WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). (0) CpxTRS (1) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (4) CdtProblem (5) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CdtProblem (9) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CdtProblem (13) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 13 ms] (14) CdtProblem (15) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 24 ms] (16) CdtProblem (17) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 15 ms] (18) CdtProblem (19) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (20) BOUNDS(1, 1) (21) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (22) CpxTRS (23) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (24) typed CpxTrs (25) OrderProof [LOWER BOUND(ID), 0 ms] (26) typed CpxTrs (27) RewriteLemmaProof [LOWER BOUND(ID), 274 ms] (28) BEST (29) proven lower bound (30) LowerBoundPropagationProof [FINISHED, 0 ms] (31) BOUNDS(n^1, INF) (32) typed CpxTrs (33) RewriteLemmaProof [LOWER BOUND(ID), 35 ms] (34) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: leq(0, y) -> true leq(s(x), 0) -> false leq(s(x), s(y)) -> leq(x, y) if(true, x, y) -> x if(false, x, y) -> y -(x, 0) -> x -(s(x), s(y)) -> -(x, y) mod(0, y) -> 0 mod(s(x), 0) -> 0 mod(s(x), s(y)) -> if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. The duplicating contexts are: mod(s(x), s([])) mod(s([]), s(y)) The defined contexts are: if([], x1, s(x2)) if(x0, [], s(x2)) mod([], s(x1)) leq(x0, []) -(s([]), s(x1)) if(x0, x1, s([])) -([], x1) [] just represents basic- or constructor-terms in the following defined contexts: if([], x1, s(x2)) mod([], s(x1)) As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: leq(0, y) -> true leq(s(x), 0) -> false leq(s(x), s(y)) -> leq(x, y) if(true, x, y) -> x if(false, x, y) -> y -(x, 0) -> x -(s(x), s(y)) -> -(x, y) mod(0, y) -> 0 mod(s(x), 0) -> 0 mod(s(x), s(y)) -> if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: leq(0, z0) -> true leq(s(z0), 0) -> false leq(s(z0), s(z1)) -> leq(z0, z1) if(true, z0, z1) -> z0 if(false, z0, z1) -> z1 -(z0, 0) -> z0 -(s(z0), s(z1)) -> -(z0, z1) mod(0, z0) -> 0 mod(s(z0), 0) -> 0 mod(s(z0), s(z1)) -> if(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)) Tuples: LEQ(0, z0) -> c LEQ(s(z0), 0) -> c1 LEQ(s(z0), s(z1)) -> c2(LEQ(z0, z1)) IF(true, z0, z1) -> c3 IF(false, z0, z1) -> c4 -'(z0, 0) -> c5 -'(s(z0), s(z1)) -> c6(-'(z0, z1)) MOD(0, z0) -> c7 MOD(s(z0), 0) -> c8 MOD(s(z0), s(z1)) -> c9(IF(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)), LEQ(z1, z0), MOD(-(s(z0), s(z1)), s(z1)), -'(s(z0), s(z1))) S tuples: LEQ(0, z0) -> c LEQ(s(z0), 0) -> c1 LEQ(s(z0), s(z1)) -> c2(LEQ(z0, z1)) IF(true, z0, z1) -> c3 IF(false, z0, z1) -> c4 -'(z0, 0) -> c5 -'(s(z0), s(z1)) -> c6(-'(z0, z1)) MOD(0, z0) -> c7 MOD(s(z0), 0) -> c8 MOD(s(z0), s(z1)) -> c9(IF(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)), LEQ(z1, z0), MOD(-(s(z0), s(z1)), s(z1)), -'(s(z0), s(z1))) K tuples:none Defined Rule Symbols: leq_2, if_3, -_2, mod_2 Defined Pair Symbols: LEQ_2, IF_3, -'_2, MOD_2 Compound Symbols: c, c1, c2_1, c3, c4, c5, c6_1, c7, c8, c9_4 ---------------------------------------- (5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 7 trailing nodes: MOD(0, z0) -> c7 LEQ(s(z0), 0) -> c1 IF(true, z0, z1) -> c3 LEQ(0, z0) -> c MOD(s(z0), 0) -> c8 IF(false, z0, z1) -> c4 -'(z0, 0) -> c5 ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: leq(0, z0) -> true leq(s(z0), 0) -> false leq(s(z0), s(z1)) -> leq(z0, z1) if(true, z0, z1) -> z0 if(false, z0, z1) -> z1 -(z0, 0) -> z0 -(s(z0), s(z1)) -> -(z0, z1) mod(0, z0) -> 0 mod(s(z0), 0) -> 0 mod(s(z0), s(z1)) -> if(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)) Tuples: LEQ(s(z0), s(z1)) -> c2(LEQ(z0, z1)) -'(s(z0), s(z1)) -> c6(-'(z0, z1)) MOD(s(z0), s(z1)) -> c9(IF(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)), LEQ(z1, z0), MOD(-(s(z0), s(z1)), s(z1)), -'(s(z0), s(z1))) S tuples: LEQ(s(z0), s(z1)) -> c2(LEQ(z0, z1)) -'(s(z0), s(z1)) -> c6(-'(z0, z1)) MOD(s(z0), s(z1)) -> c9(IF(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)), LEQ(z1, z0), MOD(-(s(z0), s(z1)), s(z1)), -'(s(z0), s(z1))) K tuples:none Defined Rule Symbols: leq_2, if_3, -_2, mod_2 Defined Pair Symbols: LEQ_2, -'_2, MOD_2 Compound Symbols: c2_1, c6_1, c9_4 ---------------------------------------- (7) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing tuple parts ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: leq(0, z0) -> true leq(s(z0), 0) -> false leq(s(z0), s(z1)) -> leq(z0, z1) if(true, z0, z1) -> z0 if(false, z0, z1) -> z1 -(z0, 0) -> z0 -(s(z0), s(z1)) -> -(z0, z1) mod(0, z0) -> 0 mod(s(z0), 0) -> 0 mod(s(z0), s(z1)) -> if(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)) Tuples: LEQ(s(z0), s(z1)) -> c2(LEQ(z0, z1)) -'(s(z0), s(z1)) -> c6(-'(z0, z1)) MOD(s(z0), s(z1)) -> c9(LEQ(z1, z0), MOD(-(s(z0), s(z1)), s(z1)), -'(s(z0), s(z1))) S tuples: LEQ(s(z0), s(z1)) -> c2(LEQ(z0, z1)) -'(s(z0), s(z1)) -> c6(-'(z0, z1)) MOD(s(z0), s(z1)) -> c9(LEQ(z1, z0), MOD(-(s(z0), s(z1)), s(z1)), -'(s(z0), s(z1))) K tuples:none Defined Rule Symbols: leq_2, if_3, -_2, mod_2 Defined Pair Symbols: LEQ_2, -'_2, MOD_2 Compound Symbols: c2_1, c6_1, c9_3 ---------------------------------------- (9) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: leq(0, z0) -> true leq(s(z0), 0) -> false leq(s(z0), s(z1)) -> leq(z0, z1) if(true, z0, z1) -> z0 if(false, z0, z1) -> z1 mod(0, z0) -> 0 mod(s(z0), 0) -> 0 mod(s(z0), s(z1)) -> if(leq(z1, z0), mod(-(s(z0), s(z1)), s(z1)), s(z0)) ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: -(s(z0), s(z1)) -> -(z0, z1) -(z0, 0) -> z0 Tuples: LEQ(s(z0), s(z1)) -> c2(LEQ(z0, z1)) -'(s(z0), s(z1)) -> c6(-'(z0, z1)) MOD(s(z0), s(z1)) -> c9(LEQ(z1, z0), MOD(-(s(z0), s(z1)), s(z1)), -'(s(z0), s(z1))) S tuples: LEQ(s(z0), s(z1)) -> c2(LEQ(z0, z1)) -'(s(z0), s(z1)) -> c6(-'(z0, z1)) MOD(s(z0), s(z1)) -> c9(LEQ(z1, z0), MOD(-(s(z0), s(z1)), s(z1)), -'(s(z0), s(z1))) K tuples:none Defined Rule Symbols: -_2 Defined Pair Symbols: LEQ_2, -'_2, MOD_2 Compound Symbols: c2_1, c6_1, c9_3 ---------------------------------------- (11) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace MOD(s(z0), s(z1)) -> c9(LEQ(z1, z0), MOD(-(s(z0), s(z1)), s(z1)), -'(s(z0), s(z1))) by MOD(s(z0), s(z1)) -> c9(LEQ(z1, z0), MOD(-(z0, z1), s(z1)), -'(s(z0), s(z1))) ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: -(s(z0), s(z1)) -> -(z0, z1) -(z0, 0) -> z0 Tuples: LEQ(s(z0), s(z1)) -> c2(LEQ(z0, z1)) -'(s(z0), s(z1)) -> c6(-'(z0, z1)) MOD(s(z0), s(z1)) -> c9(LEQ(z1, z0), MOD(-(z0, z1), s(z1)), -'(s(z0), s(z1))) S tuples: LEQ(s(z0), s(z1)) -> c2(LEQ(z0, z1)) -'(s(z0), s(z1)) -> c6(-'(z0, z1)) MOD(s(z0), s(z1)) -> c9(LEQ(z1, z0), MOD(-(z0, z1), s(z1)), -'(s(z0), s(z1))) K tuples:none Defined Rule Symbols: -_2 Defined Pair Symbols: LEQ_2, -'_2, MOD_2 Compound Symbols: c2_1, c6_1, c9_3 ---------------------------------------- (13) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. MOD(s(z0), s(z1)) -> c9(LEQ(z1, z0), MOD(-(z0, z1), s(z1)), -'(s(z0), s(z1))) We considered the (Usable) Rules: -(s(z0), s(z1)) -> -(z0, z1) -(z0, 0) -> z0 And the Tuples: LEQ(s(z0), s(z1)) -> c2(LEQ(z0, z1)) -'(s(z0), s(z1)) -> c6(-'(z0, z1)) MOD(s(z0), s(z1)) -> c9(LEQ(z1, z0), MOD(-(z0, z1), s(z1)), -'(s(z0), s(z1))) The order we found is given by the following interpretation: Polynomial interpretation : POL(-(x_1, x_2)) = x_1 POL(-'(x_1, x_2)) = 0 POL(0) = 0 POL(LEQ(x_1, x_2)) = 0 POL(MOD(x_1, x_2)) = x_1 POL(c2(x_1)) = x_1 POL(c6(x_1)) = x_1 POL(c9(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(s(x_1)) = [1] + x_1 ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: -(s(z0), s(z1)) -> -(z0, z1) -(z0, 0) -> z0 Tuples: LEQ(s(z0), s(z1)) -> c2(LEQ(z0, z1)) -'(s(z0), s(z1)) -> c6(-'(z0, z1)) MOD(s(z0), s(z1)) -> c9(LEQ(z1, z0), MOD(-(z0, z1), s(z1)), -'(s(z0), s(z1))) S tuples: LEQ(s(z0), s(z1)) -> c2(LEQ(z0, z1)) -'(s(z0), s(z1)) -> c6(-'(z0, z1)) K tuples: MOD(s(z0), s(z1)) -> c9(LEQ(z1, z0), MOD(-(z0, z1), s(z1)), -'(s(z0), s(z1))) Defined Rule Symbols: -_2 Defined Pair Symbols: LEQ_2, -'_2, MOD_2 Compound Symbols: c2_1, c6_1, c9_3 ---------------------------------------- (15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. LEQ(s(z0), s(z1)) -> c2(LEQ(z0, z1)) We considered the (Usable) Rules: -(s(z0), s(z1)) -> -(z0, z1) -(z0, 0) -> z0 And the Tuples: LEQ(s(z0), s(z1)) -> c2(LEQ(z0, z1)) -'(s(z0), s(z1)) -> c6(-'(z0, z1)) MOD(s(z0), s(z1)) -> c9(LEQ(z1, z0), MOD(-(z0, z1), s(z1)), -'(s(z0), s(z1))) The order we found is given by the following interpretation: Polynomial interpretation : POL(-(x_1, x_2)) = x_1 POL(-'(x_1, x_2)) = 0 POL(0) = [2] POL(LEQ(x_1, x_2)) = x_2 POL(MOD(x_1, x_2)) = x_1^2 POL(c2(x_1)) = x_1 POL(c6(x_1)) = x_1 POL(c9(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(s(x_1)) = [1] + x_1 ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: -(s(z0), s(z1)) -> -(z0, z1) -(z0, 0) -> z0 Tuples: LEQ(s(z0), s(z1)) -> c2(LEQ(z0, z1)) -'(s(z0), s(z1)) -> c6(-'(z0, z1)) MOD(s(z0), s(z1)) -> c9(LEQ(z1, z0), MOD(-(z0, z1), s(z1)), -'(s(z0), s(z1))) S tuples: -'(s(z0), s(z1)) -> c6(-'(z0, z1)) K tuples: MOD(s(z0), s(z1)) -> c9(LEQ(z1, z0), MOD(-(z0, z1), s(z1)), -'(s(z0), s(z1))) LEQ(s(z0), s(z1)) -> c2(LEQ(z0, z1)) Defined Rule Symbols: -_2 Defined Pair Symbols: LEQ_2, -'_2, MOD_2 Compound Symbols: c2_1, c6_1, c9_3 ---------------------------------------- (17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. -'(s(z0), s(z1)) -> c6(-'(z0, z1)) We