WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (4) CpxTRS (5) CpxTrsMatchBoundsTAProof [FINISHED, 95 ms] (6) BOUNDS(1, n^1) (7) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTRS (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) typed CpxTrs (11) OrderProof [LOWER BOUND(ID), 0 ms] (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 399 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^1, INF) (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 44 ms] (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 66 ms] (22) typed CpxTrs (23) RewriteLemmaProof [LOWER BOUND(ID), 71 ms] (24) typed CpxTrs (25) RewriteLemmaProof [LOWER BOUND(ID), 98 ms] (26) typed CpxTrs (27) RewriteLemmaProof [LOWER BOUND(ID), 90 ms] (28) typed CpxTrs (29) RewriteLemmaProof [LOWER BOUND(ID), 91 ms] (30) typed CpxTrs (31) RewriteLemmaProof [LOWER BOUND(ID), 100 ms] (32) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(terms(X)) -> terms(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(recip(X)) -> recip(active(X)) active(sqr(X)) -> sqr(active(X)) active(s(X)) -> s(active(X)) active(add(X1, X2)) -> add(active(X1), X2) active(add(X1, X2)) -> add(X1, active(X2)) active(dbl(X)) -> dbl(active(X)) active(first(X1, X2)) -> first(active(X1), X2) active(first(X1, X2)) -> first(X1, active(X2)) terms(mark(X)) -> mark(terms(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) recip(mark(X)) -> mark(recip(X)) sqr(mark(X)) -> mark(sqr(X)) s(mark(X)) -> mark(s(X)) add(mark(X1), X2) -> mark(add(X1, X2)) add(X1, mark(X2)) -> mark(add(X1, X2)) dbl(mark(X)) -> mark(dbl(X)) first(mark(X1), X2) -> mark(first(X1, X2)) first(X1, mark(X2)) -> mark(first(X1, X2)) proper(terms(X)) -> terms(proper(X)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(recip(X)) -> recip(proper(X)) proper(sqr(X)) -> sqr(proper(X)) proper(s(X)) -> s(proper(X)) proper(0) -> ok(0) proper(add(X1, X2)) -> add(proper(X1), proper(X2)) proper(dbl(X)) -> dbl(proper(X)) proper(first(X1, X2)) -> first(proper(X1), proper(X2)) proper(nil) -> ok(nil) terms(ok(X)) -> ok(terms(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) recip(ok(X)) -> ok(recip(X)) sqr(ok(X)) -> ok(sqr(X)) s(ok(X)) -> ok(s(X)) add(ok(X1), ok(X2)) -> ok(add(X1, X2)) dbl(ok(X)) -> ok(dbl(X)) first(ok(X1), ok(X2)) -> ok(first(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The following defined symbols can occur below the 0th argument of top: proper, active The following defined symbols can occur below the 0th argument of proper: proper, active The following defined symbols can occur below the 0th argument of active: proper, active Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(terms(X)) -> terms(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(recip(X)) -> recip(active(X)) active(sqr(X)) -> sqr(active(X)) active(s(X)) -> s(active(X)) active(add(X1, X2)) -> add(active(X1), X2) active(add(X1, X2)) -> add(X1, active(X2)) active(dbl(X)) -> dbl(active(X)) active(first(X1, X2)) -> first(active(X1), X2) active(first(X1, X2)) -> first(X1, active(X2)) proper(terms(X)) -> terms(proper(X)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(recip(X)) -> recip(proper(X)) proper(sqr(X)) -> sqr(proper(X)) proper(s(X)) -> s(proper(X)) proper(add(X1, X2)) -> add(proper(X1), proper(X2)) proper(dbl(X)) -> dbl(proper(X)) proper(first(X1, X2)) -> first(proper(X1), proper(X2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: terms(mark(X)) -> mark(terms(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) recip(mark(X)) -> mark(recip(X)) sqr(mark(X)) -> mark(sqr(X)) s(mark(X)) -> mark(s(X)) add(mark(X1), X2) -> mark(add(X1, X2)) add(X1, mark(X2)) -> mark(add(X1, X2)) dbl(mark(X)) -> mark(dbl(X)) first(mark(X1), X2) -> mark(first(X1, X2)) first(X1, mark(X2)) -> mark(first(X1, X2)) proper(0) -> ok(0) proper(nil) -> ok(nil) terms(ok(X)) -> ok(terms(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) recip(ok(X)) -> ok(recip(X)) sqr(ok(X)) -> ok(sqr(X)) s(ok(X)) -> ok(s(X)) add(ok(X1), ok(X2)) -> ok(add(X1, X2)) dbl(ok(X)) -> ok(dbl(X)) first(ok(X1), ok(X2)) -> ok(first(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: terms(mark(X)) -> mark(terms(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) recip(mark(X)) -> mark(recip(X)) sqr(mark(X)) -> mark(sqr(X)) s(mark(X)) -> mark(s(X)) add(mark(X1), X2) -> mark(add(X1, X2)) add(X1, mark(X2)) -> mark(add(X1, X2)) dbl(mark(X)) -> mark(dbl(X)) first(mark(X1), X2) -> mark(first(X1, X2)) first(X1, mark(X2)) -> mark(first(X1, X2)) proper(0) -> ok(0) proper(nil) -> ok(nil) terms(ok(X)) -> ok(terms(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) recip(ok(X)) -> ok(recip(X)) sqr(ok(X)) -> ok(sqr(X)) s(ok(X)) -> ok(s(X)) add(ok(X1), ok(X2)) -> ok(add(X1, X2)) dbl(ok(X)) -> ok(dbl(X)) first(ok(X1), ok(X2)) -> ok(first(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] transitions: mark0(0) -> 0 00() -> 0 ok0(0) -> 0 nil0() -> 0 active0(0) -> 0 terms0(0) -> 1 cons0(0, 0) -> 2 recip0(0) -> 3 sqr0(0) -> 4 s0(0) -> 5 add0(0, 0) -> 6 dbl0(0) -> 7 first0(0, 0) -> 8 proper0(0) -> 9 top0(0) -> 10 terms1(0) -> 11 mark1(11) -> 1 cons1(0, 0) -> 12 mark1(12) -> 2 recip1(0) -> 13 mark1(13) -> 3 sqr1(0) -> 14 mark1(14) -> 4 s1(0) -> 15 mark1(15) -> 5 add1(0, 0) -> 16 mark1(16) -> 6 dbl1(0) -> 17 mark1(17) -> 7 first1(0, 0) -> 18 mark1(18) -> 8 01() -> 19 ok1(19) -> 9 nil1() -> 20 ok1(20) -> 9 terms1(0) -> 21 ok1(21) -> 1 cons1(0, 0) -> 22 ok1(22) -> 2 recip1(0) -> 23 ok1(23) -> 3 sqr1(0) -> 24 ok1(24) -> 4 s1(0) -> 25 ok1(25) -> 5 add1(0, 0) -> 26 ok1(26) -> 6 dbl1(0) -> 27 ok1(27) -> 7 first1(0, 0) -> 28 ok1(28) -> 8 proper1(0) -> 29 top1(29) -> 10 active1(0) -> 30 top1(30) -> 10 mark1(11) -> 11 mark1(11) -> 21 mark1(12) -> 12 mark1(12) -> 22 mark1(13) -> 13 mark1(13) -> 23 mark1(14) -> 14 mark1(14) -> 24 mark1(15) -> 15 mark1(15) -> 25 