WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxWeightedTrs (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxTypedWeightedTrs (7) CompletionProof [UPPER BOUND(ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (12) CpxRNTS (13) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxRNTS (15) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 228 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 17 ms] (22) CpxRNTS (23) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 151 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 75 ms] (28) CpxRNTS (29) FinalProof [FINISHED, 0 ms] (30) BOUNDS(1, n^1) (31) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (32) CpxTRS (33) SlicingProof [LOWER BOUND(ID), 0 ms] (34) CpxTRS (35) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (36) typed CpxTrs (37) OrderProof [LOWER BOUND(ID), 0 ms] (38) typed CpxTrs (39) RewriteLemmaProof [LOWER BOUND(ID), 1939 ms] (40) BEST (41) proven lower bound (42) LowerBoundPropagationProof [FINISHED, 0 ms] (43) BOUNDS(n^1, INF) (44) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: sum(0) -> 0 sum(s(x)) -> +(sum(x), s(x)) sum1(0) -> 0 sum1(s(x)) -> s(+(sum1(x), +(x, x))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS does not nest defined symbols, we have rc = irc. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: sum(0) -> 0 sum(s(x)) -> +(sum(x), s(x)) sum1(0) -> 0 sum1(s(x)) -> s(+(sum1(x), +(x, x))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: sum(0) -> 0 [1] sum(s(x)) -> +(sum(x), s(x)) [1] sum1(0) -> 0 [1] sum1(s(x)) -> s(+(sum1(x), +(x, x))) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: sum(0) -> 0 [1] sum(s(x)) -> +(sum(x), s(x)) [1] sum1(0) -> 0 [1] sum1(s(x)) -> s(+(sum1(x), +(x, x))) [1] The TRS has the following type information: sum :: 0:s:+ -> 0:s:+ 0 :: 0:s:+ s :: 0:s:+ -> 0:s:+ + :: 0:s:+ -> 0:s:+ -> 0:s:+ sum1 :: 0:s:+ -> 0:s:+ Rewrite Strategy: INNERMOST ---------------------------------------- (7) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: sum_1 sum1_1 (c) The following functions are completely defined: none Due to the following rules being added: none And the following fresh constants: none ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: sum(0) -> 0 [1] sum(s(x)) -> +(sum(x), s(x)) [1] sum1(0) -> 0 [1] sum1(s(x)) -> s(+(sum1(x), +(x, x))) [1] The TRS has the following type information: sum :: 0:s:+ -> 0:s:+ 0 :: 0:s:+ s :: 0:s:+ -> 0:s:+ + :: 0:s:+ -> 0:s:+ -> 0:s:+ sum1 :: 0:s:+ -> 0:s:+ Rewrite Strategy: INNERMOST ---------------------------------------- (9) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: sum(0) -> 0 [1] sum(s(x)) -> +(sum(x), s(x)) [1] sum1(0) -> 0 [1] sum1(s(x)) -> s(+(sum1(x), +(x, x))) [1] The TRS has the following type information: sum :: 0:s:+ -> 0:s:+ 0 :: 0:s:+ s :: 0:s:+ -> 0:s:+ + :: 0:s:+ -> 0:s:+ -> 0:s:+ sum1 :: 0:s:+ -> 0:s:+ Rewrite Strategy: INNERMOST ---------------------------------------- (11) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: sum(z) -{ 1 }-> 0 :|: z = 0 sum(z) -{ 1 }-> 1 + sum(x) + (1 + x) :|: x >= 0, z = 1 + x sum1(z) -{ 1 }-> 0 :|: z = 0 sum1(z) -{ 1 }-> 1 + (1 + sum1(x) + (1 + x + x)) :|: x >= 0, z = 1 + x ---------------------------------------- (13) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: sum(z) -{ 1 }-> 0 :|: z = 0 sum(z) -{ 1 }-> 1 + sum(z - 1) + (1 + (z - 1)) :|: z - 1 >= 0 sum1(z) -{ 1 }-> 0 :|: z = 0 sum1(z) -{ 1 }-> 1 + (1 + sum1(z - 1) + (1 + (z - 1) + (z - 1))) :|: z - 1 >= 0 ---------------------------------------- (15) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { sum1 } { sum } ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: sum(z) -{ 1 }-> 0 :|: z = 0 sum(z) -{ 1 }-> 1 + sum(z - 1) + (1 + (z - 1)) :|: z - 1 >= 0 sum1(z) -{ 1 }-> 0 :|: z = 0 sum1(z) -{ 1 }-> 1 + (1 + sum1(z - 1) + (1 + (z - 1) + (z - 1))) :|: z - 1 >= 0 Function symbols to be analyzed: {sum1}, {sum} ---------------------------------------- (17) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: sum(z) -{ 1 }-> 0 :|: z = 0 sum(z) -{ 1 }-> 1 + sum(z - 1) + (1 + (z - 1)) :|: z - 1 >= 0 sum1(z) -{ 1 }-> 0 :|: z = 0 sum1(z) -{ 1 }-> 1 + (1 + sum1(z - 1) + (1 + (z - 1) + (z - 1))) :|: z - 1 >= 0 Function symbols to be analyzed: {sum1}, {sum} ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: sum1 after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: z + 2*z^2 ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: sum(z) -{ 1 }-> 0 :|: z = 0 sum(z) -{ 1 }-> 1 + sum(z - 1) + (1 + (z - 1)) :|: z - 1 >= 0 sum1(z) -{ 1 }-> 0 :|: z = 0 sum1(z) -{ 1 }-> 1 + (1 + sum1(z - 1) + (1 + (z - 1) + (z - 1))) :|: z - 1 >= 0 Function symbols to be analyzed: {sum1}, {sum} Previous analysis results are: sum1: runtime: ?, size: O(n^2) [z + 2*z^2] ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: sum1 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: sum(z) -{ 1 }-> 0 :|: z = 0 sum(z) -{ 1 }-> 1 + sum(z - 1) + (1 + (z - 1)) :|: z - 1 >= 0 sum1(z) -{ 1 }-> 0 :|: z = 0 sum1(z) -{ 1 }-> 1 + (1 + sum1(z - 1) + (1 + (z - 1) + (z - 1))) :|: z - 1 >= 0 Function symbols to be analyzed: {sum} Previous analysis results are: sum1: runtime: O(n^1) [1 + z], size: O(n^2) [z + 2*z^2] ---------------------------------------- (23) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: sum(z) -{ 1 }-> 0 :|: z = 0 sum(z) -{ 1 }-> 1 + sum(z - 1) + (1 + (z - 1)) :|: z - 1 >= 0 sum1(z) -{ 1 }-> 0 :|: z = 0 sum1(z) -{ 1 + z }-> 1 + (1 + s + (1 + (z - 1) + (z - 1))) :|: s >= 0, s <= 2 * ((z - 1) * (z - 1)) + (z - 1), z - 1 >= 0 Function symbols to be analyzed: {sum} Previous analysis results are: sum1: runtime: O(n^1) [1 + z], size: O(n^2) [z + 2*z^2] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: sum after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: z + z^2 ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: sum(z) -{ 1 }-> 0 :|: z = 0 sum(z) -{ 1 }-> 1 + sum(z - 1) + (1 + (z - 1)) :|: z - 1 >= 0 sum1(z) -{ 1 }-> 0 :|: z = 0 sum1(z) -{ 1 + z }-> 1 + (1 + s + (1 + (z - 1) + (z - 1))) :|: s >= 0, s <= 2 * ((z - 1) * (z - 1)) + (z - 1), z - 1 >= 0 Function symbols to be analyzed: {sum} Previous analysis results are: sum1: runtime: O(n^1) [1 + z], size: O(n^2) [z + 2*z^2] sum: runtime: ?, size: O(n^2) [z + z^2] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: sum after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: sum(z) -{ 1 }-> 0 :|: z = 0 sum(z) -{ 1 }-> 1 + sum(z - 1) + (1 + (z - 1)) :|: z - 1 >= 0 sum1(z) -{ 1 }-> 0 :|: z = 0 sum1(z) -{ 1 + z }-> 1 + (1 + s + (1 + (z - 1) + (z - 1))) :|: s >= 0, s <= 2 * ((z - 1) * (z - 1)) + (z - 1), z - 1 >= 0 Function symbols to be analyzed: Previous analysis results are: sum1: runtime: O(n^1) [1 + z], size: O(n^2) [z + 2*z^2] sum: runtime: O(n^1) [1 + z], size: O(n^2) [z + z^2] ---------------------------------------- (29) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (30) BOUNDS(1, n^1) ---------------------------------------- (31) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (32) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: sum(0') -> 0' sum(s(x)) -> +'(sum(x), s(x)) sum1(0') -> 0' sum1(s(x)) -> s(+'(sum1(x), +'(x, x))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (33) SlicingProof (LOWER BOUND(ID)) Sliced the following arguments: +'/1 ---------------------------------------- (34) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: sum(0') -> 0' sum(s(x)) -> +'(sum(x)) sum1(0') -> 0' sum1(s(x)) -> s(+'(sum1(x))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (35) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (36) Obligation: TRS: Rules: sum(0') -> 0' sum(s(x)) -> +'(sum(x)) sum1(0') -> 0' sum1(s(x)) -> s(+'(sum1(x))) Types: sum :: 0':s:+' -> 0':s:+' 0' :: 0':s:+' s :: 0':s:+' -> 0':s:+' +' :: 0':s:+' -> 0':s:+' sum1 :: 0':s:+' -> 0':s:+' hole_0':s:+'1_0 :: 0':s:+' gen_0':s:+'2_0 :: Nat -> 0':s:+' ---------------------------------------- (37) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: sum, sum1 ---------------------------------------- (38) Obligation: TRS: Rules: sum(0') -> 0' sum(s(x)) -> +'(sum(x)) sum1(0') -> 0' sum1(s(x)) -> s(+'(sum1(x))) Types: sum :: 0':s:+' -> 0':s:+' 0' :: 0':s:+' s :: 0':s:+' -> 0':s:+' +' :: 0':s:+' -> 0':s:+' sum1 :: 0':s:+' -> 0':s:+' hole_0':s:+'1_0 :: 0':s:+' gen_0':s:+'2_0 :: Nat -> 0':s:+' Generator Equations: gen_0':s:+'2_0(0) <=> 0' gen_0':s:+'2_0(+(x, 1)) <=> s(gen_0':s:+'2_0(x)) The following defined symbols remain to be analysed: sum, sum1 ---------------------------------------- (39) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: sum(gen_0':s:+'2_0(+(1, n4_0))) -> *3_0, rt in Omega(n4_0) Induction Base: sum(gen_0':s:+'2_0(+(1, 0))) Induction Step: sum(gen_0':s:+'2_0(+(1, +(n4_0, 1)))) ->_R^Omega(1) +'(sum(gen_0':s:+'2_0(+(1, n4_0)))) ->_IH +'(*3_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (40) Complex Obligation (BEST) ---------------------------------------- (41) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: sum(0') -> 0' sum(s(x)) -> +'(sum(x)) sum1(0') -> 0' sum1(s(x)) -> s(+'(sum1(x))) Types: sum :: 0':s:+' -> 0':s:+' 0' :: 0':s:+' s :: 0':s:+' -> 0':s:+' +' :: 0':s:+' -> 0':s:+' sum1 :: 0':s:+' -> 0':s:+' hole_0':s:+'1_0 :: 0':s:+' gen_0':s:+'2_0 :: Nat -> 0':s:+' Generator Equations: gen_0':s:+'2_0(0) <=> 0' gen_0':s:+'2_0(+(x, 1)) <=> s(gen_0':s:+'2_0(x)) The following defined symbols remain to be analysed: sum, sum1 ---------------------------------------- (42) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (43) BOUNDS(n^1, INF) ---------------------------------------- (44) Obligation: TRS: Rules: sum(0') -> 0' sum(s(x)) -> +'(sum(x)) sum1(0') -> 0' sum1(s(x)) -> s(+'(sum1(x))) Types: sum :: 0':s:+' -> 0':s:+' 0' :: 0':s:+' s :: 0':s:+' -> 0':s:+' +' :: 0':s:+' -> 0':s:+' sum1 :: 0':s:+' -> 0':s:+' hole_0':s:+'1_0 :: 0':s:+' gen_0':s:+'2_0 :: Nat -> 0':s:+' Lemmas: sum(gen_0':s:+'2_0(+(1, n4_0))) -> *3_0, rt in Omega(n4_0) Generator Equations: gen_0':s:+'2_0(0) <=> 0' gen_0':s:+'2_0(+(x, 1)) <=> s(gen_0':s:+'2_0(x)) The following defined symbols remain to be analysed: sum1