WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 291 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 26 ms] (14) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) inc(0) -> 0 inc(s(x)) -> s(inc(x)) zero(0) -> true zero(s(x)) -> false p(0) -> 0 p(s(x)) -> x bits(x) -> bitIter(x, 0) bitIter(x, y) -> if(zero(x), x, inc(y)) if(true, x, y) -> p(y) if(false, x, y) -> bitIter(half(x), y) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) inc(0') -> 0' inc(s(x)) -> s(inc(x)) zero(0') -> true zero(s(x)) -> false p(0') -> 0' p(s(x)) -> x bits(x) -> bitIter(x, 0') bitIter(x, y) -> if(zero(x), x, inc(y)) if(true, x, y) -> p(y) if(false, x, y) -> bitIter(half(x), y) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) inc(0') -> 0' inc(s(x)) -> s(inc(x)) zero(0') -> true zero(s(x)) -> false p(0') -> 0' p(s(x)) -> x bits(x) -> bitIter(x, 0') bitIter(x, y) -> if(zero(x), x, inc(y)) if(true, x, y) -> p(y) if(false, x, y) -> bitIter(half(x), y) Types: half :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s inc :: 0':s -> 0':s zero :: 0':s -> true:false true :: true:false false :: true:false p :: 0':s -> 0':s bits :: 0':s -> 0':s bitIter :: 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: half, inc, bitIter They will be analysed ascendingly in the following order: half < bitIter inc < bitIter ---------------------------------------- (6) Obligation: TRS: Rules: half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) inc(0') -> 0' inc(s(x)) -> s(inc(x)) zero(0') -> true zero(s(x)) -> false p(0') -> 0' p(s(x)) -> x bits(x) -> bitIter(x, 0') bitIter(x, y) -> if(zero(x), x, inc(y)) if(true, x, y) -> p(y) if(false, x, y) -> bitIter(half(x), y) Types: half :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s inc :: 0':s -> 0':s zero :: 0':s -> true:false true :: true:false false :: true:false p :: 0':s -> 0':s bits :: 0':s -> 0':s bitIter :: 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: half, inc, bitIter They will be analysed ascendingly in the following order: half < bitIter inc < bitIter ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: half(gen_0':s3_0(*(2, n5_0))) -> gen_0':s3_0(n5_0), rt in Omega(1 + n5_0) Induction Base: half(gen_0':s3_0(*(2, 0))) ->_R^Omega(1) 0' Induction Step: half(gen_0':s3_0(*(2, +(n5_0, 1)))) ->_R^Omega(1) s(half(gen_0':s3_0(*(2, n5_0)))) ->_IH s(gen_0':s3_0(c6_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) inc(0') -> 0' inc(s(x)) -> s(inc(x)) zero(0') -> true zero(s(x)) -> false p(0') -> 0' p(s(x)) -> x bits(x) -> bitIter(x, 0') bitIter(x, y) -> if(zero(x), x, inc(y)) if(true, x, y) -> p(y) if(false, x, y) -> bitIter(half(x), y) Types: half :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s inc :: 0':s -> 0':s zero :: 0':s -> true:false true :: true:false false :: true:false p :: 0':s -> 0':s bits :: 0':s -> 0':s bitIter :: 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: half, inc, bitIter They will be analysed ascendingly in the following order: half < bitIter inc < bitIter ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) inc(0') -> 0' inc(s(x)) -> s(inc(x)) zero(0') -> true zero(s(x)) -> false p(0') -> 0' p(s(x)) -> x bits(x) -> bitIter(x, 0') bitIter(x, y) -> if(zero(x), x, inc(y)) if(true, x, y) -> p(y) if(false, x, y) -> bitIter(half(x), y) Types: half :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s inc :: 0':s -> 0':s zero :: 0':s -> true:false true :: true:false false :: true:false p :: 0':s -> 0':s bits :: 0':s -> 0':s bitIter :: 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s Lemmas: half(gen_0':s3_0(*(2, n5_0))) -> gen_0':s3_0(n5_0), rt in Omega(1 + n5_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: inc, bitIter They will be analysed ascendingly in the following order: inc < bitIter ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: inc(gen_0':s3_0(n311_0)) -> gen_0':s3_0(n311_0), rt in Omega(1 + n311_0) Induction Base: inc(gen_0':s3_0(0)) ->_R^Omega(1) 0' Induction Step: inc(gen_0':s3_0(+(n311_0, 1))) ->_R^Omega(1) s(inc(gen_0':s3_0(n311_0))) ->_IH s(gen_0':s3_0(c312_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) inc(0') -> 0' inc(s(x)) -> s(inc(x)) zero(0') -> true zero(s(x)) -> false p(0') -> 0' p(s(x)) -> x bits(x) -> bitIter(x, 0') bitIter(x, y) -> if(zero(x), x, inc(y)) if(true, x, y) -> p(y) if(false, x, y) -> bitIter(half(x), y) Types: half :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s inc :: 0':s -> 0':s zero :: 0':s -> true:false true :: true:false false :: true:false p :: 0':s -> 0':s bits :: 0':s -> 0':s bitIter :: 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s Lemmas: half(gen_0':s3_0(*(2, n5_0))) -> gen_0':s3_0(n5_0), rt in Omega(1 + n5_0) inc(gen_0':s3_0(n311_0)) -> gen_0':s3_0(n311_0), rt in Omega(1 + n311_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: bitIter