mark1(16) -> 16 mark1(16) -> 26 mark1(17) -> 17 mark1(17) -> 27 mark1(18) -> 18 mark1(18) -> 28 ok1(19) -> 29 ok1(20) -> 29 ok1(21) -> 11 ok1(21) -> 21 ok1(22) -> 12 ok1(22) -> 22 ok1(23) -> 13 ok1(23) -> 23 ok1(24) -> 14 ok1(24) -> 24 ok1(25) -> 15 ok1(25) -> 25 ok1(26) -> 16 ok1(26) -> 26 ok1(27) -> 17 ok1(27) -> 27 ok1(28) -> 18 ok1(28) -> 28 active2(19) -> 31 top2(31) -> 10 active2(20) -> 31 ---------------------------------------- (6) BOUNDS(1, n^1) ---------------------------------------- (7) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (8) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0')) -> mark(0') active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0')) -> mark(0') active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0', X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0', X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(terms(X)) -> terms(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(recip(X)) -> recip(active(X)) active(sqr(X)) -> sqr(active(X)) active(s(X)) -> s(active(X)) active(add(X1, X2)) -> add(active(X1), X2) active(add(X1, X2)) -> add(X1, active(X2)) active(dbl(X)) -> dbl(active(X)) active(first(X1, X2)) -> first(active(X1), X2) active(first(X1, X2)) -> first(X1, active(X2)) terms(mark(X)) -> mark(terms(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) recip(mark(X)) -> mark(recip(X)) sqr(mark(X)) -> mark(sqr(X)) s(mark(X)) -> mark(s(X)) add(mark(X1), X2) -> mark(add(X1, X2)) add(X1, mark(X2)) -> mark(add(X1, X2)) dbl(mark(X)) -> mark(dbl(X)) first(mark(X1), X2) -> mark(first(X1, X2)) first(X1, mark(X2)) -> mark(first(X1, X2)) proper(terms(X)) -> terms(proper(X)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(recip(X)) -> recip(proper(X)) proper(sqr(X)) -> sqr(proper(X)) proper(s(X)) -> s(proper(X)) proper(0') -> ok(0') proper(add(X1, X2)) -> add(proper(X1), proper(X2)) proper(dbl(X)) -> dbl(proper(X)) proper(first(X1, X2)) -> first(proper(X1), proper(X2)) proper(nil) -> ok(nil) terms(ok(X)) -> ok(terms(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) recip(ok(X)) -> ok(recip(X)) sqr(ok(X)) -> ok(sqr(X)) s(ok(X)) -> ok(s(X)) add(ok(X1), ok(X2)) -> ok(add(X1, X2)) dbl(ok(X)) -> ok(dbl(X)) first(ok(X1), ok(X2)) -> ok(first(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (10) Obligation: TRS: Rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0')) -> mark(0') active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0')) -> mark(0') active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0', X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0', X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(terms(X)) -> terms(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(recip(X)) -> recip(active(X)) active(sqr(X)) -> sqr(active(X)) active(s(X)) -> s(active(X)) active(add(X1, X2)) -> add(active(X1), X2) active(add(X1, X2)) -> add(X1, active(X2)) active(dbl(X)) -> dbl(active(X)) active(first(X1, X2)) -> first(active(X1), X2) active(first(X1, X2)) -> first(X1, active(X2)) terms(mark(X)) -> mark(terms(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) recip(mark(X)) -> mark(recip(X)) sqr(mark(X)) -> mark(sqr(X)) s(mark(X)) -> mark(s(X)) add(mark(X1), X2) -> mark(add(X1, X2)) add(X1, mark(X2)) -> mark(add(X1, X2)) dbl(mark(X)) -> mark(dbl(X)) first(mark(X1), X2) -> mark(first(X1, X2)) first(X1, mark(X2)) -> mark(first(X1, X2)) proper(terms(X)) -> terms(proper(X)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(recip(X)) -> recip(proper(X)) proper(sqr(X)) -> sqr(proper(X)) proper(s(X)) -> s(proper(X)) proper(0') -> ok(0') proper(add(X1, X2)) -> add(proper(X1), proper(X2)) proper(dbl(X)) -> dbl(proper(X)) proper(first(X1, X2)) -> first(proper(X1), proper(X2)) proper(nil) -> ok(nil) terms(ok(X)) -> ok(terms(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) recip(ok(X)) -> ok(recip(X)) sqr(ok(X)) -> ok(sqr(X)) s(ok(X)) -> ok(s(X)) add(ok(X1), ok(X2)) -> ok(add(X1, X2)) dbl(ok(X)) -> ok(dbl(X)) first(ok(X1), ok(X2)) -> ok(first(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: mark:0':nil:ok -> mark:0':nil:ok terms :: mark:0':nil:ok -> mark:0':nil:ok mark :: mark:0':nil:ok -> mark:0':nil:ok cons :: mark:0':nil:ok -> mark:0':nil:ok -> mark:0':nil:ok recip :: mark:0':nil:ok -> mark:0':nil:ok sqr :: mark:0':nil:ok -> mark:0':nil:ok s :: mark:0':nil:ok -> mark:0':nil:ok 0' :: mark:0':nil:ok add :: mark:0':nil:ok -> mark:0':nil:ok -> mark:0':nil:ok dbl :: mark:0':nil:ok -> mark:0':nil:ok first :: mark:0':nil:ok -> mark:0':nil:ok -> mark:0':nil:ok nil :: mark:0':nil:ok proper :: mark:0':nil:ok -> mark:0':nil:ok ok :: mark:0':nil:ok -> mark:0':nil:ok top :: mark:0':nil:ok -> top hole_mark:0':nil:ok1_0 :: mark:0':nil:ok hole_top2_0 :: top gen_mark:0':nil:ok3_0 :: Nat -> mark:0':nil:ok ---------------------------------------- (11) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: active, cons, recip, sqr, terms, s, add, dbl, first, proper, top They will be analysed ascendingly in the following order: cons < active recip < active sqr < active terms < active s < active add < active dbl < active first < active active < top cons < proper recip < proper sqr < proper terms < proper s < proper add < proper dbl < proper first < proper proper < top ---------------------------------------- (12) Obligation: TRS: Rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0')) -> mark(0') active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0')) -> mark(0') active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0', X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0', X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(terms(X)) -> terms(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(recip(X)) -> recip(active(X)) active(sqr(X)) -> sqr(active(X)) active(s(X)) -> s(active(X)) active(add(X1, X2)) -> add(active(X1), X2) active(add(X1, X2)) -> add(X1, active(X2)) active(dbl(X)) -> dbl(active(X)) active(first(X1, X2)) -> first(active(X1), X2) active(first(X1, X2)) -> first(X1, active(X2)) terms(mark(X)) -> mark(terms(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) recip(mark(X)) -> mark(recip(X)) sqr(mark(X)) -> mark(sqr(X)) s(mark(X)) -> mark(s(X)) add(mark(X1), X2) -> mark(add(X1, X2)) add(X1, mark(X2)) -> mark(add(X1, X2)) dbl(mark(X)) -> mark(dbl(X)) first(mark(X1), X2) -> mark(first(X1, X2)) first(X1, mark(X2)) -> mark(first(X1, X2)) proper(terms(X)) -> terms(proper(X)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(recip(X)) -> recip(proper(X)) proper(sqr(X)) -> sqr(proper(X)) proper(s(X)) -> s(proper(X)) proper(0') -> ok(0') proper(add(X1, X2)) -> add(proper(X1), proper(X2)) proper(dbl(X)) -> dbl(proper(X)) proper(first(X1, X2)) -> first(proper(X1), proper(X2)) proper(nil) -> ok(nil) terms(ok(X)) -> ok(terms(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) recip(ok(X)) -> ok(recip(X)) sqr(ok(X)) -> ok(sqr(X)) s(ok(X)) -> ok(s(X)) add(ok(X1), ok(X2)) -> ok(add(X1, X2)) dbl(ok(X)) -> ok(dbl(X)) first(ok(X1), ok(X2)) -> ok(first(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: mark:0':nil:ok -> mark:0':nil:ok terms :: mark:0':nil:ok -> mark:0':nil:ok mark :: mark:0':nil:ok -> mark:0':nil:ok cons :: mark:0':nil:ok -> mark:0':nil:ok -> mark:0':nil:ok recip :: mark:0':nil:ok -> mark:0':nil:ok sqr :: mark:0':nil:ok -> mark:0':nil:ok s :: mark:0':nil:ok -> mark:0':nil:ok 0' :: mark:0':nil:ok add :: mark:0':nil:ok -> mark:0':nil:ok -> mark:0':nil:ok dbl :: mark:0':nil:ok -> mark:0':nil:ok first :: mark:0':nil:ok -> mark:0':nil:ok -> mark:0':nil:ok nil :: mark:0':nil:ok proper :: mark:0':nil:ok -> mark:0':nil:ok ok :: mark:0':nil:ok -> mark:0':nil:ok top :: mark:0':nil:ok -> top hole_mark:0':nil:ok1_0 :: mark:0':nil:ok hole_top2_0 :: top gen_mark:0':nil:ok3_0 :: Nat -> mark:0':nil:ok Generator Equations: gen_mark:0':nil:ok3_0(0) <=> 0' gen_mark:0':nil:ok3_0(+(x, 1)) <=> mark(gen_mark:0':nil:ok3_0(x)) The following defined symbols remain to be analysed: cons, active, recip, sqr, terms, s, add, dbl, first, proper, top They will be analysed ascendingly in the following order: cons < active recip < active sqr < active terms < active s < active add < active dbl < active first < active active < top cons < proper recip < proper sqr < proper terms < proper s < proper add < proper dbl < proper first < proper proper < top ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: cons(gen_mark:0':nil:ok3_0(+(1, n5_0)), gen_mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n5_0) Induction Base: cons(gen_mark:0':nil:ok3_0(+(1, 0)), gen_mark:0':nil:ok3_0(b)) Induction Step: cons(gen_mark:0':nil:ok3_0(+(1, +(n5_0, 1))), gen_mark:0':nil:ok3_0(b)) ->_R^Omega(1) mark(cons(gen_mark:0':nil:ok3_0(+(1, n5_0)), gen_mark:0':nil:ok3_0(b))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0')) -> mark(0') active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0')) -> mark(0') active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0', X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0', X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(terms(X)) -> terms(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(recip(X)) -> recip(active(X)) active(sqr(X)) -> sqr(active(X)) active(s(X)) -> s(active(X)) active(add(X1, X2)) -> add(active(X1), X2) active(add(X1, X2)) -> add(X1, active(X2)) active(dbl(X)) -> dbl(active(X)) active(first(X1, X2)) -> first(active(X1), X2) active(first(X1, X2)) -> first(X1, active(X2)) terms(mark(X)) -> mark(terms(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) recip(mark(X)) -> mark(recip(X)) sqr(mark(X)) -> mark(sqr(X)) s(mark(X)) -> mark(s(X)) add(mark(X1), X2) -> mark(add(X1, X2)) add(X1, mark(X2)) -> mark(add(X1, X2)) dbl(mark(X)) -> mark(dbl(X)) first(mark(X1), X2) -> mark(first(X1, X2)) first(X1, mark(X2)) -> mark(first(X1, X2)) proper(terms(X)) -> terms(proper(X)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(recip(X)) -> recip(proper(X)) proper(sqr(X)) -> sqr(proper(X)) proper(s(X)) -> s(proper(X)) proper(0') -> ok(0') proper(add(X1, X2)) -> add(proper(X1), proper(X2)) proper(dbl(X)) -> dbl(proper(X)) proper(first(X1, X2)) -> first(proper(X1), proper(X2)) proper(nil) -> ok(nil) terms(ok(X)) -> ok(terms(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) recip(ok(X)) -> ok(recip(X)) sqr(ok(X)) -> ok(sqr(X)) s(ok(X)) -> ok(s(X)) add(ok(X1), ok(X2)) -> ok(add(X1, X2)) dbl(ok(X)) -> ok(dbl(X)) first(ok(X1), ok(X2)) -> ok(first(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: mark:0':nil:ok -> mark:0':nil:ok terms :: mark:0':nil:ok -> mark:0':nil:ok mark :: mark:0':nil:ok -> mark:0':nil:ok cons :: mark:0':nil:ok -> mark:0':nil:ok -> mark:0':nil:ok recip :: mark:0':nil:ok -> mark:0':nil:ok sqr :: mark:0':nil:ok -> mark:0':nil:ok s :: mark:0':nil:ok -> mark:0':nil:ok 0' :: mark:0':nil:ok add :: mark:0':nil:ok -> mark:0':nil:ok -> mark:0':nil:ok dbl :: mark:0':nil:ok -> mark:0':nil:ok first :: mark:0':nil:ok -> mark:0':nil:ok -> mark:0':nil:ok nil :: mark:0':nil:ok proper :: mark:0':nil:ok -> mark:0':nil:ok ok :: mark:0':nil:ok -> mark:0':nil:ok top :: mark:0':nil:ok -> top hole_mark:0':nil:ok1_0 :: mark:0':nil:ok hole_top2_0 :: top gen_mark:0':nil:ok3_0 :: Nat -> mark:0':nil:ok Generator Equations: gen_mark:0':nil:ok3_0(0) <=> 0' gen_mark:0':nil:ok3_0(+(x, 1)) <=> mark(gen_mark:0':nil:ok3_0(x)) The following defined symbols remain to be analysed: cons, active, recip, sqr, terms, s, add, dbl, first, proper, top They will be analysed ascendingly in the following order: cons < active recip < active sqr < active terms < active s < active add < active dbl < active first < active active < top cons < proper recip < proper sqr < proper terms < proper s < proper add < proper