WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 262 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 73 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 82 ms] (16) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(true, x, y) -> f(and(gt(x, y), gt(y, s(s(0)))), plus(s(0), x), double(y)) gt(0, v) -> false gt(s(u), 0) -> true gt(s(u), s(v)) -> gt(u, v) and(x, true) -> x and(x, false) -> false plus(n, 0) -> n plus(n, s(m)) -> s(plus(n, m)) double(0) -> 0 double(s(x)) -> s(s(double(x))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(true, x, y) -> f(and(gt(x, y), gt(y, s(s(0')))), plus(s(0'), x), double(y)) gt(0', v) -> false gt(s(u), 0') -> true gt(s(u), s(v)) -> gt(u, v) and(x, true) -> x and(x, false) -> false plus(n, 0') -> n plus(n, s(m)) -> s(plus(n, m)) double(0') -> 0' double(s(x)) -> s(s(double(x))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: f(true, x, y) -> f(and(gt(x, y), gt(y, s(s(0')))), plus(s(0'), x), double(y)) gt(0', v) -> false gt(s(u), 0') -> true gt(s(u), s(v)) -> gt(u, v) and(x, true) -> x and(x, false) -> false plus(n, 0') -> n plus(n, s(m)) -> s(plus(n, m)) double(0') -> 0' double(s(x)) -> s(s(double(x))) Types: f :: true:false -> 0':s -> 0':s -> f true :: true:false and :: true:false -> true:false -> true:false gt :: 0':s -> 0':s -> true:false s :: 0':s -> 0':s 0' :: 0':s plus :: 0':s -> 0':s -> 0':s double :: 0':s -> 0':s false :: true:false hole_f1_0 :: f hole_true:false2_0 :: true:false hole_0':s3_0 :: 0':s gen_0':s4_0 :: Nat -> 0':s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: f, gt, plus, double They will be analysed ascendingly in the following order: gt < f plus < f double < f ---------------------------------------- (6) Obligation: TRS: Rules: f(true, x, y) -> f(and(gt(x, y), gt(y, s(s(0')))), plus(s(0'), x), double(y)) gt(0', v) -> false gt(s(u), 0') -> true gt(s(u), s(v)) -> gt(u, v) and(x, true) -> x and(x, false) -> false plus(n, 0') -> n plus(n, s(m)) -> s(plus(n, m)) double(0') -> 0' double(s(x)) -> s(s(double(x))) Types: f :: true:false -> 0':s -> 0':s -> f true :: true:false and :: true:false -> true:false -> true:false gt :: 0':s -> 0':s -> true:false s :: 0':s -> 0':s 0' :: 0':s plus :: 0':s -> 0':s -> 0':s double :: 0':s -> 0':s false :: true:false hole_f1_0 :: f hole_true:false2_0 :: true:false hole_0':s3_0 :: 0':s gen_0':s4_0 :: Nat -> 0':s Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: gt, f, plus, double They will be analysed ascendingly in the following order: gt < f plus < f double < f ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: gt(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) -> false, rt in Omega(1 + n6_0) Induction Base: gt(gen_0':s4_0(0), gen_0':s4_0(0)) ->_R^Omega(1) false Induction Step: gt(gen_0':s4_0(+(n6_0, 1)), gen_0':s4_0(+(n6_0, 1))) ->_R^Omega(1) gt(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) ->_IH false We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: f(true, x, y) -> f(and(gt(x, y), gt(y, s(s(0')))), plus(s(0'), x), double(y)) gt(0', v) -> false gt(s(u), 0') -> true gt(s(u), s(v)) -> gt(u, v) and(x, true) -> x and(x, false) -> false plus(n, 0') -> n plus(n, s(m)) -> s(plus(n, m)) double(0') -> 0' double(s(x)) -> s(s(double(x))) Types: f :: true:false -> 0':s -> 0':s -> f true :: true:false and :: true:false -> true:false -> true:false gt :: 0':s -> 0':s -> true:false s :: 0':s -> 0':s 0' :: 0':s plus :: 0':s -> 0':s -> 0':s double :: 0':s -> 0':s false :: true:false hole_f1_0 :: f hole_true:false2_0 :: true:false hole_0':s3_0 :: 0':s gen_0':s4_0 :: Nat -> 0':s Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: gt, f, plus, double They will be analysed ascendingly in the following