WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 270 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 86 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 54 ms] (16) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) double(0) -> 0 double(s(x)) -> s(s(double(x))) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) plus(s(x), y) -> plus(x, s(y)) plus(s(x), y) -> s(plus(minus(x, y), double(y))) plus(s(plus(x, y)), z) -> s(plus(plus(x, y), z)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) double(0') -> 0' double(s(x)) -> s(s(double(x))) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) plus(s(x), y) -> plus(x, s(y)) plus(s(x), y) -> s(plus(minus(x, y), double(y))) plus(s(plus(x, y)), z) -> s(plus(plus(x, y), z)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) double(0') -> 0' double(s(x)) -> s(s(double(x))) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) plus(s(x), y) -> plus(x, s(y)) plus(s(x), y) -> s(plus(minus(x, y), double(y))) plus(s(plus(x, y)), z) -> s(plus(plus(x, y), z)) Types: minus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s double :: 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: minus, double, plus They will be analysed ascendingly in the following order: minus < plus double < plus ---------------------------------------- (6) Obligation: TRS: Rules: minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) double(0') -> 0' double(s(x)) -> s(s(double(x))) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) plus(s(x), y) -> plus(x, s(y)) plus(s(x), y) -> s(plus(minus(x, y), double(y))) plus(s(plus(x, y)), z) -> s(plus(plus(x, y), z)) Types: minus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s double :: 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: minus, double, plus They will be analysed ascendingly in the following order: minus < plus double < plus ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) -> gen_0':s2_0(0), rt in Omega(1 + n4_0) Induction Base: minus(gen_0':s2_0(0), gen_0':s2_0(0)) ->_R^Omega(1) gen_0':s2_0(0) Induction Step: minus(gen_0':s2_0(+(n4_0, 1)), gen_0':s2_0(+(n4_0, 1))) ->_R^Omega(1) minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) ->_IH gen_0':s2_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) double(0') -> 0' double(s(x)) -> s(s(double(x))) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) plus(s(x), y) -> plus(x, s(y)) plus(s(x), y) -> s(plus(minus(x, y), double(y))) plus(s(plus(x, y)), z) -> s(plus(plus(x, y), z)) Types: minus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s double :: 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: minus, double, plus They will be analysed ascendingly in the following order: minus < plus double < plus ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) double(0') -> 0' double(s(x)) -> s(s(double(x))) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) plus(s(x), y) -> plus(x, s(y)) plus(s(x), y) -> s(plus(minus(x, y), double(y))) plus(s(plus(x, y)), z) -> s(plus(plus(x, y), z)) Types: minus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s double :: 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) -> gen_0':s2_0(0), rt in Omega(1 + n4_0) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: double, plus They will be analysed ascendingly in the following order: double < plus ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: double(gen_0':s2_0(n240_0)) -> gen_0':s2_0(*(2, n240_0)), rt in Omega(1 + n240_0) Induction Base: double(gen_0':s2_0(0)) ->_R^Omega(1) 0' Induction Step: double(gen_0':s2_0(+(n240_0, 1))) ->_R^Omega(1) s(s(double(gen_0':s2_0(n240_0)))) ->_IH s(s(gen_0':s2_0(*(2, c241_0)))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) double(0') -> 0' double(s(x)) -> s(s(double(x))) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) plus(s(x), y) -> plus(x, s(y)) plus(s(x), y) -> s(plus(minus(x, y), double(y))) plus(s(plus(x, y)), z) -> s(plus(plus(x, y), z)) Types: minus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s double :: 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) -> gen_0':s2_0(0), rt in Omega(1 + n4_0) double(gen_0':s2_0(n240_0)) -> gen_0':s2_0(*(2, n240_0)), rt in Omega(1 + n240_0) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: plus ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: plus(gen_0':s2_0(n484_0), gen_0':s2_0(b)) -> gen_0':s2_0(+(n484_0, b)), rt in Omega(1 + n484_0) Induction Base: plus(gen_0':s2_0(0), gen_0':s2_0(b)) ->_R^Omega(1) gen_0':s2_0(b) Induction Step: plus(gen_0':s2_0(+(n484_0, 1)), gen_0':s2_0(b)) ->_R^Omega(1) s(plus(gen_0':s2_0(n484_0), gen_0':s2_0(b))) ->_IH s(gen_0':s2_0(+(b, c485_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) BOUNDS(1, INF)