dbl < proper first < proper proper < top ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^1, INF) ---------------------------------------- (18) Obligation: TRS: Rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0')) -> mark(0') active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0')) -> mark(0') active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0', X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0', X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(terms(X)) -> terms(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(recip(X)) -> recip(active(X)) active(sqr(X)) -> sqr(active(X)) active(s(X)) -> s(active(X)) active(add(X1, X2)) -> add(active(X1), X2) active(add(X1, X2)) -> add(X1, active(X2)) active(dbl(X)) -> dbl(active(X)) active(first(X1, X2)) -> first(active(X1), X2) active(first(X1, X2)) -> first(X1, active(X2)) terms(mark(X)) -> mark(terms(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) recip(mark(X)) -> mark(recip(X)) sqr(mark(X)) -> mark(sqr(X)) s(mark(X)) -> mark(s(X)) add(mark(X1), X2) -> mark(add(X1, X2)) add(X1, mark(X2)) -> mark(add(X1, X2)) dbl(mark(X)) -> mark(dbl(X)) first(mark(X1), X2) -> mark(first(X1, X2)) first(X1, mark(X2)) -> mark(first(X1, X2)) proper(terms(X)) -> terms(proper(X)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(recip(X)) -> recip(proper(X)) proper(sqr(X)) -> sqr(proper(X)) proper(s(X)) -> s(proper(X)) proper(0') -> ok(0') proper(add(X1, X2)) -> add(proper(X1), proper(X2)) proper(dbl(X)) -> dbl(proper(X)) proper(first(X1, X2)) -> first(proper(X1), proper(X2)) proper(nil) -> ok(nil) terms(ok(X)) -> ok(terms(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) recip(ok(X)) -> ok(recip(X)) sqr(ok(X)) -> ok(sqr(X)) s(ok(X)) -> ok(s(X)) add(ok(X1), ok(X2)) -> ok(add(X1, X2)) dbl(ok(X)) -> ok(dbl(X)) first(ok(X1), ok(X2)) -> ok(first(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: mark:0':nil:ok -> mark:0':nil:ok terms :: mark:0':nil:ok -> mark:0':nil:ok mark :: mark:0':nil:ok -> mark:0':nil:ok cons :: mark:0':nil:ok -> mark:0':nil:ok -> mark:0':nil:ok recip :: mark:0':nil:ok -> mark:0':nil:ok sqr :: mark:0':nil:ok -> mark:0':nil:ok s :: mark:0':nil:ok -> mark:0':nil:ok 0' :: mark:0':nil:ok add :: mark:0':nil:ok -> mark:0':nil:ok -> mark:0':nil:ok dbl :: mark:0':nil:ok -> mark:0':nil:ok first :: mark:0':nil:ok -> mark:0':nil:ok -> mark:0':nil:ok nil :: mark:0':nil:ok proper :: mark:0':nil:ok -> mark:0':nil:ok ok :: mark:0':nil:ok -> mark:0':nil:ok top :: mark:0':nil:ok -> top hole_mark:0':nil:ok1_0 :: mark:0':nil:ok hole_top2_0 :: top gen_mark:0':nil:ok3_0 :: Nat -> mark:0':nil:ok Lemmas: cons(gen_mark:0':nil:ok3_0(+(1, n5_0)), gen_mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n5_0) Generator Equations: gen_mark:0':nil:ok3_0(0) <=> 0' gen_mark:0':nil:ok3_0(+(x, 1)) <=> mark(gen_mark:0':nil:ok3_0(x)) The following defined symbols remain to be analysed: recip, active, sqr, terms, s, add, dbl, first, proper, top They will be analysed ascendingly in the following order: recip < active sqr < active terms < active s < active add < active dbl < active first < active active < top recip < proper sqr < proper terms < proper s < proper add < proper dbl < proper first < proper proper < top ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: recip(gen_mark:0':nil:ok3_0(+(1, n1126_0))) -> *4_0, rt in Omega(n1126_0) Induction Base: recip(gen_mark:0':nil:ok3_0(+(1, 0))) Induction Step: recip(gen_mark:0':nil:ok3_0(+(1, +(n1126_0, 1)))) ->_R^Omega(1) mark(recip(gen_mark:0':nil:ok3_0(+(1, n1126_0)))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (20) Obligation: TRS: Rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0')) -> mark(0') active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0')) -> mark(0') active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0', X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0', X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(terms(X)) -> terms(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(recip(X)) -> recip(active(X)) active(sqr(X)) -> sqr(active(X)) active(s(X)) -> s(active(X)) active(add(X1, X2)) -> add(active(X1), X2) active(add(X1, X2)) -> add(X1, active(X2)) active(dbl(X)) -> dbl(active(X)) active(first(X1, X2)) -> first(active(X1), X2) active(first(X1, X2)) -> first(X1, active(X2)) terms(mark(X)) -> mark(terms(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) recip(mark(X)) -> mark(recip(X)) sqr(mark(X)) -> mark(sqr(X)) s(mark(X)) -> mark(s(X)) add(mark(X1), X2) -> mark(add(X1, X2)) add(X1, mark(X2)) -> mark(add(X1, X2)) dbl(mark(X)) -> mark(dbl(X)) first(mark(X1), X2) -> mark(first(X1, X2)) first(X1, mark(X2)) -> mark(first(X1, X2)) proper(terms(X)) -> terms(proper(X)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(recip(X)) -> recip(proper(X)) proper(sqr(X)) -> sqr(proper(X)) proper(s(X)) -> s(proper(X)) proper(0') -> ok(0') proper(add(X1, X2)) -> add(proper(X1), proper(X2)) proper(dbl(X)) -> dbl(proper(X)) proper(first(X1, X2)) -> first(proper(X1), proper(X2)) proper(nil) -> ok(nil) terms(ok(X)) -> ok(terms(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) recip(ok(X)) -> ok(recip(X)) sqr(ok(X)) -> ok(sqr(X)) s(ok(X)) -> ok(s(X)) add(ok(X1), ok(X2)) -> ok(add(X1, X2)) dbl(ok(X)) -> ok(dbl(X)) first(ok(X1), ok(X2)) -> ok(first(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: mark:0':nil:ok -> mark:0':nil:ok terms :: mark:0':nil:ok -> mark:0':nil:ok mark :: mark:0':nil:ok -> mark:0':nil:ok cons :: mark:0':nil:ok -> mark:0':nil:ok -> mark:0':nil:ok recip :: mark:0':nil:ok -> mark:0':nil:ok sqr :: mark:0':nil:ok -> mark:0':nil:ok s :: mark:0':nil:ok -> mark:0':nil:ok 0' :: mark:0':nil:ok add :: mark:0':nil:ok -> mark:0':nil:ok -> mark:0':nil:ok dbl :: mark:0':nil:ok -> mark:0':nil:ok first :: mark:0':nil:ok -> mark:0':nil:ok -> mark:0':nil:ok nil :: mark:0':nil:ok proper :: mark:0':nil:ok -> mark:0':nil:ok ok :: mark:0':nil:ok -> mark:0':nil:ok top :: mark:0':nil:ok -> top hole_mark:0':nil:ok1_0 :: mark:0':nil:ok hole_top2_0 :: top gen_mark:0':nil:ok3_0 :: Nat -> mark:0':nil:ok Lemmas: cons(gen_mark:0':nil:ok3_0(+(1, n5_0)), gen_mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n5_0) recip(gen_mark:0':nil:ok3_0(+(1, n1126_0))) -> *4_0, rt in Omega(n1126_0) Generator Equations: gen_mark:0':nil:ok3_0(0) <=> 0' gen_mark:0':nil:ok3_0(+(x, 1)) <=> mark(gen_mark:0':nil:ok3_0(x)) The following defined symbols remain to be analysed: sqr, active, terms, s, add, dbl, first, proper, top They will be analysed ascendingly in the following order: sqr < active terms < active s < active add < active dbl < active first < active active < top sqr < proper terms < proper s < proper add < proper dbl < proper first < proper proper < top ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: sqr(gen_mark:0':nil:ok3_0(+(1, n1690_0))) -> *4_0, rt in Omega(n1690_0) Induction Base: sqr(gen_mark:0':nil:ok3_0(+(1, 0))) Induction Step: sqr(gen_mark:0':nil:ok3_0(+(1, +(n1690_0, 1)))) ->_R^Omega(1) mark(sqr(gen_mark:0':nil:ok3_0(+(1, n1690_0)))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (22) Obligation: TRS: Rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0')) -> mark(0') active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0')) -> mark(0') active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0', X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0', X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(terms(X)) -> terms(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(recip(X)) -> recip(active(X)) active(sqr(X)) -> sqr(active(X)) active(s(X)) -> s(active(X)) active(add(X1, X2)) -> add(active(X1), X2) active(add(X1, X2)) -> add(X1, active(X2)) active(dbl(X)) -> dbl(active(X)) active(first(X1, X2)) -> first(active(X1), X2) active(first(X1, X2)) -> first(X1, active(X2)) terms(mark(X)) -> mark(terms(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) recip(mark(X)) -> mark(recip(X)) sqr(mark(X)) -> mark(sqr(X)) s(mark(X)) -> mark(s(X)) add(mark(X1), X2) -> mark(add(X1, X2)) add(X1, mark(X2)) -> mark(add(X1, X2)) dbl(mark(X)) -> mark(dbl(X)) first(mark(X1), X2) -> mark(first(X1, X2)) first(X1, mark(X2)) -> mark(first(X1, X2)) proper(terms(X)) -> terms(proper(X)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(recip(X)) -> recip(proper(X)) proper(sqr(X)) -> sqr(proper(X)) proper(s(X)) -> s(proper(X)) proper(0') -> ok(0') proper(add(X1, X2)) -> add(proper(X1), proper(X2)) proper(dbl(X)) -> dbl(proper(X)) proper(first(X1, X2)) -> first(proper(X1), proper(X2)) proper(nil) -> ok(nil) terms(ok(X)) -> ok(terms(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) recip(ok(X)) -> ok(recip(X)) sqr(ok(X)) -> ok(sqr(X)) s(ok(X)) -> ok(s(X)) add(ok(X1), ok(X2)) -> ok(add(X1, X2)) dbl(ok(X)) -> ok(dbl(X)) first(ok(X1), ok(X2)) -> ok(first(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: mark:0':nil:ok -> mark:0':nil:ok terms :: mark:0':nil:ok -> mark:0':nil:ok mark :: mark:0':nil:ok -> mark:0':nil:ok cons :: mark:0':nil:ok -> mark:0':nil:ok -> mark:0':nil:ok recip :: mark:0':nil:ok -> mark:0':nil:ok sqr :: mark:0':nil:ok -> mark:0':nil:ok s :: mark:0':nil:ok -> mark:0':nil:ok 0' :: mark:0':nil:ok add :: mark:0':nil:ok -> mark:0':nil:ok -> mark:0':nil:ok dbl :: mark:0':nil:ok -> mark:0':nil:ok first :: mark:0':nil:ok -> mark:0':nil:ok -> mark:0':nil:ok nil :: mark:0':nil:ok proper :: mark:0':nil:ok -> mark:0':nil:ok ok :: mark:0':nil:ok -> mark:0':nil:ok top :: mark:0':nil:ok -> top hole_mark:0':nil:ok1_0 :: mark:0':nil:ok hole_top2_0 :: top gen_mark:0':nil:ok3_0 :: Nat -> mark:0':nil:ok Lemmas: cons(gen_mark:0':nil:ok3_0(+(1, n5_0)), gen_mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n5_0) recip(gen_mark:0':nil:ok3_0(+(1, n1126_0))) -> *4_0, rt in Omega(n1126_0) sqr(gen_mark:0':nil:ok3_0(+(1, n1690_0))) -> *4_0, rt in Omega(n1690_0) Generator Equations: gen_mark:0':nil:ok3_0(0) <=> 0' gen_mark:0':nil:ok3_0(+(x, 1)) <=> mark(gen_mark:0':nil:ok3_0(x)) The following defined symbols remain to be analysed: terms, active, s, add, dbl, first, proper, top They will be analysed ascendingly in the following order: terms < active s < active add < active dbl < active first < active active < top terms < proper s < proper add < proper dbl < proper first < proper proper < top ---------------------------------------- (23) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: terms(gen_mark:0':nil:ok3_0(+(1, n2355_0))) -> *4_0, rt in Omega(n2355_0) Induction Base: terms(gen_mark:0':nil:ok3_0(+(1, 0))) Induction Step: terms(gen_mark:0':nil:ok3_0(+(1, +(n2355_0, 1)))) ->_R^Omega(1) mark(terms(gen_mark:0':nil:ok3_0(+(1, n2355_0)))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (24) Obligation: TRS: Rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0')) -> mark(0') active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0')) -> mark(0') active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0', X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0', X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(terms(X)) -> terms(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(recip(X)) -> recip(active(X)) active(sqr(X)) -> sqr(active(X)) active(s(X)) -> s(active(X)) active(add(X1, X2)) -> add(active(X1), X2) active(add(X1, X2)) -> add(X1, active(X2)) active(dbl(X)) -> dbl(active(X)) active(first(X1, X2)) -> first(active(X1), X2) active(first(X1, X2)) -> first(X1, active(X2)) terms(mark(X)) -> mark(terms(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) recip(mark(X)) -> mark(recip(X)) sqr(mark(X)) -> mark(sqr(X)) s(mark(X)) -> mark(s(X)) add(mark(X1), X2) -> mark(add(X1, X2)) add(X1, mark(X2)) -> mark(add(X1, X2)) dbl(mark(X)) -> mark(dbl(X)) first(mark(X1), X2) -> mark(first(X1, X2)) first(X1, mark(X2)) -> mark(first(X1, X2)) proper(terms(X)) -> terms(proper(X)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(recip(X)) -> recip(proper(X)) proper(sqr(X)) -> sqr(proper(X)) proper(s(X)) -> s(proper(X)) proper(0') -> ok(0') proper(add(X1, X2)) -> add(proper(X1), proper(X2)) proper(dbl(X)) -> dbl(proper(X)) proper(first(X1, X2)) -> first(proper(X1), proper(X2)) proper(nil) -> ok(nil) terms(ok(X)) -> ok(terms(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) recip(ok(X)) -> ok(recip(X)) sqr(ok(X)) -> ok(sqr(X)) s(ok(X)) -> ok(s(X)) add(ok(X1), ok(X2)) -> ok(add(X1, X2)) dbl(ok(X)) -> ok(dbl(X)) first(ok(X1), ok(X2)) -> ok(first(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: mark:0':nil:ok -> mark:0':nil:ok terms :: mark:0':nil:ok -> mark:0':nil:ok mark :: mark:0':nil:ok -> mark:0':nil:ok cons :: mark:0':nil:ok -> mark:0':nil:ok -> mark:0':nil:ok recip :: mark:0':nil:ok -> mark:0':nil:ok sqr :: mark:0':nil:ok -> mark:0':nil:ok s :: mark:0':nil:ok -> mark:0':nil:ok 0' :: mark:0':nil:ok add :: mark:0':nil:ok -> mark:0':nil:ok -> mark:0':nil:ok dbl :: mark:0':nil:ok -> mark:0':nil:ok first :: mark:0':nil:ok -> mark:0':nil:ok -> mark:0':nil:ok nil :: mark:0':nil:ok proper :: mark:0':nil:ok -> mark:0':nil:ok ok :: mark:0':nil:ok -> mark:0':nil:ok top :: mark:0':nil:ok -> top hole_mark:0':nil:ok1_0 :: mark:0':nil:ok hole_top2_0 :: top gen_mark:0':nil:ok3_0 :: Nat -> mark:0':nil:ok Lemmas: cons(gen_mark:0':nil:ok3_0(+(1, n5_0)), gen_mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n5_0) recip(gen_mark:0':nil:ok3_0(+(1, n1126_0))) -> *4_0, rt in Omega(n1126_0) sqr(gen_mark:0':nil:ok3_0(+(1, n1690_0))) -> *4_0, rt in Omega(n1690_0) terms(gen_mark:0':nil:ok3_0(+(1, n2355_0))) -> *4_0, rt in Omega(n2355_0) Generator Equations: gen_mark:0':nil:ok3_0(0) <=> 0' gen_mark:0':nil:ok3_0(+(x, 1)) <=> mark(gen_mark:0':nil:ok3_0(x)) The following defined symbols remain to be analysed: s, active, add, dbl, first, proper, top They will be analysed ascendingly in the following order: s < active add < active dbl < active first < active active < top s < proper add < proper dbl < proper first < proper proper < top ---------------------------------------- (25) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: s(gen_mark:0':nil:ok3_0(+(1, n3121_0))) -> *4_0, rt in Omega(n3121_0) Induction Base: s(gen_mark:0':nil:ok3_0(+(1, 0))) Induction Step: s(gen_mark:0':nil:ok3_0(+(1, +(n3121_0, 1)))) ->_R^Omega(1) mark(s(gen_mark:0':nil:ok3_0(+(1, n3121_0)))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (26) Obligation: TRS: Rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0')) -> mark(0') active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0')) -> mark(0') active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0', X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0', X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(terms(X)) -> terms(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(recip(X)) -> recip(active(X)) active(sqr(X)) -> sqr(active(X)) active(s(X)) -> s(active(X)) active(add(X1, X2)) -> add(active(X1), X2) active(add(X1, X2)) -> add(X1, active(X2)) active(dbl(X)) -> dbl(active(X)) active(first(X1, X2)) -> first(active(X1), X2) active(first(X1, X2)) -> first(X1, active(X2)) terms(mark(X)) -> mark(terms(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) recip(mark(X)) -> mark(recip(X)) sqr(mark(X)) -> mark(sqr(X)) s(mark(X)) -> mark(s(X)) add(mark(X1), X2) -> mark(add(X1, X2)) add(X1, mark(X2)) -> mark(add(X1, X2)) dbl(mark(X)) -> mark(dbl(X)) first(mark(X1), X2) -> mark(first(X1, X2)) first(X1, mark(X2)) -> mark(first(X1, X2)) proper(terms(X)) -> terms(proper(X)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(recip(X)) -> recip(proper(X)) proper(sqr(X)) -> sqr(proper(X)) proper(s(X)) -> s(proper(X)) proper(0') -> ok(0') proper(add(X1, X2)) -> add(proper(X1), proper(X2)) proper(dbl(X)) -> dbl(proper(X)) proper(first(X1, X2)) -> first(proper(X1), proper(X2)) proper(nil) -> ok(nil) terms(ok(X)) -> ok(terms(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) recip(ok(X)) -> ok(recip(X)) sqr(ok(X)) -> ok(sqr(X)) s(ok(X)) -> ok(s(X)) add(ok(X1), ok(X2)) -> ok(add(X1, X2)) dbl(ok(X)) -> ok(dbl(X)) first(ok(X1), ok(X2)) -> ok(first(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: mark:0':nil:ok -> mark:0':nil:ok terms :: mark:0':nil:ok -> mark:0':nil:ok mark :: mark:0':nil:ok -> mark:0':nil:ok cons :: mark:0':nil:ok -> mark:0':nil:ok -> mark:0':nil:ok recip :: mark:0':nil:ok -> mark:0':nil:ok sqr :: mark:0':nil:ok -> mark:0':nil:ok s :: mark:0':nil:ok -> mark:0':nil:ok 0' :: mark:0':nil:ok add :: mark:0':nil:ok -> mark:0':nil:ok -> mark:0':nil:ok dbl :: mark:0':nil:ok -> mark:0':nil:ok first :: mark:0':nil:ok -> mark:0':nil:ok -> mark:0':nil:ok nil :: mark:0':nil:ok proper :: mark:0':nil:ok -> mark:0':nil:ok ok :: mark:0':nil:ok -> mark:0':nil:ok top :: mark:0':nil:ok -> top hole_mark:0':nil:ok1_0 :: mark:0':nil:ok hole_top2_0 :: top gen_mark:0':nil:ok3_0 :: Nat -> mark:0':nil:ok Lemmas: cons(gen_mark:0':nil:ok3_0(+(1, n5_0)), gen_mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n5_0) recip(gen_mark:0':nil:ok3_0(+(1, n1126_0))) -> *4_0, rt in Omega(n1126_0) sqr(gen_mark:0':nil:ok3_0(+(1, n1690_0))) -> *4_0, rt in Omega(n1690_0) terms(gen_mark:0':nil:ok3_0(+(1, n2355_0))) -> *4_0, rt in Omega(n2355_0) s(gen_mark:0':nil:ok3_0(+(1, n3121_0))) -> *4_0, rt in Omega(n3121_0) Generator Equations: gen_mark:0':nil:ok3_0(0) <=> 0' gen_mark:0':nil:ok3_0(+(x, 1)) <=> mark(gen_mark:0':nil:ok3_0(x)) The following defined symbols remain to be analysed: add, active, dbl, first, proper, top They will be analysed ascendingly in the following order: add < active dbl < active first < active active < top