considered the (Usable) Rules: -(s(z0), s(z1)) -> -(z0, z1) -(z0, 0) -> z0 And the Tuples: LEQ(s(z0), s(z1)) -> c2(LEQ(z0, z1)) -'(s(z0), s(z1)) -> c6(-'(z0, z1)) MOD(s(z0), s(z1)) -> c9(LEQ(z1, z0), MOD(-(z0, z1), s(z1)), -'(s(z0), s(z1))) The order we found is given by the following interpretation: Polynomial interpretation : POL(-(x_1, x_2)) = x_1 POL(-'(x_1, x_2)) = [2]x_2 POL(0) = [2] POL(LEQ(x_1, x_2)) = 0 POL(MOD(x_1, x_2)) = x_1*x_2 POL(c2(x_1)) = x_1 POL(c6(x_1)) = x_1 POL(c9(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(s(x_1)) = [2] + x_1 ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: -(s(z0), s(z1)) -> -(z0, z1) -(z0, 0) -> z0 Tuples: LEQ(s(z0), s(z1)) -> c2(LEQ(z0, z1)) -'(s(z0), s(z1)) -> c6(-'(z0, z1)) MOD(s(z0), s(z1)) -> c9(LEQ(z1, z0), MOD(-(z0, z1), s(z1)), -'(s(z0), s(z1))) S tuples:none K tuples: MOD(s(z0), s(z1)) -> c9(LEQ(z1, z0), MOD(-(z0, z1), s(z1)), -'(s(z0), s(z1))) LEQ(s(z0), s(z1)) -> c2(LEQ(z0, z1)) -'(s(z0), s(z1)) -> c6(-'(z0, z1)) Defined Rule Symbols: -_2 Defined Pair Symbols: LEQ_2, -'_2, MOD_2 Compound Symbols: c2_1, c6_1, c9_3 ---------------------------------------- (19) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (20) BOUNDS(1, 1) ---------------------------------------- (21) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (22) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: leq(0', y) -> true leq(s(x), 0') -> false leq(s(x), s(y)) -> leq(x, y) if(true, x, y) -> x if(false, x, y) -> y -(x, 0') -> x -(s(x), s(y)) -> -(x, y) mod(0', y) -> 0' mod(s(x), 0') -> 0' mod(s(x), s(y)) -> if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (23) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (24) Obligation: TRS: Rules: leq(0', y) -> true leq(s(x), 0') -> false leq(s(x), s(y)) -> leq(x, y) if(true, x, y) -> x if(false, x, y) -> y -(x, 0') -> x -(s(x), s(y)) -> -(x, y) mod(0', y) -> 0' mod(s(x), 0') -> 0' mod(s(x), s(y)) -> if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x)) Types: leq :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false if :: true:false -> 0':s -> 0':s -> 0':s - :: 0':s -> 0':s -> 0':s mod :: 0':s -> 0':s -> 0':s hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s ---------------------------------------- (25) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: leq, -, mod They will be analysed ascendingly in the following order: leq < mod - < mod ---------------------------------------- (26) Obligation: TRS: Rules: leq(0', y) -> true leq(s(x), 0') -> false leq(s(x), s(y)) -> leq(x, y) if(true, x, y) -> x if(false, x, y) -> y -(x, 0') -> x -(s(x), s(y)) -> -(x, y) mod(0', y) -> 0' mod(s(x), 0') -> 0' mod(s(x), s(y)) -> if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x)) Types: leq :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false if :: true:false -> 0':s -> 0':s -> 0':s - :: 0':s -> 0':s -> 0':s mod :: 0':s -> 0':s -> 0':s hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: leq, -, mod They will be analysed ascendingly in the following order: leq < mod - < mod ---------------------------------------- (27) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: leq(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> true, rt in Omega(1 + n5_0) Induction Base: leq(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) true Induction Step: leq(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) ->_R^Omega(1) leq(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (28) Complex Obligation (BEST) ---------------------------------------- (29) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: leq(0', y) -> true leq(s(x), 0') -> false leq(s(x), s(y)) -> leq(x, y) if(true, x, y) -> x if(false, x, y) -> y -(x, 0') -> x -(s(x), s(y)) -> -(x, y) mod(0', y) -> 0' mod(s(x), 0') -> 0' mod(s(x), s(y)) -> if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x)) Types: leq :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false if :: true:false -> 0':s -> 0':s -> 0':s - :: 0':s -> 0':s -> 0':s mod :: 0':s -> 0':s -> 0':s hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: leq, -, mod They will be analysed ascendingly in the following order: leq < mod - < mod ---------------------------------------- (30) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (31) BOUNDS(n^1, INF) ---------------------------------------- (32) Obligation: TRS: Rules: leq(0', y) -> true leq(s(x), 0') -> false leq(s(x), s(y)) -> leq(x, y) if(true, x, y) -> x if(false, x, y) -> y -(x, 0') -> x -(s(x), s(y)) -> -(x, y) mod(0', y) -> 0' mod(s(x), 0') -> 0' mod(s(x), s(y)) -> if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x)) Types: leq :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false if :: true:false -> 0':s -> 0':s -> 0':s - :: 0':s -> 0':s -> 0':s mod :: 0':s -> 0':s -> 0':s hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Lemmas: leq(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> true, rt in Omega(1 + n5_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: -, mod They will be analysed ascendingly in the following order: - < mod ---------------------------------------- (33) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: -(gen_0':s3_0(n252_0), gen_0':s3_0(n252_0)) -> gen_0':s3_0(0), rt in Omega(1 + n252_0) Induction Base: -(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) gen_0':s3_0(0) Induction Step: -(gen_0':s3_0(+(n252_0, 1)), gen_0':s3_0(+(n252_0, 1))) ->_R^Omega(1) -(gen_0':s3_0(n252_0), gen_0':s3_0(n252_0)) ->_IH gen_0':s3_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (34) Obligation: TRS: Rules: leq(0', y) -> true leq(s(x), 0') -> false leq(s(x), s(y)) -> leq(x, y) if(true, x, y) -> x if(false, x, y) -> y -(x, 0') -> x -(s(x), s(y)) -> -(x, y) mod(0', y) -> 0' mod(s(x), 0') -> 0' mod(s(x), s(y)) -> if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x)) Types: leq :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false if :: true:false -> 0':s -> 0':s -> 0':s - :: 0':s -> 0':s -> 0':s mod :: 0':s -> 0':s -> 0':s hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Lemmas: leq(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> true, rt in Omega(1 + n5_0) -(gen_0':s3_0(n252_0), gen_0':s3_0(n252_0)) -> gen_0':s3_0(0), rt in Omega(1 + n252_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: mod