WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (6) CdtProblem (7) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CdtProblem (9) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 42 ms] (12) CdtProblem (13) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (14) BOUNDS(1, 1) (15) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxTRS (17) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (18) typed CpxTrs (19) OrderProof [LOWER BOUND(ID), 0 ms] (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 446 ms] (22) BEST (23) proven lower bound (24) LowerBoundPropagationProof [FINISHED, 0 ms] (25) BOUNDS(n^1, INF) (26) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: h(z, e(x)) -> h(c(z), d(z, x)) d(z, g(0, 0)) -> e(0) d(z, g(x, y)) -> g(e(x), d(z, y)) d(c(z), g(g(x, y), 0)) -> g(d(c(z), g(x, y)), d(z, g(x, y))) g(e(x), e(y)) -> e(g(x, y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The following defined symbols can occur below the 1th argument of h: d The following defined symbols can occur below the 1th argument of d: d Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: d(z, g(0, 0)) -> e(0) d(z, g(x, y)) -> g(e(x), d(z, y)) d(c(z), g(g(x, y), 0)) -> g(d(c(z), g(x, y)), d(z, g(x, y))) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: h(z, e(x)) -> h(c(z), d(z, x)) g(e(x), e(y)) -> e(g(x, y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS does not nest defined symbols, we have rc = irc. ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: h(z, e(x)) -> h(c(z), d(z, x)) g(e(x), e(y)) -> e(g(x, y)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: h(z0, e(z1)) -> h(c(z0), d(z0, z1)) g(e(z0), e(z1)) -> e(g(z0, z1)) Tuples: H(z0, e(z1)) -> c1(H(c(z0), d(z0, z1))) G(e(z0), e(z1)) -> c2(G(z0, z1)) S tuples: H(z0, e(z1)) -> c1(H(c(z0), d(z0, z1))) G(e(z0), e(z1)) -> c2(G(z0, z1)) K tuples:none Defined Rule Symbols: h_2, g_2 Defined Pair Symbols: H_2, G_2 Compound Symbols: c1_1, c2_1 ---------------------------------------- (7) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing nodes: H(z0, e(z1)) -> c1(H(c(z0), d(z0, z1))) ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: h(z0, e(z1)) -> h(c(z0), d(z0, z1)) g(e(z0), e(z1)) -> e(g(z0, z1)) Tuples: G(e(z0), e(z1)) -> c2(G(z0, z1)) S tuples: G(e(z0), e(z1)) -> c2(G(z0, z1)) K tuples:none Defined Rule Symbols: h_2, g_2 Defined Pair Symbols: G_2 Compound Symbols: c2_1 ---------------------------------------- (9) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: h(z0, e(z1)) -> h(c(z0), d(z0, z1)) g(e(z0), e(z1)) -> e(g(z0, z1)) ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: G(e(z0), e(z1)) -> c2(G(z0, z1)) S tuples: G(e(z0), e(z1)) -> c2(G(z0, z1)) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: G_2 Compound Symbols: c2_1 ---------------------------------------- (11) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. G(e(z0), e(z1)) -> c2(G(z0, z1)) We considered the (Usable) Rules:none And the Tuples: G(e(z0), e(z1)) -> c2(G(z0, z1)) The order we found is given by the following interpretation: Polynomial interpretation : POL(G(x_1, x_2)) = x_2 POL(c2(x_1)) = x_1 POL(e(x_1)) = [1] + x_1 ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: G(e(z0), e(z1)) -> c2(G(z0, z1)) S tuples:none K tuples: G(e(z0), e(z1)) -> c2(G(z0, z1)) Defined Rule Symbols:none Defined Pair Symbols: G_2 Compound Symbols: c2_1 ---------------------------------------- (13) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (14) BOUNDS(1, 1) ---------------------------------------- (15) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (16) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: h(z, e(x)) -> h(c(z), d(z, x)) d(z, g(0', 