add < proper dbl < proper first < proper proper < top ---------------------------------------- (27) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: add(gen_mark:0':nil:ok3_0(+(1, n3988_0)), gen_mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n3988_0) Induction Base: add(gen_mark:0':nil:ok3_0(+(1, 0)), gen_mark:0':nil:ok3_0(b)) Induction Step: add(gen_mark:0':nil:ok3_0(+(1, +(n3988_0, 1))), gen_mark:0':nil:ok3_0(b)) ->_R^Omega(1) mark(add(gen_mark:0':nil:ok3_0(+(1, n3988_0)), gen_mark:0':nil:ok3_0(b))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (28) Obligation: TRS: Rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0')) -> mark(0') active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0')) -> mark(0') active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0', X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0', X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(terms(X)) -> terms(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(recip(X)) -> recip(active(X)) active(sqr(X)) -> sqr(active(X)) active(s(X)) -> s(active(X)) active(add(X1, X2)) -> add(active(X1), X2) active(add(X1, X2)) -> add(X1, active(X2)) active(dbl(X)) -> dbl(active(X)) active(first(X1, X2)) -> first(active(X1), X2) active(first(X1, X2)) -> first(X1, active(X2)) terms(mark(X)) -> mark(terms(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) recip(mark(X)) -> mark(recip(X)) sqr(mark(X)) -> mark(sqr(X)) s(mark(X)) -> mark(s(X)) add(mark(X1), X2) -> mark(add(X1, X2)) add(X1, mark(X2)) -> mark(add(X1, X2)) dbl(mark(X)) -> mark(dbl(X)) first(mark(X1), X2) -> mark(first(X1, X2)) first(X1, mark(X2)) -> mark(first(X1, X2)) proper(terms(X)) -> terms(proper(X)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(recip(X)) -> recip(proper(X)) proper(sqr(X)) -> sqr(proper(X)) proper(s(X)) -> s(proper(X)) proper(0') -> ok(0') proper(add(X1, X2)) -> add(proper(X1), proper(X2)) proper(dbl(X)) -> dbl(proper(X)) proper(first(X1, X2)) -> first(proper(X1), proper(X2)) proper(nil) -> ok(nil) terms(ok(X)) -> ok(terms(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) recip(ok(X)) -> ok(recip(X)) sqr(ok(X)) -> ok(sqr(X)) s(ok(X)) -> ok(s(X)) add(ok(X1), ok(X2)) -> ok(add(X1, X2)) dbl(ok(X)) -> ok(dbl(X)) first(ok(X1), ok(X2)) -> ok(first(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: mark:0':nil:ok -> mark:0':nil:ok terms :: mark:0':nil:ok -> mark:0':nil:ok mark :: mark:0':nil:ok -> mark:0':nil:ok cons :: mark:0':nil:ok -> mark:0':nil:ok -> mark:0':nil:ok recip :: mark:0':nil:ok -> mark:0':nil:ok sqr :: mark:0':nil:ok -> mark:0':nil:ok s :: mark:0':nil:ok -> mark:0':nil:ok 0' :: mark:0':nil:ok add :: mark:0':nil:ok -> mark:0':nil:ok -> mark:0':nil:ok dbl :: mark:0':nil:ok -> mark:0':nil:ok first :: mark:0':nil:ok -> mark:0':nil:ok -> mark:0':nil:ok nil :: mark:0':nil:ok proper :: mark:0':nil:ok -> mark:0':nil:ok ok :: mark:0':nil:ok -> mark:0':nil:ok top :: mark:0':nil:ok -> top hole_mark:0':nil:ok1_0 :: mark:0':nil:ok hole_top2_0 :: top gen_mark:0':nil:ok3_0 :: Nat -> mark:0':nil:ok Lemmas: cons(gen_mark:0':nil:ok3_0(+(1, n5_0)), gen_mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n5_0) recip(gen_mark:0':nil:ok3_0(+(1, n1126_0))) -> *4_0, rt in Omega(n1126_0) sqr(gen_mark:0':nil:ok3_0(+(1, n1690_0))) -> *4_0, rt in Omega(n1690_0) terms(gen_mark:0':nil:ok3_0(+(1, n2355_0))) -> *4_0, rt in Omega(n2355_0) s(gen_mark:0':nil:ok3_0(+(1, n3121_0))) -> *4_0, rt in Omega(n3121_0) add(gen_mark:0':nil:ok3_0(+(1, n3988_0)), gen_mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n3988_0) Generator Equations: gen_mark:0':nil:ok3_0(0) <=> 0' gen_mark:0':nil:ok3_0(+(x, 1)) <=> mark(gen_mark:0':nil:ok3_0(x)) The following defined symbols remain to be analysed: dbl, active, first, proper, top They will be analysed ascendingly in the following order: dbl < active first < active active < top dbl < proper first < proper proper < top ---------------------------------------- (29) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: dbl(gen_mark:0':nil:ok3_0(+(1, n6446_0))) -> *4_0, rt in Omega(n6446_0) Induction Base: dbl(gen_mark:0':nil:ok3_0(+(1, 0))) Induction Step: dbl(gen_mark:0':nil:ok3_0(+(1, +(n6446_0, 1)))) ->_R^Omega(1) mark(dbl(gen_mark:0':nil:ok3_0(+(1, n6446_0)))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (30) Obligation: TRS: Rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0')) -> mark(0') active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0')) -> mark(0') active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0', X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0', X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(terms(X)) -> terms(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(recip(X)) -> recip(active(X)) active(sqr(X)) -> sqr(active(X)) active(s(X)) -> s(active(X)) active(add(X1, X2)) -> add(active(X1), X2) active(add(X1, X2)) -> add(X1, active(X2)) active(dbl(X)) -> dbl(active(X)) active(first(X1, X2)) -> first(active(X1), X2) active(first(X1, X2)) -> first(X1, active(X2)) terms(mark(X)) -> mark(terms(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) recip(mark(X)) -> mark(recip(X)) sqr(mark(X)) -> mark(sqr(X)) s(mark(X)) -> mark(s(X)) add(mark(X1), X2) -> mark(add(X1, X2)) add(X1, mark(X2)) -> mark(add(X1, X2)) dbl(mark(X)) -> mark(dbl(X)) first(mark(X1), X2) -> mark(first(X1, X2)) first(X1, mark(X2)) -> mark(first(X1, X2)) proper(terms(X)) -> terms(proper(X)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(recip(X)) -> recip(proper(X)) proper(sqr(X)) -> sqr(proper(X)) proper(s(X)) -> s(proper(X)) proper(0') -> ok(0') proper(add(X1, X2)) -> add(proper(X1), proper(X2)) proper(dbl(X)) -> dbl(proper(X)) proper(first(X1, X2)) -> first(proper(X1), proper(X2)) proper(nil) -> ok(nil) terms(ok(X)) -> ok(terms(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) recip(ok(X)) -> ok(recip(X)) sqr(ok(X)) -> ok(sqr(X)) s(ok(X)) -> ok(s(X)) add(ok(X1), ok(X2)) -> ok(add(X1, X2)) dbl(ok(X)) -> ok(dbl(X)) first(ok(X1), ok(X2)) -> ok(first(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: