WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 434 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(g(x)) -> g(f(f(x))) f(h(x)) -> h(g(x)) f'(s(x), y, y) -> f'(y, x, s(x)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(g(x)) -> g(f(f(x))) f(h(x)) -> h(g(x)) f'(s(x), y, y) -> f'(y, x, s(x)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: f(g(x)) -> g(f(f(x))) f(h(x)) -> h(g(x)) f'(s(x), y, y) -> f'(y, x, s(x)) Types: f :: g:h -> g:h g :: g:h -> g:h h :: g:h -> g:h f' :: s -> s -> s -> f' s :: s -> s hole_g:h1_0 :: g:h hole_f'2_0 :: f' hole_s3_0 :: s gen_g:h4_0 :: Nat -> g:h gen_s5_0 :: Nat -> s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: f, f' ---------------------------------------- (6) Obligation: TRS: Rules: f(g(x)) -> g(f(f(x))) f(h(x)) -> h(g(x)) f'(s(x), y, y) -> f'(y, x, s(x)) Types: f :: g:h -> g:h g :: g:h -> g:h h :: g:h -> g:h f' :: s -> s -> s -> f' s :: s -> s hole_g:h1_0 :: g:h hole_f'2_0 :: f' hole_s3_0 :: s gen_g:h4_0 :: Nat -> g:h gen_s5_0 :: Nat -> s Generator Equations: gen_g:h4_0(0) <=> hole_g:h1_0 gen_g:h4_0(+(x, 1)) <=> g(gen_g:h4_0(x)) gen_s5_0(0) <=> hole_s3_0 gen_s5_0(+(x, 1)) <=> s(gen_s5_0(x)) The following defined symbols remain to be analysed: f, f' ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: f(gen_g:h4_0(+(1, n7_0))) -> *6_0, rt in Omega(n7_0) Induction Base: f(gen_g:h4_0(+(1, 0))) Induction Step: f(gen_g:h4_0(+(1, +(n7_0, 1)))) ->_R^Omega(1) g(f(f(gen_g:h4_0(+(1, n7_0))))) ->_IH g(f(*6_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: f(g(x)) -> g(f(f(x))) f(h(x)) -> h(g(x)) f'(s(x), y, y) -> f'(y, x, s(x)) Types: f :: g:h -> g:h g :: g:h -> g:h h :: g:h -> g:h f' :: s -> s -> s -> f' s :: s -> s hole_g:h1_0 :: g:h hole_f'2_0 :: f' hole_s3_0 :: s gen_g:h4_0 :: Nat -> g:h gen_s5_0 :: Nat -> s Generator Equations: gen_g:h4_0(0) <=> hole_g:h1_0 gen_g:h4_0(+(x, 1)) <=> g(gen_g:h4_0(x)) gen_s5_0(0) <=> hole_s3_0 gen_s5_0(+(x, 1)) <=> s(gen_s5_0(x)) The following defined symbols remain to be analysed: f, f' ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: f(g(x)) -> g(f(f(x))) f(h(x)) -> h(g(x)) f'(s(x), y, y) -> f'(y, x, s(x)) Types: f :: g:h -> g:h g :: g:h -> g:h h :: g:h -> g:h f' :: s -> s -> s -> f' s :: s -> s hole_g:h1_0 :: g:h hole_f'2_0 :: f' hole_s3_0 :: s gen_g:h4_0 :: Nat -> g:h gen_s5_0 :: Nat -> s Lemmas: f(gen_g:h4_0(+(1, n7_0))) -> *6_0, rt in Omega(n7_0) Generator Equations: gen_g:h4_0(0) <=> hole_g:h1_0 gen_g:h4_0(+(x, 1)) <=> g(gen_g:h4_0(x)) gen_s5_0(0) <=> hole_s3_0 gen_s5_0(+(x, 1)) <=> s(gen_s5_0(x)) The following defined symbols remain to be analysed: f'