0')) -> e(0') d(z, g(x, y)) -> g(e(x), d(z, y)) d(c(z), g(g(x, y), 0')) -> g(d(c(z), g(x, y)), d(z, g(x, y))) g(e(x), e(y)) -> e(g(x, y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (17) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (18) Obligation: TRS: Rules: h(z, e(x)) -> h(c(z), d(z, x)) d(z, g(0', 0')) -> e(0') d(z, g(x, y)) -> g(e(x), d(z, y)) d(c(z), g(g(x, y), 0')) -> g(d(c(z), g(x, y)), d(z, g(x, y))) g(e(x), e(y)) -> e(g(x, y)) Types: h :: c -> e:0' -> h e :: e:0' -> e:0' c :: c -> c d :: c -> e:0' -> e:0' g :: e:0' -> e:0' -> e:0' 0' :: e:0' hole_h1_0 :: h hole_c2_0 :: c hole_e:0'3_0 :: e:0' gen_c4_0 :: Nat -> c gen_e:0'5_0 :: Nat -> e:0' ---------------------------------------- (19) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: h, d, g They will be analysed ascendingly in the following order: d < h g < d ---------------------------------------- (20) Obligation: TRS: Rules: h(z, e(x)) -> h(c(z), d(z, x)) d(z, g(0', 0')) -> e(0') d(z, g(x, y)) -> g(e(x), d(z, y)) d(c(z), g(g(x, y), 0')) -> g(d(c(z), g(x, y)), d(z, g(x, y))) g(e(x), e(y)) -> e(g(x, y)) Types: h :: c -> e:0' -> h e :: e:0' -> e:0' c :: c -> c d :: c -> e:0' -> e:0' g :: e:0' -> e:0' -> e:0' 0' :: e:0' hole_h1_0 :: h hole_c2_0 :: c hole_e:0'3_0 :: e:0' gen_c4_0 :: Nat -> c gen_e:0'5_0 :: Nat -> e:0' Generator Equations: gen_c4_0(0) <=> hole_c2_0 gen_c4_0(+(x, 1)) <=> c(gen_c4_0(x)) gen_e:0'5_0(0) <=> 0' gen_e:0'5_0(+(x, 1)) <=> e(gen_e:0'5_0(x)) The following defined symbols remain to be analysed: g, h, d They will be analysed ascendingly in the following order: d < h g < d ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: g(gen_e:0'5_0(+(1, n7_0)), gen_e:0'5_0(+(1, n7_0))) -> *6_0, rt in Omega(n7_0) Induction Base: g(gen_e:0'5_0(+(1, 0)), gen_e:0'5_0(+(1, 0))) Induction Step: g(gen_e:0'5_0(+(1, +(n7_0, 1))), gen_e:0'5_0(+(1, +(n7_0, 1)))) ->_R^Omega(1) e(g(gen_e:0'5_0(+(1, n7_0)), gen_e:0'5_0(+(1, n7_0)))) ->_IH e(*6_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (22) Complex Obligation (BEST) ---------------------------------------- (23) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: h(z, e(x)) -> h(c(z), d(z, x)) d(z, g(0', 0')) -> e(0') d(z, g(x, y)) -> g(e(x), d(z, y)) d(c(z), g(g(x, y), 0')) -> g(d(c(z), g(x, y)), d(z, g(x, y))) g(e(x), e(y)) -> e(g(x, y)) Types: h :: c -> e:0' -> h e :: e:0' -> e:0' c :: c -> c d :: c -> e:0' -> e:0' g :: e:0' -> e:0' -> e:0' 0' :: e:0' hole_h1_0 :: h hole_c2_0 :: c hole_e:0'3_0 :: e:0' gen_c4_0 :: Nat -> c gen_e:0'5_0 :: Nat -> e:0' Generator Equations: gen_c4_0(0) <=> hole_c2_0 gen_c4_0(+(x, 1)) <=> c(gen_c4_0(x)) gen_e:0'5_0(0) <=> 0' gen_e:0'5_0(+(x, 1)) <=> e(gen_e:0'5_0(x)) The following defined symbols remain to be analysed: g, h, d They will be analysed ascendingly in the following order: d < h g < d ---------------------------------------- (24) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (25) BOUNDS(n^1, INF) ---------------------------------------- (26) Obligation: TRS: Rules: h(z, e(x)) -> h(c(z), d(z, x)) d(z, g(0', 0')) -> e(0') d(z, g(x, y)) -> g(e(x), d(z, y)) d(c(z), g(g(x, y), 0')) -> g(d(c(z), g(x, y)), d(z, g(x, y))) g(e(x), e(y)) -> e(g(x, y)) Types: h :: c -> e:0' -> h e :: e:0' -> e:0' c :: c -> c d :: c -> e:0' -> e:0' g :: e:0' -> e:0' -> e:0' 0' :: e:0' hole_h1_0 :: h hole_c2_0 :: c hole_e:0'3_0 :: e:0' gen_c4_0 :: Nat -> c gen_e:0'5_0 :: Nat -> e:0' Lemmas: g(gen_e:0'5_0(+(1, n7_0)), gen_e:0'5_0(+(1, n7_0))) -> *6_0, rt in Omega(n7_0) Generator Equations: gen_c4_0(0) <=> hole_c2_0 gen_c4_0(+(x, 1)) <=> c(gen_c4_0(x)) gen_e:0'5_0(0) <=> 0' gen_e:0'5_0(+(x, 1)) <=> e(gen_e:0'5_0(x)) The following defined symbols remain to be analysed: d, h They will be analysed ascendingly in the following order: d < h