WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 455 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: minus(minus(x)) -> x minus(+(x, y)) -> *(minus(minus(minus(x))), minus(minus(minus(y)))) minus(*(x, y)) -> +(minus(minus(minus(x))), minus(minus(minus(y)))) f(minus(x)) -> minus(minus(minus(f(x)))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: minus(minus(x)) -> x minus(+'(x, y)) -> *'(minus(minus(minus(x))), minus(minus(minus(y)))) minus(*'(x, y)) -> +'(minus(minus(minus(x))), minus(minus(minus(y)))) f(minus(x)) -> minus(minus(minus(f(x)))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: minus(minus(x)) -> x minus(+'(x, y)) -> *'(minus(minus(minus(x))), minus(minus(minus(y)))) minus(*'(x, y)) -> +'(minus(minus(minus(x))), minus(minus(minus(y)))) f(minus(x)) -> minus(minus(minus(f(x)))) Types: minus :: +':*' -> +':*' +' :: +':*' -> +':*' -> +':*' *' :: +':*' -> +':*' -> +':*' f :: +':*' -> +':*' hole_+':*'1_0 :: +':*' gen_+':*'2_0 :: Nat -> +':*' ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: minus, f They will be analysed ascendingly in the following order: minus < f ---------------------------------------- (6) Obligation: TRS: Rules: minus(minus(x)) -> x minus(+'(x, y)) -> *'(minus(minus(minus(x))), minus(minus(minus(y)))) minus(*'(x, y)) -> +'(minus(minus(minus(x))), minus(minus(minus(y)))) f(minus(x)) -> minus(minus(minus(f(x)))) Types: minus :: +':*' -> +':*' +' :: +':*' -> +':*' -> +':*' *' :: +':*' -> +':*' -> +':*' f :: +':*' -> +':*' hole_+':*'1_0 :: +':*' gen_+':*'2_0 :: Nat -> +':*' Generator Equations: gen_+':*'2_0(0) <=> hole_+':*'1_0 gen_+':*'2_0(+(x, 1)) <=> +'(hole_+':*'1_0, gen_+':*'2_0(x)) The following defined symbols remain to be analysed: minus, f They will be analysed ascendingly in the following order: minus < f ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: minus(gen_+':*'2_0(n4_0)) -> *3_0, rt in Omega(n4_0) Induction Base: minus(gen_+':*'2_0(0)) Induction Step: minus(gen_+':*'2_0(+(n4_0, 1))) ->_R^Omega(1) *'(minus(minus(minus(hole_+':*'1_0))), minus(minus(minus(gen_+':*'2_0(n4_0))))) ->_R^Omega(1) *'(minus(hole_+':*'1_0), minus(minus(minus(gen_+':*'2_0(n4_0))))) ->_IH *'(minus(hole_+':*'1_0), minus(minus(*3_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: minus(minus(x)) -> x minus(+'(x, y)) -> *'(minus(minus(minus(x))), minus(minus(minus(y)))) minus(*'(x, y)) -> +'(minus(minus(minus(x))), minus(minus(minus(y)))) f(minus(x)) -> minus(minus(minus(f(x)))) Types: minus :: +':*' -> +':*' +' :: +':*' -> +':*' -> +':*' *' :: +':*' -> +':*' -> +':*' f :: +':*' -> +':*' hole_+':*'1_0 :: +':*' gen_+':*'2_0 :: Nat -> +':*' Generator Equations: gen_+':*'2_0(0) <=> hole_+':*'1_0 gen_+':*'2_0(+(x, 1)) <=> +'(hole_+':*'1_0, gen_+':*'2_0(x)) The following defined symbols remain to be analysed: minus, f They will be analysed ascendingly in the following order: minus < f ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: minus(minus(x)) -> x minus(+'(x, y)) -> *'(minus(minus(minus(x))), minus(minus(minus(y)))) minus(*'(x, y)) -> +'(minus(minus(minus(x))), minus(minus(minus(y)))) f(minus(x)) -> minus(minus(minus(f(x)))) Types: minus :: +':*' -> +':*' +' :: +':*' -> +':*' -> +':*' *' :: +':*' -> +':*' -> +':*' f :: +':*' -> +':*' hole_+':*'1_0 :: +':*' gen_+':*'2_0 :: Nat -> +':*' Lemmas: minus(gen_+':*'2_0(n4_0)) -> *3_0, rt in Omega(n4_0) Generator Equations: gen_+':*'2_0(0) <=> hole_+':*'1_0 gen_+':*'2_0(+(x, 1)) <=> +'(hole_+':*'1_0, gen_+':*'2_0(x)) The following defined symbols remain to be analysed: f