WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 25.4 s] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 61 ms] (14) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: intlist(nil) -> nil int(s(x), 0) -> nil int(x, x) -> cons(x, nil) intlist(cons(x, y)) -> cons(s(x), intlist(y)) int(s(x), s(y)) -> intlist(int(x, y)) int(0, s(y)) -> cons(0, int(s(0), s(y))) intlist(cons(x, nil)) -> cons(s(x), nil) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: intlist(nil) -> nil int(s(x), 0') -> nil int(x, x) -> cons(x, nil) intlist(cons(x, y)) -> cons(s(x), intlist(y)) int(s(x), s(y)) -> intlist(int(x, y)) int(0', s(y)) -> cons(0', int(s(0'), s(y))) intlist(cons(x, nil)) -> cons(s(x), nil) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: intlist(nil) -> nil int(s(x), 0') -> nil int(x, x) -> cons(x, nil) intlist(cons(x, y)) -> cons(s(x), intlist(y)) int(s(x), s(y)) -> intlist(int(x, y)) int(0', s(y)) -> cons(0', int(s(0'), s(y))) intlist(cons(x, nil)) -> cons(s(x), nil) Types: intlist :: nil:cons -> nil:cons nil :: nil:cons int :: s:0' -> s:0' -> nil:cons s :: s:0' -> s:0' 0' :: s:0' cons :: s:0' -> nil:cons -> nil:cons hole_nil:cons1_0 :: nil:cons hole_s:0'2_0 :: s:0' gen_nil:cons3_0 :: Nat -> nil:cons gen_s:0'4_0 :: Nat -> s:0' ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: intlist, int They will be analysed ascendingly in the following order: intlist < int ---------------------------------------- (6) Obligation: TRS: Rules: intlist(nil) -> nil int(s(x), 0') -> nil int(x, x) -> cons(x, nil) intlist(cons(x, y)) -> cons(s(x), intlist(y)) int(s(x), s(y)) -> intlist(int(x, y)) int(0', s(y)) -> cons(0', int(s(0'), s(y))) intlist(cons(x, nil)) -> cons(s(x), nil) Types: intlist :: nil:cons -> nil:cons nil :: nil:cons int :: s:0' -> s:0' -> nil:cons s :: s:0' -> s:0' 0' :: s:0' cons :: s:0' -> nil:cons -> nil:cons hole_nil:cons1_0 :: nil:cons hole_s:0'2_0 :: s:0' gen_nil:cons3_0 :: Nat -> nil:cons gen_s:0'4_0 :: Nat -> s:0' Generator Equations: gen_nil:cons3_0(0) <=> nil gen_nil:cons3_0(+(x, 1)) <=> cons(0', gen_nil:cons3_0(x)) gen_s:0'4_0(0) <=> 0' gen_s:0'4_0(+(x, 1)) <=> s(gen_s:0'4_0(x)) The following defined symbols remain to be analysed: intlist, int They will be analysed ascendingly in the following order: intlist < int ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: intlist(gen_nil:cons3_0(+(1, n6_0))) -> *5_0, rt in Omega(n6_0) Induction Base: intlist(gen_nil:cons3_0(+(1, 0))) Induction Step: intlist(gen_nil:cons3_0(+(1, +(n6_0, 1)))) ->_R^Omega(1) cons(s(0'), intlist(gen_nil:cons3_0(+(1, n6_0)))) ->_IH cons(s(0'), *5_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: intlist(nil) -> nil int(s(x), 0') -> nil int(x, x) -> cons(x, nil) intlist(cons(x, y)) -> cons(s(x), intlist(y)) int(s(x), s(y)) -> intlist(int(x, y)) int(0', s(y)) -> cons(0', int(s(0'), s(y))) intlist(cons(x, nil)) -> cons(s(x), nil) Types: intlist :: nil:cons -> nil:cons nil :: nil:cons int :: s:0' -> s:0' -> nil:cons s :: s:0' -> s:0' 0' :: s:0' cons :: s:0' -> nil:cons -> nil:cons hole_nil:cons1_0 :: nil:cons hole_s:0'2_0 :: s:0' gen_nil:cons3_0 :: Nat -> nil:cons gen_s:0'4_0 :: Nat -> s:0' Generator Equations: gen_nil:cons3_0(0) <=> nil gen_nil:cons3_0(+(x, 1)) <=> cons(0', gen_nil:cons3_0(x)) gen_s:0'4_0(0) <=> 0' gen_s:0'4_0(+(x, 1)) <=> s(gen_s:0'4_0(x)) The following defined symbols remain to be analysed: intlist, int They will be analysed ascendingly in the following order: intlist < int ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: intlist(nil) -> nil int(s(x), 0') -> nil int(x, x) -> cons(x, nil) intlist(cons(x, y)) -> cons(s(x), intlist(y)) int(s(x), s(y)) -> intlist(int(x, y)) int(0', s(y)) -> cons(0', int(s(0'), s(y))) intlist(cons(x, nil)) -> cons(s(x), nil) Types: intlist :: nil:cons -> nil:cons nil :: nil:cons int :: s:0' -> s:0' -> nil:cons s :: s:0' -> s:0' 0' :: s:0' cons :: s:0' -> nil:cons -> nil:cons hole_nil:cons1_0 :: nil:cons hole_s:0'2_0 :: s:0' gen_nil:cons3_0 :: Nat -> nil:cons gen_s:0'4_0 :: Nat -> s:0' Lemmas: intlist(gen_nil:cons3_0(+(1, n6_0))) -> *5_0, rt in Omega(n6_0) Generator Equations: gen_nil:cons3_0(0) <=> nil gen_nil:cons3_0(+(x, 1)) <=> cons(0', gen_nil:cons3_0(x)) gen_s:0'4_0(0) <=> 0' gen_s:0'4_0(+(x, 1)) <=> s(gen_s:0'4_0(x)) The following defined symbols remain to be analysed: int ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: int(gen_s:0'4_0(+(1, n389747_0)), gen_s:0'4_0(n389747_0)) -> gen_nil:cons3_0(0), rt in Omega(1 + n389747_0) Induction Base: int(gen_s:0'4_0(+(1, 0)), gen_s:0'4_0(0)) ->_R^Omega(1) nil Induction Step: int(gen_s:0'4_0(+(1, +(n389747_0, 1))), gen_s:0'4_0(+(n389747_0, 1))) ->_R^Omega(1) intlist(int(gen_s:0'4_0(+(1, n389747_0)), gen_s:0'4_0(n389747_0))) ->_IH intlist(gen_nil:cons3_0(0)) ->_R^Omega(1) nil We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) BOUNDS(1, INF)