order: gt < f plus < f double < f ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: f(true, x, y) -> f(and(gt(x, y), gt(y, s(s(0')))), plus(s(0'), x), double(y)) gt(0', v) -> false gt(s(u), 0') -> true gt(s(u), s(v)) -> gt(u, v) and(x, true) -> x and(x, false) -> false plus(n, 0') -> n plus(n, s(m)) -> s(plus(n, m)) double(0') -> 0' double(s(x)) -> s(s(double(x))) Types: f :: true:false -> 0':s -> 0':s -> f true :: true:false and :: true:false -> true:false -> true:false gt :: 0':s -> 0':s -> true:false s :: 0':s -> 0':s 0' :: 0':s plus :: 0':s -> 0':s -> 0':s double :: 0':s -> 0':s false :: true:false hole_f1_0 :: f hole_true:false2_0 :: true:false hole_0':s3_0 :: 0':s gen_0':s4_0 :: Nat -> 0':s Lemmas: gt(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) -> false, rt in Omega(1 + n6_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: plus, f, double They will be analysed ascendingly in the following order: plus < f double < f ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: plus(gen_0':s4_0(a), gen_0':s4_0(n253_0)) -> gen_0':s4_0(+(n253_0, a)), rt in Omega(1 + n253_0) Induction Base: plus(gen_0':s4_0(a), gen_0':s4_0(0)) ->_R^Omega(1) gen_0':s4_0(a) Induction Step: plus(gen_0':s4_0(a), gen_0':s4_0(+(n253_0, 1))) ->_R^Omega(1) s(plus(gen_0':s4_0(a), gen_0':s4_0(n253_0))) ->_IH s(gen_0':s4_0(+(a, c254_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: f(true, x, y) -> f(and(gt(x, y), gt(y, s(s(0')))), plus(s(0'), x), double(y)) gt(0', v) -> false gt(s(u), 0') -> true gt(s(u), s(v)) -> gt(u, v) and(x, true) -> x and(x, false) -> false plus(n, 0') -> n plus(n, s(m)) -> s(plus(n, m)) double(0') -> 0' double(s(x)) -> s(s(double(x))) Types: f :: true:false -> 0':s -> 0':s -> f true :: true:false and :: true:false -> true:false -> true:false gt :: 0':s -> 0':s -> true:false s :: 0':s -> 0':s 0' :: 0':s plus :: 0':s -> 0':s -> 0':s double :: 0':s -> 0':s false :: true:false hole_f1_0 :: f hole_true:false2_0 :: true:false hole_0':s3_0 :: 0':s gen_0':s4_0 :: Nat -> 0':s Lemmas: gt(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) -> false, rt in Omega(1 + n6_0) plus(gen_0':s4_0(a), gen_0':s4_0(n253_0)) -> gen_0':s4_0(+(n253_0, a)), rt in Omega(1 + n253_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: double, f They will be analysed ascendingly in the following order: double < f ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: double(gen_0':s4_0(n778_0)) -> gen_0':s4_0(*(2, n778_0)), rt in Omega(1 + n778_0) Induction Base: double(gen_0':s4_0(0)) ->_R^Omega(1) 0' Induction Step: double(gen_0':s4_0(+(n778_0, 1))) ->_R^Omega(1) s(s(double(gen_0':s4_0(n778_0)))) ->_IH s(s(gen_0':s4_0(*(2, c779_0)))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Obligation: TRS: Rules: f(true, x, y) -> f(and(gt(x, y), gt(y, s(s(0')))), plus(s(0'), x), double(y)) gt(0', v) -> false gt(s(u), 0') -> true gt(s(u), s(v)) -> gt(u, v) and(x, true) -> x and(x, false) -> false plus(n, 0') -> n plus(n, s(m)) -> s(plus(n, m)) double(0') -> 0' double(s(x)) -> s(s(double(x))) Types: f :: true:false -> 0':s -> 0':s -> f true :: true:false and :: true:false -> true:false -> true:false gt :: 0':s -> 0':s -> true:false s :: 0':s -> 0':s 0' :: 0':s plus :: 0':s -> 0':s -> 0':s double :: 0':s -> 0':s false :: true:false hole_f1_0 :: f hole_true:false2_0 :: true:false hole_0':s3_0 :: 0':s gen_0':s4_0 :: Nat -> 0':s Lemmas: gt(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) -> false, rt in Omega(1 + n6_0) plus(gen_0':s4_0(a), gen_0':s4_0(n253_0)) -> gen_0':s4_0(+(n253_0, a)), rt in Omega(1 + n253_0) double(gen_0':s4_0(n778_0)) -> gen_0':s4_0(*(2, n778_0)), rt in Omega(1 + n778_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: f