mark:0':nil:ok -> mark:0':nil:ok terms :: mark:0':nil:ok -> mark:0':nil:ok mark :: mark:0':nil:ok -> mark:0':nil:ok cons :: mark:0':nil:ok -> mark:0':nil:ok -> mark:0':nil:ok recip :: mark:0':nil:ok -> mark:0':nil:ok sqr :: mark:0':nil:ok -> mark:0':nil:ok s :: mark:0':nil:ok -> mark:0':nil:ok 0' :: mark:0':nil:ok add :: mark:0':nil:ok -> mark:0':nil:ok -> mark:0':nil:ok dbl :: mark:0':nil:ok -> mark:0':nil:ok first :: mark:0':nil:ok -> mark:0':nil:ok -> mark:0':nil:ok nil :: mark:0':nil:ok proper :: mark:0':nil:ok -> mark:0':nil:ok ok :: mark:0':nil:ok -> mark:0':nil:ok top :: mark:0':nil:ok -> top hole_mark:0':nil:ok1_0 :: mark:0':nil:ok hole_top2_0 :: top gen_mark:0':nil:ok3_0 :: Nat -> mark:0':nil:ok Lemmas: cons(gen_mark:0':nil:ok3_0(+(1, n5_0)), gen_mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n5_0) recip(gen_mark:0':nil:ok3_0(+(1, n1126_0))) -> *4_0, rt in Omega(n1126_0) sqr(gen_mark:0':nil:ok3_0(+(1, n1690_0))) -> *4_0, rt in Omega(n1690_0) terms(gen_mark:0':nil:ok3_0(+(1, n2355_0))) -> *4_0, rt in Omega(n2355_0) s(gen_mark:0':nil:ok3_0(+(1, n3121_0))) -> *4_0, rt in Omega(n3121_0) add(gen_mark:0':nil:ok3_0(+(1, n3988_0)), gen_mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n3988_0) dbl(gen_mark:0':nil:ok3_0(+(1, n6446_0))) -> *4_0, rt in Omega(n6446_0) Generator Equations: gen_mark:0':nil:ok3_0(0) <=> 0' gen_mark:0':nil:ok3_0(+(x, 1)) <=> mark(gen_mark:0':nil:ok3_0(x)) The following defined symbols remain to be analysed: first, active, proper, top They will be analysed ascendingly in the following order: first < active active < top first < proper proper < top ---------------------------------------- (31) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: first(gen_mark:0':nil:ok3_0(+(1, n7564_0)), gen_mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n7564_0) Induction Base: first(gen_mark:0':nil:ok3_0(+(1, 0)), gen_mark:0':nil:ok3_0(b)) Induction Step: first(gen_mark:0':nil:ok3_0(+(1, +(n7564_0, 1))), gen_mark:0':nil:ok3_0(b)) ->_R^Omega(1) mark(first(gen_mark:0':nil:ok3_0(+(1, n7564_0)), gen_mark:0':nil:ok3_0(b))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (32) Obligation: TRS: Rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0')) -> mark(0') active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0')) -> mark(0') active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0', X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0', X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(terms(X)) -> terms(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(recip(X)) -> recip(active(X)) active(sqr(X)) -> sqr(active(X)) active(s(X)) -> s(active(X)) active(add(X1, X2)) -> add(active(X1), X2) active(add(X1, X2)) -> add(X1, active(X2)) active(dbl(X)) -> dbl(active(X)) active(first(X1, X2)) -> first(active(X1), X2) active(first(X1, X2)) -> first(X1, active(X2)) terms(mark(X)) -> mark(terms(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) recip(mark(X)) -> mark(recip(X)) sqr(mark(X)) -> mark(sqr(X)) s(mark(X)) -> mark(s(X)) add(mark(X1), X2) -> mark(add(X1, X2)) add(X1, mark(X2)) -> mark(add(X1, X2)) dbl(mark(X)) -> mark(dbl(X)) first(mark(X1), X2) -> mark(first(X1, X2)) first(X1, mark(X2)) -> mark(first(X1, X2)) proper(terms(X)) -> terms(proper(X)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(recip(X)) -> recip(proper(X)) proper(sqr(X)) -> sqr(proper(X)) proper(s(X)) -> s(proper(X)) proper(0') -> ok(0') proper(add(X1, X2)) -> add(proper(X1), proper(X2)) proper(dbl(X)) -> dbl(proper(X)) proper(first(X1, X2)) -> first(proper(X1), proper(X2)) proper(nil) -> ok(nil) terms(ok(X)) -> ok(terms(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) recip(ok(X)) -> ok(recip(X)) sqr(ok(X)) -> ok(sqr(X)) s(ok(X)) -> ok(s(X)) add(ok(X1), ok(X2)) -> ok(add(X1, X2)) dbl(ok(X)) -> ok(dbl(X)) first(ok(X1), ok(X2)) -> ok(first(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: mark:0':nil:ok -> mark:0':nil:ok terms :: mark:0':nil:ok -> mark:0':nil:ok mark :: mark:0':nil:ok -> mark:0':nil:ok cons :: mark:0':nil:ok -> mark:0':nil:ok -> mark:0':nil:ok recip :: mark:0':nil:ok -> mark:0':nil:ok sqr :: mark:0':nil:ok -> mark:0':nil:ok s :: mark:0':nil:ok -> mark:0':nil:ok 0' :: mark:0':nil:ok add :: mark:0':nil:ok -> mark:0':nil:ok -> mark:0':nil:ok dbl :: mark:0':nil:ok -> mark:0':nil:ok first :: mark:0':nil:ok -> mark:0':nil:ok -> mark:0':nil:ok nil :: mark:0':nil:ok proper :: mark:0':nil:ok -> mark:0':nil:ok ok :: mark:0':nil:ok -> mark:0':nil:ok top :: mark:0':nil:ok -> top hole_mark:0':nil:ok1_0 :: mark:0':nil:ok hole_top2_0 :: top gen_mark:0':nil:ok3_0 :: Nat -> mark:0':nil:ok Lemmas: cons(gen_mark:0':nil:ok3_0(+(1, n5_0)), gen_mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n5_0) recip(gen_mark:0':nil:ok3_0(+(1, n1126_0))) -> *4_0, rt in Omega(n1126_0) sqr(gen_mark:0':nil:ok3_0(+(1, n1690_0))) -> *4_0, rt in Omega(n1690_0) terms(gen_mark:0':nil:ok3_0(+(1, n2355_0))) -> *4_0, rt in Omega(n2355_0) s(gen_mark:0':nil:ok3_0(+(1, n3121_0))) -> *4_0, rt in Omega(n3121_0) add(gen_mark:0':nil:ok3_0(+(1, n3988_0)), gen_mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n3988_0) dbl(gen_mark:0':nil:ok3_0(+(1, n6446_0))) -> *4_0, rt in Omega(n6446_0) first(gen_mark:0':nil:ok3_0(+(1, n7564_0)), gen_mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n7564_0) Generator Equations: gen_mark:0':nil:ok3_0(0) <=> 0' gen_mark:0':nil:ok3_0(+(x, 1)) <=> mark(gen_mark:0':nil:ok3_0(x)) The following defined symbols remain to be analysed: active, proper, top They will be analysed ascendingly in the following order: active < top proper < top