s(X)) -> s(active(X)) active(sieve(X)) -> sieve(active(X)) active(nats(X)) -> nats(active(X)) filter(mark(X1), X2, X3) -> mark(filter(X1, X2, X3)) filter(X1, mark(X2), X3) -> mark(filter(X1, X2, X3)) filter(X1, X2, mark(X3)) -> mark(filter(X1, X2, X3)) cons(mark(X1), X2) -> mark(cons(X1, X2)) s(mark(X)) -> mark(s(X)) sieve(mark(X)) -> mark(sieve(X)) nats(mark(X)) -> mark(nats(X)) proper(filter(X1, X2, X3)) -> filter(proper(X1), proper(X2), proper(X3)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) proper(sieve(X)) -> sieve(proper(X)) proper(nats(X)) -> nats(proper(X)) proper(zprimes) -> ok(zprimes) filter(ok(X1), ok(X2), ok(X3)) -> ok(filter(X1, X2, X3)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) s(ok(X)) -> ok(s(X)) sieve(ok(X)) -> ok(sieve(X)) nats(ok(X)) -> ok(nats(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok filter :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok cons :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok 0' :: 0':mark:zprimes:ok mark :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok s :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok sieve :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok nats :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok zprimes :: 0':mark:zprimes:ok proper :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok ok :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok top :: 0':mark:zprimes:ok -> top hole_0':mark:zprimes:ok1_0 :: 0':mark:zprimes:ok hole_top2_0 :: top gen_0':mark:zprimes:ok3_0 :: Nat -> 0':mark:zprimes:ok Lemmas: cons(gen_0':mark:zprimes:ok3_0(+(1, n5_0)), gen_0':mark:zprimes:ok3_0(b)) -> *4_0, rt in Omega(n5_0) filter(gen_0':mark:zprimes:ok3_0(+(1, n916_0)), gen_0':mark:zprimes:ok3_0(b), gen_0':mark:zprimes:ok3_0(c)) -> *4_0, rt in Omega(n916_0) sieve(gen_0':mark:zprimes:ok3_0(+(1, n3572_0))) -> *4_0, rt in Omega(n3572_0) s(gen_0':mark:zprimes:ok3_0(+(1, n4290_0))) -> *4_0, rt in Omega(n4290_0) Generator Equations: gen_0':mark:zprimes:ok3_0(0) <=> 0' gen_0':mark:zprimes:ok3_0(+(x, 1)) <=> mark(gen_0':mark:zprimes:ok3_0(x)) The following defined symbols remain to be analysed: nats, active, proper, top They will be analysed ascendingly in the following order: nats < active active < top nats < proper proper < top ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: nats(gen_0':mark:zprimes:ok3_0(+(1, n5109_0))) -> *4_0, rt in Omega(n5109_0) Induction Base: nats(gen_0':mark:zprimes:ok3_0(+(1, 0))) Induction Step: nats(gen_0':mark:zprimes:ok3_0(+(1, +(n5109_0, 1)))) ->_R^Omega(1) mark(nats(gen_0':mark:zprimes:ok3_0(+(1, n5109_0)))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (20) Obligation: TRS: Rules: active(filter(cons(X, Y), 0', M)) -> mark(cons(0', filter(Y, M, M))) active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M))) active(sieve(cons(0', Y))) -> mark(cons(0', sieve(Y))) active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N)))) active(nats(N)) -> mark(cons(N, nats(s(N)))) active(zprimes) -> mark(sieve(nats(s(s(0'))))) active(filter(X1, X2, X3)) -> filter(active(X1), X2, X3) active(filter(X1, X2, X3)) -> filter(X1, active(X2), X3) active(filter(X1, X2, X3)) -> filter(X1, X2, active(X3)) active(cons(X1, X2)) -> cons(active(X1), X2) active(s(X)) -> s(active(X)) active(sieve(X)) -> sieve(active(X)) active(nats(X)) -> nats(active(X)) filter(mark(X1), X2, X3) -> mark(filter(X1, X2, X3)) filter(X1, mark(X2), X3) -> mark(filter(X1, X2, X3)) filter(X1, X2, mark(X3)) -> mark(filter(X1, X2, X3)) cons(mark(X1), X2) -> mark(cons(X1, X2)) s(mark(X)) -> mark(s(X)) sieve(mark(X)) -> mark(sieve(X)) nats(mark(X)) -> mark(nats(X)) proper(filter(X1, X2, X3)) -> filter(proper(X1), proper(X2), proper(X3)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) proper(sieve(X)) -> sieve(proper(X)) proper(nats(X)) -> nats(proper(X)) proper(zprimes) -> ok(zprimes) filter(ok(X1), ok(X2), ok(X3)) -> ok(filter(X1, X2, X3)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) s(ok(X)) -> ok(s(X)) sieve(ok(X)) -> ok(sieve(X)) nats(ok(X)) -> ok(nats(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok filter :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok cons :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok 0' :: 0':mark:zprimes:ok mark :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok s :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok sieve :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok nats :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok zprimes :: 0':mark:zprimes:ok proper :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok ok :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok top :: 0':mark:zprimes:ok -> top hole_0':mark:zprimes:ok1_0 :: 0':mark:zprimes:ok hole_top2_0 :: top gen_0':mark:zprimes:ok3_0 :: Nat -> 0':mark:zprimes:ok Lemmas: cons(gen_0':mark:zprimes:ok3_0(+(1, n5_0)), gen_0':mark:zprimes:ok3_0(b)) -> *4_0, rt in Omega(n5_0) filter(gen_0':mark:zprimes:ok3_0(+(1, n916_0)), gen_0':mark:zprimes:ok3_0(b), gen_0':mark:zprimes:ok3_0(c)) -> *4_0, rt in Omega(n916_0) sieve(gen_0':mark:zprimes:ok3_0(+(1, n3572_0))) -> *4_0, rt in Omega(n3572_0) s(gen_0':mark:zprimes:ok3_0(+(1, n4290_0))) -> *4_0, rt in Omega(n4290_0) nats(gen_0':mark:zprimes:ok3_0(+(1, n5109_0))) -> *4_0, rt in Omega(n5109_0) Generator Equations: gen_0':mark:zprimes:ok3_0(0) <=> 0' gen_0':mark:zprimes:ok3_0(+(x, 1)) <=> mark(gen_0':mark:zprimes:ok3_0(x)) The following defined symbols remain to be analysed: active, proper, top They will be analysed ascendingly in the following order: active < top proper < top